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ABSTRACT 
 
Litchi (Litchi chinensis Sonn.), a subtropical fruit crop has high commercial value and consumer 
acceptance owing to its rich juicy aril and attractive bright red pericarp. Anthocyanin, the major 
pigment present in litchi pericarp reaches its maximum content in fully ripen fruit contributing to its 
bright red colour. Anthocyanin content in plants depends on the rate of biosynthesis, stability in the 
vacuoles and the rate at which it is degraded. The biosynthesis of anthocyanin occurs via an 
intricate phenyl propanoid pathway controlled by plethora of structural and regulatory genes. 
Several genes encoding enzymes responsible for anthocyanin synthesis have been isolated and 
characterised in different plants. Litchi fruit being highly perishable, exhibit relatively shorter 
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postharvest shelf-life of 2–3 days at ambient conditions which in part can be attributed to the 
enzymatic and non-enzymatic degradation of anthocyanin. In contrast to the comprehensive 
understanding of molecular basis of anthocyanin synthesis, the studies on its catabolism or 
degradation are meagre. Polyphenols oxidases and peroxidases are the major enzymes responsible 
for anthocyanin degradation leading to the problem of pericarp browning. Laccase, an anthocyanin 
degradation enzyme expresses about thousand fold higher than the polyphenols oxidase in the 
pericarp with epicatechin as favourable substrate. A detailed study of the anthocyanin degradation 
pathway in litchi may be helpful in managing the problem of pericarp browning to preserve its bright 
red colour as well as to enhance the shelf life and marketability of this valuable fruit crop. 
 

 
Keywords: Candidate genes; browning; Litchi; pericarp; anthocyanin. 
 

1. INTRODUCTION 
 
Litchi (Litchi chinensis Sonn.), a subtropical fruit 
crop has a high commercial value and consumer 
acceptance owing to its rich juicy aril and 
attractive bright red pericarp. It is a member of 
family Sapindaceae, or soap berries which also 
includes longan and rambutan. Colour of the 
litchi pericarp is an important quality attribute that 
determines its consumer acceptance [1]. The red 
colour of litchi fruit pericarp is the expression of 
anthocyanins. Lee et al. [2,3]. However, litchi fruit 
exhibit rapid browning within 2-3 days of harvest 
[4]. This greatly restricts its transportation and 
commodity value due to rapid deterioration and 
browning of pericarp during room storage and 
post-cold storage under ambient conditions [5,6]. 
The browning or discoloration of litchi pericarp is 
thought to be due to leaking of enzymes and 
substrates and subsequent degradation of the 
red pigments (anthocyanins) and phenols by 
polyphenol oxidase (PPO), peroxidase (POD) 
[7,8,9,10,11] and/or phenyalanine ammonia 
lyase (PAL) [12] and anthocyanase [13]. 
 
Various exogenous treatments i.e. low pH 
cellulose coatings [14], sulphur dioxide (SO2) 
fumigation [15], hot water and oxalic acid dips 
[16], ascorbic acid [17], methyl jasmonate [18], 1-
methylcyclopropene [19], hydrochloric acid [20], 
oxalic acid [21], irradiation [20], salicylic acid 
[22,23], pyrogallol [24], potassium metabisulfite 
[22], nitric oxide [25], apple polyphenols [26], L-
cysteine [27], kojic acid [28], tea seed oil [29], 
biocontrol bacteria [30], methionine [31] and 
novel chitosan formulation [32] have been used 
to delay litchi pericarp browning and improve the 
shelf life of litchi fruit. However, molecular 
approaches at genetic level to reduce the 
expression of the genes responsible for pericarp 
browning is still going on. Genes responsible for 
tissue browning are now been identified which 
will further help us in elucidation of the 
mechanism behind litchi pericarp browning and 

applying in improvement of litchi cultivars with 
longer shelf life through various bio-engineering 
techniques. Inhibition of gene expression of 
genes involved in browning in plant tissues might 
reduce the enzyme activity and hence reduce the 
tissue browning. e.g. expression of PPO 
antisense RNA in ‘‘Yali’’ pear can cause them 
decreases of the PPO activity in pear leaves [33]. 
 

2. ANTHOCYANIN: THE PIGMENT 
RESPONSIBLE FOR FRUIT COLOUR 

 
Anthocyanins are a class of flavonoids 
responsible for red/pink colouration of litchi 
pericarp [34]. The pericarp contains a 
considerable amount of anthocyanin type 
pigments, either in the form of monomers or 
polymers with Cyanidin-3-rutinoside as the major 
anthocyanin pigment along with Cyanidin-3-
glucoside and malvidin-3-ace-tylglucoside [35,3]. 
Compared to other fruit crops, the pigment 
primarily responsible for red colour in apple skin 
is cyanidin in the form of cyanidin 3-o-galactoside 
[36,37], while in mangosteen pericarp mainly 
consist of cyanidin-3-sophoroside, cyanidin-3-
glucoside and several other cyaniding derivatives 
[38]. Vitis vinifera varieties usually produce 3-
monoglucoside, 3-acetylglucoside, and 3-p-
coumarylglucoside derivatives of the aglycones 
delphinidin, cyanidin, peonidin, petunidin, and 
malvidin, with malvidin derivatives often being 
the major forms present. In cultivated strawberry, 
the glucosylated anthocyanin pelargonidin 
(pelargonidin 3-glucoside) is the main 
anthocyanin present in ripe fruit (approximately 
88%), along with other pelargonidin-glycosides 
and cyanidin 3-glucoside [39]. Anthocyanin 
pigments accumulation in fruit is an important 
determinant of ripeness and quality as most of 
the fruits accumulate it only in their ripening 
phase [40]. It belongs to a diverse group of 
secondary metabolites, the flavonoid group 
which plays a variety of functional roles in plants 
as in petals is intended to attract pollinators, in 
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seeds and fruits as seed dispersal, as feeding 
deterrents and as protection against damage 
from U.V. radiation Holton et al. 1995.  
 

3. ANTHOCYANIN BIOSYNTHESIS 
 
Flavonoids are widely distributed among land 
plants. They may be classified into about a 
dozen groups, such as chalcones, flavones, 
flavonols and anthocyanins based upon their 
structure. Anthocyanin biosynthesis has been 
extensively studied in petunia, snapdragon and 
maize, resulting in the elucidation of the 
biosynthetic pathway. Anthocyanins are most 
frequently o-glycosylated (usually glucosylated) 
at the C3-position, followed by the C5 position. 
Glycosylation of anthocyanins results in slight 
reddening. Genes of anthocyanin biosynthetic 
pathway have been isolated using various 
methodologies, like protein purification, trans-
poson tagging, differential screening, and 
polymerase chain reaction (PCR) amplification.  
 
The anthocyanin biosynthetic pathway is well 
established [41,42]. Two classes of genes are 
required for anthocyanin biosynthesis, the 
structural genes encoding the enzymes that 
directly participate in the formation of 
anthocyanins and other flavonoids, and the 
regulatory genes that control the transcription of 
structural genes. The pathway is also controlled 
in response to different developmental and 
environmental cues [43,44,55,46,47].  
 
According to Deroles [48], anthocyanin 
biosynthetic pathway can be divided into two 
sections, the early and late sections. In the early 
section are the formation of the dihydroflavanols, 
comprising phenylalanine ammonialyase (PAL), 
Cinnimate 4-hydroxylase (C4H), 4-Coumarate: 
CoA ligase (4CL), Chalcone Synthase (CHS), 
Chalcone isomerase (CHI) and flavanone 3-
hydroxylase (F3H). Genes of these sections are 
called early genes. The late sections leads to the 
formation of dihydroflavanol reductase (DFR), 
anthocyanidins synthase (ANS) and UDP 
Glucose: Flavonoid 3-O-glucosyltransferase 
(UFGT) and genes forming these enzymes are 
called late genes. The key regulatory genes in 
biosynthesis of anthocyanin vary with fruit 
species. Zhao et al. 2012 suggested that UFGT 
plays an important role in anthocyanin 
biosynthesis in the pericarp of litchi and its 
expression strongly influences fruit coloration in 
litchi. The color of red and black grapes results 
from the accumulation of anthocyanins that are 
usually only located in the skin of the berry. Also 

in grape berry, expression of the UDP-glucose: 
flavonoid3-O glucosyltransferase (UFGT) was 
critical for anthocyanin biosynthesis [49] with 
white-skinned grape cultivar lacking in 
anthocyanins because of absence of UFGT gene 
[50]. In other fruits like grapes [51], apples [52], 
red pear [53], MYB transcription factors regulates 
the biosynthetic genes of anthocyanin pathway. 
While in Strawberries (Fragaria × ananassa 
Duch.), the putative DFR gene plays a main role 
during colour development [54,55].  
 
Tsuda et al. [56] found that chalcone synthase 
gene and dihydroflavanol 4- reductase gene are 
the key regulatory genes in the anthocyanin 
biosynthesis in mature red peach and nectarine. 
The enzymes involved in the flavonoid 
biosynthesis pathway are localized in the cytosol. 
After biosynthesis, flavonoids are transported to 
vacuoles or cell walls [57]. The precursors for the 
synthesis of all flavonoids, including 
anthocyanins, are malonyl-COA and p-
coumaroyl-COA. Chalcone synthase (CHS) 
catalyzes the stepwise condensation of three 
acetate units from malonyl-COA with p-
coumaroyl-COA to yield tetrahydroxychalcone 
(THC). Chalcone isomerase (CHI) then catalyzes 
the stereospecific isornerization of the yellow-
colored tetrahydroxychalcone to the colorless 
naringenin. (2S)-Naringenin is hydroxylated at 
the 3-position by flavanone 3-hydroxylase (F3H) 
to yield (2R, 3R)-dihydrokaempferol, a 
hydroflavonol. Flavonoid 3´-hydroxylase (F3´H) 
and flavonoid 3´, 5´-hydroxylase (F3´5´H), which 
are P450 enzymes, catalyze the hydroxylation of 
dihydrokaempferol (DHK) to form (2R, 3R)-
dihydroquercetin and dihydromyricetin, 
respectively. For converting the colorless 
dihydroflavonols (DHK, DHQ, and DHM) to 
anthocyanins, at least three enzymes are 
needed. The first is reduction of dihydroflavonols 
to flavan9, 4-cis-diols (leucoanthocyanidins) by 
dihydroflavonol4-reductase (DFR). Further 
oxidation, dehydration, and glycosylation of the 
different leucoanthocyanidins produce the 
corresponding brick-red pelargonidin, red 
cyanidin, and blue delphinidin pigments. 
Anthocyanidin synthase (ANS, also called 
leucoanthocyanidin dioxygenase), which belongs 
to the OGD family, catalyzes the synthesis of 
corresponding colored anthocyanidins. After 
synthesis, anthocyanin is transported to vacuolar 
lumen where they are stored. Transport 
mechanisms of anthocyanins may be redundant 
or depend on plant species and organs. The first 
and most established mechanism involves 
transport of anthocyanins via a glutathione S-
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transferase (GST)-like protein and a multi-drug 
resistance-like protein (a type of ABC 
transporter). 
 

4. TRANSCRIPTIONAL REGULATION OF 
THE ANTHOCYANIN BIOSYNTHESIS 

 
The spatial and temporal expression of structural 
genes in anthocyanin biosynthesis is determined 
by a combination of R2R3 Myb, basic helix–
loop–helix (bHLH) and WD40-type transcriptional 
factors and their interaction. This has been well 
established in maize, Arabidopsis, petunia and 
some other plants [57], and in Japanese morning 
glory [58]. The WD40 and bHLH proteins are 
pleiotropic and are involved in multiple processes 
in addition to anthocyanin synthesis, such as the 
control of vacuolar pH in petunia flowers and the 
formation of trichomes and root hairs in 
Arabidopsis. It is believed that they affect these 
processes via their interactions with specific MYB 
proteins, such as PH4 in petunia and GL1/Wer in 
Arabidopsis [57]. Genes of the flavonoid pathway 
are known to be co-ordinately induced and 
transcription factors that directly regulate the 
expression of the structural genes of the pathway 
have been identified in several species. The 
pathway is regulated by the interaction of the 
DNA-binding R2 R3 MYB transcription factors 
and MYC-like basic helix–loop–helix (bHLH) and 
WD40-repeat proteins [59,60]. 
 
The R2R3 MYB genes associated with the 
flavonoid pathway represent the most abundant 
class of MYB genes in plants. Mostly MYBs in 
the control of flavonoid biosynthesis are positive 
regulators that enhance the expression of the 
structural flavonoid pathway genes. But 
repressors have also been characterized, such 
as FaMYB1 in strawberry (Fragaria x ananassa 
Duch.) and VvMYB4 in the berries of grapevine 
[60,61]. Strawberry FaMYB1 was reported to 
suppress anthocyanin and flavanol accumulation 
in transgenic tobacco lines and over-expression 
of this gene inhibited the biosynthesis of 
proanthocyanidins in the leaves of Lotus 
corniculatus [62]. In fruits, particularly in 
grapevine, the regulation of flavonoid 
biosynthesis, 14 flavonoid biosynthesis related 
R2R3 MYB family members have been 
described [60,63]. Lai et al. [64] described a litchi 
R2R3-MYB transcription factor gene, LcMYB1, 
which demonstrates a similar sequence as other 
known anthocyanin regulators. These results 
suggest that LcMYB1 controls anthocyanin 
biosynthesis in litchi and LcUFGT might be the 
structural gene that is targeted and regulated by 

LcMYB1. Furthermore, the overexpression of 
LcMYB1 induced anthocyanin accumulation in all 
tissues in tobacco, confirming the function of 
LcMYB1 in the regulation of anthocyanin 
biosynthesis. Also in his other work on 
transcriptomic study of litchi pericarp, 53 litchi 
R2R3-MYB TFs were identified as being 
expressed in the litchi fruit pericarp [65].  
  
Anthocyanins biosynthesis in grapevine berries is 
regulated by VvMYBA1 and VvMYBA2, that are 
homologs of Arabidopsis AtMYB75, AtMYB90, 
AtMYB113, and AtMYB144 [66]. MdMYB110a, a 
paralog of MdMYB10, regulates anthocyanin 
accumulation in the red-flesh apple phenotype 
[67]. bHLH proteins involved in flavonoid 
biosynthesis have been characterized in 
grapevine, apple, and strawberry [68,69,70,71]. 
WD40 proteins role in the regulatory complex of 
anthocyanin biosynthesis was reported for the 
first time in Arabidopsis TRANSPARENT TESTA 
GLABRA 1 (TTG1) locus [72] since which 
homologs have been characterized from fruit 
species including apple [73], grapevine [74], 
pomegranate [75], and strawberry [71]. Lai et al. 
[65] identified genes encoding enzymes in the 
flavonoid biosynthesis pathway in litchi pericarp. 
Transcripts corresponding to seven PAL genes, 
five 4CLs and two C4Hs with differential 
expression patterns were identified and higher 
expression of CHS and CHI gene were observed 
in the red stage of litchi pericarp. Furthermore, 
other than UFGT gene, unigene 0016938 and 
unigene 001639 showed the highest expression 
levels in the pericarp with highest anthocyanin 
concentration. Also, a GST gene (Glutathione s-
transferase) gene (Unigene 0021409) was found 
significantly up-regulated during litchi pericarp 
colouration. 
 
5. ANTHOCYANIN DEGRADATION IN 

FRUIT  
 
As much is known about the anthocyanin 
biosynthesis, but very less information is 
available about their in planta degradation 
mechanisms [45,76,77]. Anthocyanin 
degradation may be due to enzymatic or non-
enzymatic reaction [13]. The non enzymatic 
degradation of anthocyanin may be due to: the 
hydrolysis of the 3-glycosidic linkages producing 
the more labile aglucone, and hydrolytic opening 
of the pyrylium ring to form a substituted 
chalcone. [78]. According to Huang et al. [79], 
anthocyanase (anthocyanin-b-glucosidase) may 
be involved in removing the sugar groups, 
leading to the anthocyanin decolorization. Zhang 
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et al. [13] reported that the product from the 
anthocyanidin degradation had a similar structure 
to catechol (a good substrate for polyphenol 
oxidase), which, in turn, could accelerate 
enzymatic browning reaction by the enzyme 
polyphenol oxidase. He also found, an 
anthocyanase, catalyzing anthocyanin hydrolysis 
and producing anthocyanidin from litchi fruit 
pericarp showing high activity suggesting that 
anthocyanase might contribute to the browning of 
litchi pericarp involved in the anthocyanase-
anthocyanin-PPO reaction.  
 
Anthocyanin degradation occurs in different plant 
organs in response to a variety of environmental 
and developmental conditions. In post-harvest 
cases, anthocyanin degradation occurs due to 
changes in the vacuoles that decrease the 
stability of the pigments and cause either 
chemical degradation or increased vulnerability 
to degrading enzymes (e.g.b-glucosidases, 
peroxidases) present in the vacuoles. Changes 
in the vacuolar pH, such as increased pH in 
senescing tissue, may decrease the stability of 
the anthocyanins and cause chemical 

degradation [80]. Anthocyanins in litchi fruit are 
degraded after harvest, accompanied by fruit 
browning [81,34,82,83,84]. Peroxidase activity 
initially increases in the exocarp and during long-
term storage in the endocarp, while PPO activity 
increases during long-term storage in the 
exocarp [81,34,82,83,84]. PPO enzymes in 
higher plants are located in the plastids of both 
photosynthetic and non-photosynthetic tissues 
[85]. It was proposed that anthocyanins are first 
hydrolyzed by an anthocyanase (b-glucosidase), 
forming anthocyanidins [70]. The compounds 
thus formed can then be oxidized by PPO and/or 
peroxidise. Wang et al. [86] cloned the litchi PPO 
gene (LcPPO) and described its expression 
patterns. He found an up-regulation of LcPPO 
expression at early stage of post harvest storage 
that accelerates PPO protein synthesis and PPO 
activity increases further accelerating litchi 
pericarp browning problem. Later Fang et al. [87] 
compared expression levels of PPO and 
ADE/LAC in the pericarp tissue during fruit 
browning and found that ADE/LAC expression 
levels were about 1,000-fold higher than those of 
the PPO. 
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Figure: Simplified scheme of the flavonoid biosynthesis. Enzymes names are abbreviated 
as follows; PAL, phenylalanine ammonia lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 
4 coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, 
flavanone 3-hydroxylase; F3’H, flavanone 3’-hydroxylase; DFR, dihydroflavonol 
reductase; FLS, flavonol synthase; ANS, anthocyanidin synthase; UFGT, UDP-flavonoid 
glucosyltransferase; ANR, anthocyanidin reductase and LAR, leucoanthocyanidin 
reductase. 
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6. CONCLUSIONS 
 
Litchi, an important subtropical fruit, is of high 
commercial value. Pericarp browning is a major 
post-harvest problem in litchi which renders the 
fruit unmarketable. There is much information 
available related to the genes involved in 
anthocyanin biosynthesis. But very little 
information is available at the genetic level 
pertaining to anthocyanin degradation 
mechanisms. Hence more research should be 
focussed towards revealing the anthocyanin 
degradation pathway during browning which         
may be helpful for us in preserving the red  
colour of litchi pericarp and extending the shelf-
life and hence the marketability of this lustrous 
fruit.  
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