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Abstract

High-resolution submillimeter observations of protoplanetary disks with ALMA have revealed that dust rings are
common in large, bright disks. The leading explanation for these structures is dust trapping in a local gas pressure
maximum, caused by an embedded planet or other dynamical process. Independent of origin, such dust traps
should be stable for many orbits to collect significant dust. However, ringlike perturbations in gas disks are also
known to trigger the Rossby wave instability (RWI). We investigate whether axisymmetric pressure bumps can
simultaneously trap dust and remain stable to the RWI. The answer depends on the thermodynamic properties of
pressure bumps. For isothermal bumps, dust traps are RWI stable for widths from ∼1 to several gas scale heights.
Adiabatic dust traps are stable over a smaller range of widths. For temperature bumps with no surface density
component, however, all dust traps tend to be unstable. Smaller values of disk aspect ratio allow stable dust
trapping at lower bump amplitudes and over a larger range of widths. We also report a new approximate criterion
for RWI. Instability occurs when the radial oscillation frequency is 75% of the Keplerian frequency, which
differs from the well-known Lovelace necessary (but not sufficient) criterion for instability. Our results can guide
ALMA observations of molecular gas by constraining the resolution and sensitivity needed to identify the pressure
bumps thought to be responsible for dust rings.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Circumstellar dust (236); Planet
formation (1241); Protoplanetary disks (1300); Submillimeter astronomy (1647); Hydrodynamics (1963)

1. Introduction

High-resolution observations of protoplanetary disks by the
Atacama Large Millimeter/submillimeter Array (ALMA) have
revealed a variety of substructures, including axisymmetric
features such as rings and gaps, as well as nonaxisymmetric
vortex-shaped or crescent-shaped traps (van der Marel et al.
2013; ALMA Partnership et al. 2015; Andrews et al. 2018).

These regions of enhanced continuum emission correspond to
locations where dust has concentrated and/or become heated.
The leading hypothesis is that these structures form when dust
drifts into local maxima in gas pressure (Whipple 1972; Pinilla
& Youdin 2017). However, alternate explanations have been
proposed, including the concentration of dust by a “secular”
gravitational instability of the dust layer (Youdin 2011;
Takahashi & Inutsuka 2016); a thermal shadowing instability
of the disk (Ueda et al. 2021); and changes in dust properties
near condensation fronts, i.e., “snow lines” (Zhang et al. 2015;
Okuzumi & Momose 2016). These mechanisms and related ones
are reviewed in Bae et al. (2022).

For the leading hypothesis of dust concentration in pressure
bumps, the pressure bumps could have a planetary or
nonplanetary origin. The outer edge of planet-carved gaps
can trap dust in a pressure maxima (Paardekooper &
Mellema 2004; Lyra et al. 2009; Pinilla et al. 2012). Without
planets, a variety of dynamical mechanisms could also create a
pressure bump. These include zonal flows arising in magnetor-
otational turbulence (Johansen et al. 2009a; Krapp et al. 2018);

dead-zone boundaries (Lyra et al. 2008; Ruge et al. 2016);
magnetized disk winds (Suriano et al. 2017; Riols &
Lesur 2019); and the vertical shear instability (Nelson et al.
2013; Lin & Youdin 2015; Flock et al. 2017).
Therefore, identifying whether or not dust is concentrated in

gas pressure maxima will aid our understanding of the nature of
dust substructures and their role in planet formation. ALMA
observations of molecular lines, especially of CO, combined
with chemical models, constrain the mass and temperature
distribution of disk gas (Öberg et al. 2021). However, the
spatial and velocity resolution is not sufficiently high in current
observations to clearly confirm or rule out gas pressure maxima
as the source of dust structures. The goal of this Letter is to
theoretically constrain the properties of gas structures that can
trap dust and to aid the planning and interpretation of ALMA
observations. Specifically, we require that dust-trapping
pressure bumps be dynamically stable.
Specifically the Rossby wave instability (RWI; Lovelace

et al. 1999, hereafter L99) is triggered by narrow, ringlike gas
structures. There are two main nonlinear outcomes to the RWI.
First, the RWI can trigger the formation of vortices (Li et al.
2001), whether the initial ringlike perturbation was formed by a
planet (Koller et al. 2003) or by another source such as a dead-
zone boundary (Varnière & Tagger 2006). Second, after
vortices decay, ringlike structures spread out to an RWI-stable
state (Hammer et al. 2017). In either case, an axisymmetric
pressure bump should not persist in an RWI-unstable state.
Thus if the dust rings observed by ALMA are caused by

pressure trapping, the pressure bump should be RWI stable or
at most marginally unstable. In this Letter, we use this
constraint to place limits on the amplitudes and widths of gas
bumps that could produce observed dust rings. We believe that
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this work provides the first systematic comparison of the
conditions for pressure trapping and hydrodynamic stability.
Most similarly, Yang & Menou (2010) considered the effect of
the axisymmetric Rayleigh instability on gas bumps and steps.
However the nonaxisymmetric RWI is more readily triggered
(see Section 3.4) and thus places more stringent constraints on
gas rings. Moreover, neither that work nor other previous
works (to our knowledge) have addressed the main question we
are asking: which stable gas rings can also trap dust?

In Section 2, we describe our model of a disk with a bump
and the methods of our stability analysis. Section 3 presents our
results for the properties of stable, dust-trapping rings. In
Section 4, we discuss the implications and possible extensions
of our work.

2. Methods

2.1. Disk-bump Model

We consider a set of simple but flexible models of a
protoplanetary disk with a bump. These axisymmetric models
have surface mass density Σ and (vertically isothermal)
temperature T that vary with radius R as
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where the background disk slope is given by the exponents n
and q. The bumps are Gaussian shaped, with
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2 2- º - - , centered on R0

with width W. The bump amplitudes are AΣ and AT.
4In the

absence of a bump, the disk would have the background values,
Σ0 and T0, at R0.

We assume an ideal gas, with pressure P∝ ρT for mass
density ρ. The structure of P and ρ with vertical distance z from
the disk midplane follows from hydrostatic balance. We neglect
disk self-gravity and use the vertical gravitational acceleration
of a thin disk, g zz K

2= -W  with the Keplerian frequency
ΩK∝ R−3/2. The midplane density and pressure can then be
written
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The midplane pressure Pm is used to determine the location of
dust traps because dust will accumulate at a pressure maximum
with dPm/dR= 0 (Whipple 1972; Youdin 2010). For the RWI

analysis, we use a height-integrated disk model, where the
relevant pressure is P Pdz P H2H mò p= =

-¥

¥
. We hence-

forth drop the subscript “m” from midplane values for
convenience.
Choosing scaled units of R0, Σ0, and Ω0≡ΩK(R0), we

specify our model by six dimensionless parameters n, q, h0, AΣ,
AT, and W/H0=W/(R0 h0). We further fix an effective, height-
integrated adiabatic index, Γ= 4/3, which is approximately
equivalent to a standard (3D) adiabatic index of 7/5,
appropriate for diatomic molecules (Ostriker et al. 1992).
Our fiducial model includes a bump in surface density but

not in temperature (i.e., AΣ> 0, AT= 0). The parameters of the
fiducial case are n=−1, q=− 0.5, h0= 0.05, and AT= 0,
with different choices of AΣ and W/H0. In Section 3.2 we
explore deviations from these background disk parameters, and
in Section 3.3 we consider heated bumps with AT> 0.
Our choices of background disk parameters span most

theoretical expectations, as well as observational constraints,
especially in the R0; 50–100 au region where ALMA has
observed prominent dust rings, e.g., with the DSHARP survey
(Dullemond et al. 2018). Gas parameters are constrained by
ALMA observations of molecular lines plus thermochemical
modeling. Zhang et al. (2021) fit ALMA MAPS survey data to
a disk model with an exponentially truncated power-law disk in
Σ. The local slope n d d Rln ln= S  of those models vary
from −1 to −2 at R0; 50–100 au. Their fits also give values
from q;−0.3 to −0.8 throughout the disk and values
h0; 0.03 in the inner disk (R0; 10 au) and h0; 0.1 in the
outer disk (R0; 150 au), consistent with our choices.
Figure 1 illustrates examples of ringlike bumps in our

fiducial disk model. The red solid curves represent a relatively
strong and narrow bump with AΣ= 1, W/H0= 1.5. A weaker
bump (purple dotted curves) and a wider bump (yellow dashed
curves) are shown for comparison. The top two panels show
the bumps in surface density and in midplane pressure,
respectively. The bumps appear less prominent in pressure
than in Σ due to the steeper background and power-law slope
of pressure. The third panel shows the logarithmic pressure
gradient, i.e., the local power-law slope. Both the weak and
wide bumps have negative slope everywhere, implying that
dust drift is directed solely inward due to sub-Keplerian gas
orbits. For the strong bump, the slope briefly becomes positive,
and dust can collect in the local pressure maximum.
In the weak and wide cases, the reduction of inward drift

speeds—where radial pressure gradients are weak but still
negative—would increase the dust density as a traffic jam
effect (Carrera et al. 2021). We focus on the stronger dust
concentrations that occur in local pressure maxima.
The bottom panel of Figure 1 shows the disk’s radial

oscillation frequency squared, a combination of the epicyclic
frequency, κ, and radial buoyancy frequency, NR, computed as
in L99. Negative values of NR

2 2k +  would imply instability by
the Solberg–Høiland criterion (Lin & Youdin 2015). While this
quantity remains positive, it is reduced near R0 by the pressure
bump. As we show in Section 3.4, even a partial reduction
could trigger the RWI. Specifically, we find N 0.6R

2 2
K
2k + W 

somewhere to be an approximate criterion for the RWI. The
strong and narrow bump that traps particles also causes the
largest reduction of NR

2 2k + , which makes it closer to
triggering the RWI. This particular bump turns out to be stable
to the RWI, and the goal of this Letter is to explore
systematically when this is true in different circumstances.

4 Unlike some previous works (e.g., Lovelace et al. 1999; Li et al. 2000), our
bump is not multiplied by the background power law. This choice allows our
large amplitude bumps to be independent of the background slope.
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2.2. RWI Stability Analysis

This work studies the RWI stability of disks with bumps, as
parameterized in Equation (1), for the purpose of comparing to
the conditions for trapping dust. However, determining RWI
stability requires a numerical calculation as no general analytic
criterion for the RWI exists. The well-known Lovelace
criterion (L99) provides a necessary, but not sufficient,
condition for instability.

Many works, starting with Li et al. (2000), have computed
the linear growth of the RWI. Of these, Ono et al. (2016,
hereafter O16) performed the most thorough analysis to date of

the RWI stability boundary, finding the amplitudes and widths
needed for bumps to trigger instability. O16 also considered
gaps and steps, which we ignore here, partly because the results
are similar and also because we wish to more thoroughly
examine the bump case in this initial study.
Comparing to O16, our work has two key distinctions. First

and foremost, we are comparing to the conditions for dust
trapping. Second, O16 considered disks with a flat background
(n= q= 0) and a barotropic equation of state (T∝ΣΓ−1). We
study nonbarotropic disks as well to consider a wider, and more
realistic, range of background disk slopes and also to compare
bumps in surface density to bumps in temperature. We thus
note that—as a means to the end of better understanding dust-
trapping pressure bumps—our results build on O16 by
performing the most thorough investigation to date of the
RWI stability boundary for nonbarotropic disks.
Our stability analysis uses the original height-integrated,

linearized equations of L99. These equations are nonbarotropic,
which allows for disk entropy gradients and thus radial
buoyancy. Furthermore, these equations assume adiabatic
perturbations, i.e., no cooling. Specifically, we solve the
ordinary differential equation (ODE)of Equation (10) in L99,
which describes the behavior of linear perturbations to an
equilibrium disk model. We use our disk model, Equation (1),
as the equilibrium, using the PH as the relevant, height-
integrated pressure.
We solve the governing ODE using the same method and

boundary conditions as those of O16, described in their
Appendix. The wave frequencies, ω, and RWI growth rates, γ,
are found as the complex eigenvalues of the resulting linear
system, using Müller’s method. For all linear stability
calculations, we use N= 3000 grid points uniformly spaced
in the radial domain Rä [0.3R0, 3R0]. As a check on our
calculations, we reproduced the stability boundary that O16
found for their bump cases, (iii) and (iv).
While the RWI has been been analyzed in 3D (Meheut et al.

2010; Lin 2013), even the linear calculations are considerably
computationally intensive. Fortunately, growth rates appear
similar in 2D and 3D (Meheut et al. 2012) though an
investigation of the RWI stability boundary in 3D is left to
future work.
A technical difficulty in studying the marginal stability to the

RWI is that when γ= 0, the governing ODE is singular at
corotation.5To avoid the singularity, we are restricted to
finding solutions near marginal stability, and our main results
are for γ= 5× 10−3Ω0. Such growth rates are sufficiently slow
for two reasons. First, RWI growth rates increase rapidly away
from the stability boundary, and the precise threshold chosen
for γ/Ω0= 1 has little effect on the inferred boundary. Second,
linear growth that is slower than hundreds of orbits is unlikely
to be astrophysically relevant as it becomes a significant
fraction of the disk lifetime in the outer disk and unlikely to be
the dominant dynamical effect.
O16 were able to remove the corotation singularity of order

( )1 wD  for marginally stable states (see their Section 5.2)
and confirm that the γ= 0 and small γ boundaries were
indistinguishable. Their technique works for barotropic disks
with no radial entropy gradients but could not be applied to our

Figure 1. The behavior of three different bumps in our fiducial disk model:
“Strong” (which is also narrow), “Weak,” and “Wide,” with AΣ = (1, 0.4, 1),
W/H0 = (1.5, 1.5, 3), respectively. Top two panels: surface density, Σ, and
midplane pressure, P, in the vicinity of the bump. Third panel: the pressure
gradient, which only becomes positive in the “Strong” case, indicating a dust-
trapping pressure maximum. Bottom panel: the disk’s squared radial oscillation
frequency, relative to the squared Keplerian frequency. These radial
frequencies are related to disk stability.

5 Corotation is where the wave’s pattern speed, ω/m, matches the disk’s
orbital frequency, Ω(R), and as a result the Doppler-shifted frequency vanishes:
Δω ≡ ω − mΩ(R) = 0 (Tsang & Lai 2008). In practice, the corotation radius is
located near the center of the bump.
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nonbarotropic model. Moreover, for our nonbarotropic case,
the corotation singularity is of higher order,( )1 2wD , which
means that we require higher grid resolution to solve for a
given small growth rate.

In finding the stability boundary, we fix the azimuthal
wavenumber to m= 1. This mode was found to be the most
unstable near marginal stability by O16, in the sense of giving
instability for the smallest bump amplitudes, at a given width.
We also investigated whether this result held for our models,
which are nonbarotropic and include smaller values of h0. With
our fiducial model, we confirmed that m= 1 is the fastest
growing mode as γ→ 0. However near the γ= 5× 10−3Ω0

threshold used in this work, m> 1 modes can be the fastest
growing but only for narrow widths (W/H0 0.5). The RWI
stability boundary would thus move to somewhat smaller
amplitudes at narrow widths if m> 1 modes were included. But
this shift would not affect our results because the amplitudes
are already too low for dust trapping in this region (as shown in
Figure 2).

3. Results

We find the properties of ring-shaped bumps in gas disks that
could explain the bright dust rings observed by ALMA because
they can both trap dust in a pressure maximum and remain
stable to the RWI. A dust trap should be stable for hundreds of
orbital times ( K

1W- ) for significant amounts of dust to
accumulate.

The radial drift timescale is at least h1 4000
2

0
1

0
1~ W W- -  if

dust over a large radial scale ∼R0 accumulates in a ring. Drift
times are longer if particles are not of the optimum size (∼cm)
at which the drag and orbital timescales match (Adachi et al.
1976; Chiang & Youdin 2010). Despite uncertainties in grain
size and ring-feeding zone, this drift timescale is similar to or
longer than the adopted “marginal” growth timescale,
1 200 0

1g = W- , in our RWI analysis. Our stability constraints
would become somewhat tighter if pressure traps need to
survive for even longer to accumulate dust. However, as noted

in Section 2.2, our results are not very sensitive to the choice of
growth rate as long as γ/Ω0= 1.
Results for our fiducial disk model are in Section 3.1. We

vary the background disk power laws and aspect ratio in
Section 3.2 and then consider the effect of the temperature on
the pressure bump in Section 3.3. Section 3.4 presents an
approximate, empirical, and apparently rather general stability
criterion for the RWI.

3.1. Fiducial Case

Our fiducial model considers a pressure bump parameterized
by choices of the bump amplitude in surface density, AΣ, and
the width,W. This bump has the temperature of the background
disk (i.e., AT= 0) with background disk parameters given in
Section 2.1.
The ability of these bumps to produce pressure maxima and

thus trap dust is shown in the left panel of Figure 2. The
colored region shows that bumps with larger amplitudes and
narrower widths produce dust traps. The critical curve (in
purple) shows the minimum amplitude needed for a dust trap at
a given width so that dP/dR� 0 somewhere. At low
amplitudes, the critical amplitude increases linearly with width
simply because a bump’s maximum pressure gradient scales as
AΣ/W. For AΣ 1; however, the critical amplitude increases
more sharply. To explain this steepening, we look at the effect
of the bump on d P d Rln ln . The logarithmic gradient is the
most relevant one since the pressure gradient is affected by
other power laws, such as the Keplerian rotation ΩK∝ R−3/2.
We find the dependence of the power-law slope d d Rln lnS 
(and consequently d P d Rln ln ) on AΣ to diminish for AΣ 1.
Thus, dust-trapping pressure bumps are unlikely to be wider
than a few scale heights since the required bump amplitudes
would be extremely large.
The middle panel of Figure 2 shows the amplitudes and

widths that are either unstable or stable to the RWI.
Qualitatively, the RWI-unstable region consists of larger
amplitudes and narrower widths, similar to the dust-trapping

Figure 2. The ability of ringlike surface density bumps—with amplitude, AΣ, and width relative to local gas scale height, W/H0—to trap dust and/or trigger
hydrodynamic instability is shown for our fiducial disk model. Left: the shaded region, above and to the left of the purple solid curve denotes bumps that reverse the
sign of the background pressure gradient and thus can trap dust. Middle: the shaded region, below and to the right of the red dashed curve, denotes bumps that are
stable to the RWI or with a low growth rate. Right: the yellow shaded region shows where the previous shaded regions overlap, giving a region where the bumps can
both trap dust and not trigger significant RWI. Gas rings with these properties could produce observed dust rings. Bumps with amplitude and width outside the shaded
region will fail to trap dust and/or be modified by the RWI.
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region. This general similarity is the reason we investigate
these regions more quantitatively. The curve of marginal RWI
stability (red dashed) was determined numerically, as described
in Section 2.2, and we explain its detailed shape in Section 3.4.

To roughly explain the behavior of the RWI stability curve,
we note that the instability is mainly driven by shear from the
pressure gradient—or more specifically, the gradient of the
pressure gradient. Orbital shear thus scales as AΣ/W

2 at low
amplitudes, explaining the AΣ∝W2 slope at low amplitudes.
At large amplitudes, the strength of pressure gradients saturates
with increasing amplitude since dP dR d dRln1

HS µ S- 
with no temperature component to the bump. Again, the weak
dependence of d dRlnS  on AΣ at AΣ 1 explains the
steepening of the RWI stability curve in AΣ versus W at large
amplitudes.

Since the stability boundary crosses the critical curve for
pressure trapping, an overlap for RWI-stable pressure bumps
exists as shown in the right panel of Figure 2 (shaded yellow).
If pressure bumps are the cause of ring-shaped dust structures
in ALMA disks, then the bumps should lie in this wedge-
shaped region. Specifically, for the fiducial case, the region of
stable dust traps occurs above a minimum bump amplitude and
for a range of widths, starting at around a gas scale height,
W∼H0. For larger amplitudes (above the minimum), the
minimum width and the range of widths increase, reaching a
few H0.

However, the properties of stable dust traps, and even their
existence, depend on disk properties that we vary in the next
subsections.

3.2. Background Disk Effects

We now probe how the region of stable dust traps depends on
the properties of the background disk, namely the aspect ratio, h0,
and the power laws, n and q, for the surface density and
temperature, respectively. As with the fiducial case, we fix AT= 0.

Specifically, we consider a range of values { }n 2, 1, 0 ,Î - -
{ } { }q h1, 0.5, 0 , 0.03, 0.05, 0.10Î - - Î , which are consis-

tent with observational expectations as discussed in Section 2.1.

While the flat n= 0 and q= 0 cases seem less realistic, they are
included as an idealized control.
The effect of the background disk slopes, n and q, on the

properties of stable dust traps is shown in the left and middle
panels, respectively, of Figure 3. Neither slope has a significant
effect on the RWI stability boundary (dashed curves on the
left). This independence is expected since smooth disk
gradients do not introduce significant shear or vortensity. Both
slopes do affect the pressure-trapping boundary, on the right of
the stable dust-trapping region. This effect is also expected
since a pressure maximum involves a competition between the
pressure gradients caused by the background and bump. Thus
with flatter background (e.g., n= 0, q= 0), smaller and wider
bumps can create pressure traps. The effect for the temperature
slope q appears weaker for two reasons. First, the pressure has
a weaker dependence on temperature, P Tµ S , when the
scale height is accounted for. Second, a smaller range of q is
considered.
The disk aspect ratio, h0, has a strong effect, as shown in the

right panel of Figure 3. Colder, thinner disks with smaller h0
have an expanded region of parameter space for stable, dust-
trapping rings. To understand the effect of varying h0≡H0/R0,
it important to note that widths are plotted relative to H0. From
this perspective it appears that with changing h0 the RWI
stability boundary changes little, while the pressure-trapping
boundary expands for colder disks. However, the effect is
perhaps easier to understand when considering bump widths
relative to the radial length scale of the disk, W/R0. From this
perspective the pressure-trapping boundary does not change,
since the pressure gradients of the background and bump are
described by the length-scales R0 and W, independent of H0.
Meanwhile, the RWI stability boundary moves to smaller
W/R0 for smaller h0. This shift occurs because the strength of
pressure gradients relative to Keplerian gravity scales as h0

2.
Thus for a smaller value of h0, bumps have to be narrower to
produce the same velocity deviation.
The fact that colder disks with smaller h0 can have lower-

amplitude stable pressure traps is significant. Regardless of
their origin, lower-amplitude bumps should be more readily
produced in these disks.

Figure 3. The effect of the background disk on the properties of stable dust-trapping rings (indicated by the shaded regions) is shown, generalizing the fiducial case
shown in Figure 2. The effects of slopes in the background surface density (n, left) and temperature (q, middle) and of the aspect ratio (h0, right) are shown. The most
significant effect is that colder disks with smaller h0 can host stable dust-trapping rings with smaller amplitudes and over a greater range of widths.
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3.3. Effects of Heated Bumps

Thus far, we have considered isothermal bumps in surface
density, i.e., AT= 0. Since the thermodynamic properties of
pressure bumps are not well constrained, we consider bumps
with a temperature component as well. Specifically, we
examine two types of bumps: in surface density that are also
heated and in temperature alone, which Kim et al. (2020)
showed were a possibility for the CR Cha disk. For reference,
the left panel of Figure 4 shows the properties of stable dust
traps in our fiducial isothermal model. The other panels show
the effects of heated bumps. The parameter space for stable
dust traps is reduced or eliminated in heated bumps, as
explained below.

The middle panel of Figure 4 considers bumps with
T∝ΣΓ−1, as by adiabatic compression with no cooling. For
this case (only), the disk temperature (background and bump) is
given not by Equation (1) but by the adiabatic relation

( )T T0 0
1= S S G- , with the fiducial values of n and h0.

6

For this adiabatic case, the parameter space for stable dust
traps is reduced, compared to the isothermal case. We roughly
explain this result as follows. The boundary for pressure
trapping (solid curve) expands to slightly larger widths. This
expansion occurs because the pressure gradient from adiabatic
bumps has an extra contribution from the temperature bump in
addition to the surface density contribution. The more
significant effect is that the RWI-stable region contracts, also
moving to larger widths.

This contraction of the RWI-stable region occurs for two
reasons. First, as just noted, with the additional temperature
component, the bump produces stronger pressure gradients and
thus more shear. Second, the pressure gradient acceleration,

dP dR d dRln1
H

1S µ S S- G- , does not saturate with increas-
ing AΣ but continues to increase since Γ− 1= 1/3> 0. Thus
the amplitude-width curve of marginal stability does not

steepen like the isothermal case discussed in Section 3.1 or as
seen in the left panel of Figure 4. The net result of both shifts is
a smaller region of parameter space for stable dust traps when
the bump is adiabatically heated versus remaining isothermal.
The right panel of Figure 4 considers a temperature bump

with no surface density component (i.e., AT> 0, AΣ= 0). The
background disk parameters n, q, and h0 are the same as those
of the fiducial model. In this case, there are no dust traps that
are stable to the RWI. The pressure-trapping boundary
contracts significantly to narrower widths, compared to a
surface density bump. The effect arises because, with the
scaling P Tµ S , a temperature bump produces weaker
pressure gradients compared to a surface density bump. The
RWI-stable region contracts, moving to wider widths. The
main effect is again that at large amplitudes the pressure
gradient acceleration, Σ−1 dPH/dR∝ dT/dR, increases in
amplitude (now AT, instead of AΣ) faster than either the
isothermal or the adiabatic case, without any saturation. As a
result, the marginal stability curve flattens to AT∝W at large
amplitudes. The net effect of the shifts to both boundaries is
that all bumps with a pressure maximum are in the RWI-
unstable region.
The thermodynamics of any process that creates pressure

bumps is crucial for understanding whether the dust traps can
remain RWI stable. Isothermal pressure bumps have the largest
parameter space of stable dust traps, which is reduced for
adiabatically heated bumps. A temperature bump with no
accumulation of surface density is unlikely to create a stable
dust trap. From Figure 3 (right panel), lower h0 values will
introduce a region of stable dust traps for pure temperature
bumps. Nevertheless, by significantly reducing the allowed
parameter space, our results disfavor the hypothesis of dust
trapping in gas temperature bumps.

3.4. New Approximate Stability Criterion for RWI

Unfortunately, there is no analytic criterion for the RWI that
is both necessary and sufficient. Such a criterion would greatly

Figure 4. The effect of bump heating on the existence of stable dust traps, where the bump amplitude on the y-axis is AT in the right panel and AΣ in the left and middle
panels. Left: the red shaded region denotes stable dust traps in the fiducial case of isothermal bumps. This red region is repeated more transparently in the other panels
for comparison, with arrows roughly showing the directions that the boundaries change. Middle: the purple shaded region shows stable dust traps for bumps in both
surface density and temperature, related adiabatically. The parameter space for stable dust traps is reduced. Right: the case of a temperature bump with no surface
density variation. There is no blue shaded region as stable dust traps do not exist in this case due to the relative locations of the pressure-trapping boundary (solid) and
the RWI boundary (dashed).

6 The adiabatic case thus has q = n(Γ − 1) = − 1/3 far away from the bump.
We showed in Figure 3 that modest changes to q have little effect on our
results.
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facilitate our exploration of stable dust traps and many other
applications of the RWI. We report an approximate empirical
criterion here, which might prove useful or spur further
developments. We first introduce some well-known stability
criterion for context.

The Lovelace criterion is that a maximum in fluid vortensity
gives a necessary, but not sufficient, criterion for the RWI
(L99). Figure 5 confirms that the Lovelace criterion (dotted–
dashed curve) lies well below the numerically determined RWI
stability boundary (dashed curve). Recall that unstable (or
potentially unstable in the case of the Lovelace criterion)
regions lie above and to the left of stability boundaries.

The Rayleigh criterion, κ2< 0, gives the axisymmetric
condition for instability to radial oscillations for a barotropic
rotating fluid, such as a disk (Chandrasekhar 1961). The
generalization to baroclinic fluids is one of the Solberg–
Høiland criterion, N 0R

2 2k + <  (Tassoul 1978). It is well
known that the nonaxisymmetric RWI occurs when disks are
stable to both of these axisymmetric criteria (L99). In
summary, the RWI criterion lies between the Lovelace and
Solberg–Høiland criterion.

We find a simple modification of the Solberg–Høiland
criterion, that somewhere in the flow,

( )N 0.6 . 4R
2 2

K
2k + W


This approximate condition gives an imperfect but surprisingly
good description of the numerically determined RWI criterion.
Physically, this criterion states that the squared radial
oscillation frequency should be less than about 60% of the
squared Keplerian frequency, somewhere, for the RWI.

Figure 5 compares the new approximate (dotted curve) and
precise numerical (dashed curve) criteria for the same
isothermal, adiabatic, and heated bump cases as Figure 4.
The approximate criterion underestimates instability at low
amplitudes and narrow widths and overestimates instability in
the opposite regime. But as least on a logarithmic scale,
accuracy is reasonable.

Thus, our approximate explanations of the shape of the RWI
stability boundary could be made more precise by a

consideration of radial oscillation frequency, which is domi-
nated by κ, with NR a modest correction in our models, and
zero in the adiabatic case. With κ2= R−3 d(R4Ω2)/dR (and Ω
the orbital frequency including deviations from Keplerian due
to pressure gradients), we justify that our arguments based on
shear in Ω apply to the RWI. We hope that our approximate
criterion proves useful for similar interpretations or quick
estimates and especially that it might motivate deeper insights
to the nature of the RWI.

4. Conclusions

The leading hypothesis to explain the continuum rings
imaged by ALMA is the trapping of dust in a disk bump with a
pressure maximum. This Letter constrains this hypothesis by
investigating whether these bumps can be stable to the RWI.
Regardless of their origin, the pressure bumps should remain
dynamically stable long enough to trap significant dust. We
have shown that dust-trapping pressure bumps can be stable to
the RWI, adding further theoretical support for the hypothesis.
Moreover, our results could be used to plan and interpret
searches for pressure bumps with ALMA, via the intensity and
velocity shifts of molecular gas in the bumps.
Our stability analysis finds that low-amplitude pressure bumps

cannot be stable dust traps. At low bump amplitudes, AΣ 0.2
for our fiducial case, the narrow widths needed for a pressure
maximum also trigger the RWI. For high enough bump
amplitudes, however, stable dust traps exist for a range of bump
widths that depends significantly on temperature. The temper-
ature of the disk background and of the bump relative to this
background are both important, especially with the background
temperature parameterized as the disk aspect ratio, h0.
Cooler temperatures, in either bump or background disk,

favor the existence of stable dust traps. For lower values of the
disk aspect ratio, h0, stable dust traps are found for lower-
amplitude bumps and over a wider range of widths. Our
stability constraints thus imply that dust traps should be more
readily produced in thinner, colder disks.
Our analysis also constrains the allowed temperature of bumps

relative to the disk background. Cooler pressure bumps, i.e., those
that are isothermal with the disk’s background temperature, can be

Figure 5. Our approximate stability criterion (dotted) is compared to our numerical results (dashed) for the same models as Figure 4. The approximate condition for
marginal stability is (( ) )Nmin 0.6R

2 2
K
2k + W = . The Lovelace criterion (dotted–dashed), a necessary but not sufficient criterion for the RWI, is shown for comparison.

Our approximate criterion can be used to estimate conditions for the RWI to occur.
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stable dust traps over a large range of bump widths, from one to
several disk scale heights. As bump temperature increases, the
range of stable widths decreases. For hot pressure bumps, i.e.,
with no surface density excess, all bumps with a pressure maxima
are unstable for our fiducial disk model.

The background slopes of disk surface density and
temperature are found to have a relatively modest effect on
our results, over the relevant parameter range considered. This
finding limits the impact of uncertainties in disk parameters.
We also report a new approximate criterion for the RWI, that

N 0.75R
2 2

Kk + W  somewhere in the flow.
There are possible extensions that could also address some

limitations of this initial study. Our analysis of dust traps in gas
bumps could be extended to dust traps at gap edges. Moreover
the stability properties of gaps carved by planets could be
analyzed (as in Lin & Papaloizou 2010; Cimerman &
Rafikov 2023). Additional physical effects could be included,
such as 3D motions, radiative cooling, self-gravity of massive
disks, and magnetic fields. See Lesur et al. (2022) for a review
of disk instabilities from these effects. For the disk bumps
considered here, the RWI (and the related Papaloizou &
Pringle 1985 instability for the barotropic case) is the instability
that arises from the simplest and most general physical
ingredients and thus the natural starting point. The effect of
radiative cooling appears to be limited on the linear RWI
(slightly decreases growth rates; Huang & Yu 2022) even
though it can affect the Rossby vortex lifetimes significantly
(Fung & Ono 2021). Nevertheless, more study is needed.
Ultimately radiative transfer models, based on hydrodynamic
numerical simulations with a distribution of dust grain sizes (as
in Krapp et al. 2022) could give more detailed and realistic
observational predictions for ALMA.

A key reason to better understand observed disk structures is
to learn about how planets form. Some dust traps may be
caused by already-formed planets, and others may arise from
(magneto)hydrodynamic processes in disks. It is very important
to understand which case is more prevalent. However, in either
case, dust that concentrates in these bumps is likely to grow
into planetesimals. Such growth could occur by enhanced
collisional growth, direct gravitational collapse, and/or dust
concentration by the streaming instability (Chiang &Youdin 2010;
Johansen et al. 2014). The streaming instability is a mechanism to
create dust overdensities from the mutual aerodynamic coupling
of dust and gas in disks (Youdin & Goodman 2005). These
overdensities can then collapse gravitationally into planetesimals,
typically in binary pairs (Nesvorný et al. 2019). However, particle
concentration by the streaming instability already requires locally
elevated values of the dust/gas ratio (Johansen et al. 2009b; Li &
Youdin 2021). This requirement can become even more stringent
when a broad dust size distribution is accounted for (Krapp et al.
2019). Several studies show that the streaming instability is most
likely to be triggered in overdense dust rings, caused by ice lines
and/or pressure bumps (e.g., Drażkowska et al. 2013; Schoonen-
berg & Ormel 2017; Drażkowska & Dullemond 2018; Ida et al.
2021). And the streaming instability has been studied in the
specific context of pressure bumps (Onishi & Sekiya 2017;
Carrera et al. 2021). A better understanding of the dust structures
observed by ALMA is thus of crucial importance for theoretical
models of planet formation.
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