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Abstract

Entropy can be mathematically defined as a measure of the uncertainty of random variables that represents
the potential quantity of information. This article investigates the behavior of the entropy of random
variables which follow a Kumaraswamy distribution using progressively first-failure censored (PFFC) data. In
particular, we calculate the maximum likelihood estimation and the confidence interval of entropy by using the
observed Fisher information matrix through the asymptotic distribution of the maximum likelihood estimator.
Furthermore, we apply the Markov Chain Monte Carlo (MCMC) method which help us to estimates the
entropy and to formulation the credible intervals in order to address this problem. Here, a numerical example
of real data is presented to illustrate the performance of the proposed method. Finally, we perform Monte
Carlo simulations to observe the behavior of the proposed procedure.
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1 Introduction

Censoring is popular form in many areas, including engineering, social economy and pharmacology sciences. In
particular, it is related to reliability and survival analysis. In real applications, it is complicated to study all the
data because of time and cost constrains. Then, Type-I and Type-II are censorship schemes used in different test
experiments of life. In Type-I, place n units into life experiments and end the experiment after a given time while
Type-II ends the experiment after the given number of units m has failed. For more details about the theoretical
strategies of progressive censoring, see Balakrishnan and Aggarwala [1]. The progressive censoring scheme was
discussed in type-I, type-II and hybrid progressive censoring schemes. The experiment under a high realible
products tested under the last censoring schemes may take a long period of time. One of the most solutions of
this problem is to category the test units into multiple sets with the same number of units and the first failure
in each category is recorded which called first failure censoring scheme see Jun et al. [2] and Fernàndez et al.
[3]. Under the first failure censoring scheme, the expermint is terminated when the first failure in each set is
recorded. The problem of removed sets from the experiment, before the final point was defined as a PFFC
scheme, is discussed and developed by Wu and Ku̧s [4]. Both first failure and progressive censoring schemes are
combined. Many researchers have discussed the study of the PFFC, e.g. Soliman et al. [5], Modhesh [6] and Yu
et al. [7]. Now a days, the PFFC scheme has become a popular censoring scheme for life testing experiments as
it saves considerable amount of cost and time of the experiment. In addition, other studies explain the PFFC,
such as, Chaturvedi et al. [8], Kumar et al. [9] and Saini et al. [10]. Assuming n independent groups with
k items within each group are subjected to a life test. R1 groups and the group in which the first failure is
observed are randomly removed from the test as soon as the first failure (say xR1:m:n:k) has occurred, In general,
Rm (m ≤ n) groups and the group in which the mth failure is observed are randomly removed from the test when
the mth failure (say xRm:m:n:k) has occurred. The observations xR1:m:n:k < xR2:m:n:k < ... < xRm:m:n:k are called
PFFC order statistics with progressive censoring scheme R = (R1, R2, ..., Rm). Where m refers to the number
of the first failure observed (1 < m ≤ n) and n = m + R1 + R2 + ... + Rm. The PFFC scheme containing four
special cases; first-failure censored scheme, progressive type II censored, type II censored and complete sample.

If X follows a two-parameters Kumaraswamy distribution, then the probability density function (pdf) of X is
defined as:

f(x) = αβxβ−1(1− xβ)(α−1), 0 < x < 1, (α > 0, β > 0), (1)

and the cumulative distribution function (cdf) of X is notated by

F (x) = 1− (1− xβ)α, 0 < x < 1. (2)

Then, the corresponding reliability rate functions of this distribution at some t, is given, by

S(t) = (1− tβ)α, 0 < t < 1, (3)

as well as, the failure rate functions is

H(t) = αβtβ−1(1− tβ)−1, 0 < t < 1. (4)

The two-parameters Kumaraswamy distribution is unimodal for α, β > 1, uniantimodal for α, β < 1, increasing
for α ≤ 1 and β > 1, decreasing for α > 1 and β ≤ 1 and constant for α = β = 1 . There are some similarities and
differences between the beta and Kumaraswamy distributions investigated by Jones [11]. The Kumaraswamy
distribution is applicable to a variety of hydrological problems and natural phenomena whose procedure values
are limited on both sides. In hydrology and relevant filds, the Kumaraswamy distribution received appreciable
interest, Cordeiro et al. ([12], [13]). In the general Kumaraswamy distribution is more similar of the same basic
shape to beta distribution and hence, it’s referred to as a “Beta-like” distribution. Also, the Kumaraswamy
distribution is easier to use and more manageable in some situations. Kumaraswamy distribution has closed
form of cdf, which make it preferred over the Beta. Unlike the beta, the cdf of Kumaraswamy distribution does
not include the incomplete Beta function, which makes it much easier to work with (Michalowicz et al. [14]).

23



Modhesh and Basheer; Asian J. Prob. Stat., vol. 21, no. 4, pp. 22-33, 2023; Article no.AJPAS.97193

The pdf and quantile functions are also of closed form, which make the Kumaraswamy distribution to be a more
suitable option for multiple applications-particularly in simulation studies. Other no table advantages over the
beta include an explicit formula for moments of order statistics and a simple formula for generating of random
variables (Ishaq et al. [15]).

Entropy can be defined as a quantitive measure of the uncertainty of each probability distribution (Put a reference
here please). In different fields, there are many applications that use entropy such as statistics, neurobiology,
cryptography, bioinformatics, and computer science. For Instance, entropy is used to evaluate the probability
distribution of electric charge among atoms observed under certain conditions. The Shannon entropy H(X), is
defined as

H(X) = −
∫ ∞
−∞

f(x) log(f(x))dx, (5)

where X is a random variable of f(x).

Canon entropy has been studied by many researchers, including in this research, for example, Wang and Gui [16]
who studied some inferences of entropy based on Type II progressive for Burr Type XI distribution. Additionally,
their inference Cho et. al [17] and Zhao et al. [18] studies the entropy based on doubly generalized Type-II
hydrid censoring and under type-II censored data respectively.

The aim of this paper is to develop estimation process for entropy of Kumaraswamy distribution through a
general censoring scheme (i.e. PFFC data). In the classical (frequentist) estimation, the maximum likelihood
estimates are discussed with their asymptotic confidence intervals (ACIs). In contrast, the Bayesian estimation
using (MCMC) method is built for credible intervals. In this paper, we use and analyze real data set for
illustrated goals. Furthermore, we use the Monte Carlo simulation study to assess and compare the theoretical
results.

The rest of this paper is elaborated as follows:

In Section 2, we discussed the maximum likelihood estimation of parameters and entropy with the PFFC data.
At the same time, the corresponding ACIs of entropy are also provided. In Section 3, we work out the Bayesian
estimation of parameters and entropy using MCMC methods. We analyzed real data to illustrate the novel
methods in Section 4. In Section 5, we compare our results under different prior distributions using the Monte
Carlo method. Finally, the paper is concluded in Section 6.

2 Estimation of the Parameters and Entropy

Here, we estimate both parameters α and β, and entropy by providing the maximum likelihood (ML) approach.
Then, we compute the asymptotic confidence interval for entropy

2.1 Maximum likelihood estimation

Suppose Xi = XR
i:m:n:k, i = 1, 2, ...,m, is the PFFC order statistics from Kumaraswamy distribution, with

censored scheme R = (R1, R2, ..., Rm). In other words, we choose xi to represent xRi:m:n:k, i = 1, 2, ...,m. The
joint pdf is

f1,2,...,m(xR1:m:n:k, x
R
2:m:n:k, ..., x

R
m:m:n:k) = Ckm

m∏
i=1

f(xRi:m:n:k)(1− F (xRi:m:n:k))k(Ri+1)−1 (6)

0 < xR1:m:n:k < xR2:m:n:k < ... < xRm:m:n:k <∞,
where

C = n(n−R1 − 1)(n−R1 −R2 − 1)...(n−R1 −R2 − ...Rm−1 −m+ 1).
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Combining (1), (2), and (6), the likelihood function is

`(x;α, β) = Ckmαmβm
m∏
i=1

xβ−1
i (1− xβi )αk(Ri+1)−1. (7)

The log-likelihood function is defined as:

L(x;α, β) = log c+m log k +m logα+m log β + (β − 1)

m∑
i=1

log(xi) +

m∑
i=1

(αk(Ri + 1)− 1) log(1− xβi ). (8)

By differentiating (8) with respect to α and β, and then equating each result to zero, the following two equations
are satisfied to gain MLE

∂L(x;α, β)

∂α
=
m

α
+

m∑
i=1

k(Ri + 1) log(1− xβi ), (9)

and
∂L(x;α, β)

∂β
=
m

β
+

m∑
i=1

log(xi)−
m∑
i=1

(αk(Ri + 1)− 1)
xβi log(xi)

(1− xβi )
. (10)

From (9) the MLE of α denoted by α̂ is
α̂ = −m/η̂(x, β̂), (11)

where η̂(x, β̂) = 1/
∑m
i=1 k(Ri + 1) log(1− xβ̂i ). By substituting (11) in (10), we get

m

β̂
+

m∑
i=1

log(xi)− (m/η̂(x, β̂))

m∑
i=1

(Ri + 1)
xβ̂i log(xi)

(1− xβ̂i )
−

m∑
i=1

xβ̂i log(xi)

(1− xβ̂i )
= 0. (12)

To solve Eq. (12) by considering Eq. (11), we employed Newton-Raphson iteration to obtain the MLE of β̂,
and then α̂. Also, the starting value for the root-finding method can be obtained by using the graphical method
[19]. In the line with the invariance property of the MLE, there is no difference to find the estimator for function
parameters. For example, If we simplify the entropy in Eq. (5) under Kumaraswamy distribution into a function
of α and β, then the MLE of entropy can be executed.

Theorem 1. Let X be a random variable with pdf (1), then the entropy of X is

H(X) = H(f) = − ln(αβ)− (
β − 1

β
)[ψ(1)− ψ(α+ 1)]− 1

α
+ 1, (13)

where ψ is defined by ψ(z) = d
dz

ln Γ(z), which is also called the digamma function. Γ is the gamma function.

Proof: For the (pdf) given in Eq. (1), the log-density is

ln(f(x)) = ln(αβ) + (β − 1) lnx+ (α− 1) ln(1− xβi ), (14)

then the entropy is

H(X) = −
∫ 1

0

f(x) log(f(x))dx = − ln(αβ)− (β − 1)E[lnx]− (α− 1)E[ln(1− xβi )]. (15)

Therefore, it is important to analyze and calculate E[lnx] and E[ln(1− xβi )]. The derivative of α on both sides

of
∫ 1

0
f(x)dx is given by ∫ 1

0

[βxβ−1(1− xβ)(α−1) + f(x) ln(1− xβi )]dx = 0, (16)

from (16), we have

E[ln(1− xβi )] =

∫ 1

0

f(x) ln(1− xβi )dx = − 1

α
, (17)
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remining calculate

E(Xr) =

∫ 1

0

Xrαβxβ−1(1− x)α−1dx = 0. (18)

Put xβ = t in (18), which is yield

E(Xr) = α

∫ 1

0

t
r
β (1− t)(α−1)dt = αB

(
r

β
+ 1, α

)
. (19)

By the derivative of both sides of (19) with respect to r, we get

dE(Xr)

dr
= E(Xr lnx) =

αB
(
r
β

+ 1, α
)

β
[ψ(

r

β
+ 1)− ψ(

r

β
+ α+ 1)]. (20)

When r = 0, which is yield

E(lnx) =
1

β
[ψ(1)− ψ(α+ 1)]. (21)

Substituting (17) and (21) into (15), we get

H(X) = H(f) = − ln(αβ)− (
β − 1

β
)[ψ(1)− ψ(α+ 1)]− 1

α
+ 1.

2.2 Asymptotic confidence interval (ACI) for entropy

To attain the ACI of information entropy, the observed Fisher information matrix of α and β is set initially as

I(α̂, β̂) =

 −∂
2L

∂α2
− ∂2L

∂α∂β

− ∂2L

∂β∂α
−∂

2L

∂β2


(α̂,β̂)

,

where
∂2L

∂α2
= −m

α2
, (22)

∂2L

∂β2
= −m

β2
−

m∑
i=1

(αk(Ri + 1)− 1)
xβi log2(xi)

(1− xβi )2
, (23)

∂2L

∂α∂β
≡ ∂2L

∂β∂α
= −k

m∑
i=1

(Ri + 1)
xβi log(xi)

(1− xβi )
. (24)

In point of fact, we use I−1(α̂, β̂) to estimate I−1(α, β). Namely, the asymptotic normality of the MLE can be
applied to compute the approximate confidence intervals for α and β. Consequently, (1 − γ)100% confidence
intervals for α and β turn into

(α̂± Zγ/2
√
var(α̂), β̂ ± Zγ/2

√
var(β̂)), (25)

where Zγ/2 is the percentile of the standard normal distribution with right-tail probability γ/2.

Due to the fact that we want to acquire the asymptotic confidence interval of entropy in (13), which is a function
of α and β, we are obligated to use the delta method to calculate the variance of entropy. In which, we calculate
the variance of a linear function using the linear approximation of a function. Let

A =

(
∂H(f)

∂α
,
∂H(f)

∂β

)
, (26)

where
∂H(f)

∂α
= − 1

α
+ (

β − 1

β
)ψ́(α+ 1)] +

1

α2
,
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∂H(f)

∂β
= − 1

α
− 1

β2
[ψ(1)− ψ(α+ 1)].

Then, the variance of entropy is donated by

V ar(Ĥ(f)) = [AI−1(α̂, β̂)At](α̂,β̂),

where At is transposed A. Then, the 100(1− γ)% ACI of entropy is

(Ĥ(f)± Zγ/2
√
Ĥ(f)). (27)

3 Bayes Estimation and Credible Intervals

In this section, when both parameters α and β are unknown, Bayesian estimation would be used to estimate
the entropy and corresponding credible intervals. To compute the Bayes estimation, only the squared error loss
(SEL) function can be presumed mainly. Nevertheless, some other loss functions could be easily combined. Many
statisticians use the Bayesian approach to evaluate parameters and associated functions for various distributions.
For instance, Wang and Gui [20] used the Bayesian of entropy for Burr Type XII distribution under progressive
Type-II censored data. In addition, Yu et al. [7] considered ML and Bayesian methods on the Shannon entropy
of inverse Weibull distribution under the PFFC. Furthermore, Shi et al. [21] attained estimation for entropy and
parameters of generalized Bilal distribution under an adaptive Type II progressive hybrid censoring scheme. In
this paper, we presume the prior distribution of unknown parameters in order to examine the Bayes estimators.
Here, both α and β may have independent gamma priors with the pdfs

π1(α|a, b) ∝ αa−1e−bα if α > 0, (28)

and
π2(β|c, d) ∝ βc−1e−dβ if β > 0. (29)

Where the gamma distribution is widely used in the field of Business, Engineering and reliability theory. Because
that, gamma distribution is the continuous model variable that should have a positive and skewed pdf. The
gamma distribution is a kind of statistical distributions which is related to the, Kumaraswamy distribution (beta
distribution). Other, different shape of gamma distribution which make it useful to cover widely applications.

The product of (28), (29) and (7) give the joint posterior density for α and β which written as:

π∗α,β(α, β|data) ∝ αm+a−1βm+c−1
m∏
i=1

(
xβi

1− xβi

)
× exp

[
−

{
α

(
b−

m∑
i=1

k (Ri + 1) log(1− xβi )

)
+ dβ

}]
. (30)

Therefore, we use MCMC method (namely the Gibbs sampler) in order to simulate samples from the posterior
distribution such that the inferences of samples can be drawn. Using Eq. (30), the posterior distributions for α
is

π∗α(α|β, data) ∝ αm+a−1 exp

[
−α

(
b−

m∑
i=1

k (Ri + 1) log(1− xβi )

)]
. (31)

Likewise, the marginal posterior density of β is proportional to

π∗β(β|α, data)

∫
∝ βm+c−1

m∏
i=1

(
xβi

1− xβi

)
× exp

[
−

{
dβ − α

(
m∑
i=1

k (Ri + 1) log(1− xβi )

)}]
. (32)

The gamma density is shown in Eq. (31) with shape (m+a) and scale parameter
(
b−

∑m
i=1 k (Ri + 1) log(1− xβi )

)
parameters. Accordingly, by using any gamma generating routine, we could generate samples of α easily. The
conditional posterior density of β Eq. (32) for the PFFC Kumarswamy model, show that standard sampling
scheme is not feasible since the conditional distribution is not of a known form. We adopt Bayesian inference
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for β using Metropolis-Hastings algorithm for more details one can see Chib and Greenberg [22], taking into
account the conditional distribution as a target density. Thus, we proceed as follows:

Step1: Start with any point β(0) and stage indicator t = 1.

Step2: Generate α(t) from Gamma(m+ a, b−
∑m
i=1 k (Ri + 1) log(1− xβ

(t−1)

i )).

Step3: Using Metropolis-Hastings algorithm, with a target distribution π∗β(β|α, data), generate β(t) with the

proposal distribution N(β(t−1), σ2) .

Step4: Compute H(f)(t) = H(α(t), β(t)).

Step5: Set t = t+ 1.

Step6: Repeat steps 2− 5 N times.

Now the approximate mean of H(f) is

Ĥ(f) = E(H(f)|data) =
1

N −M

N∑
i=M+1

H(f)(i),

Where M is defined as the burn-in period (i.e. a number of iterations before the stationary distribution is
obtained).

To calculate the credible interval of H(f), order H(f)M+1, H(f)M+2, . . . , H(f)N as H(f)(1), H(f)(2), . . . ,
H(f)(N−M). Then the 100(1− 2γ)% symmetric credible interval is(

H(f)(γ(N−M)), H(f)((1−γ)(N−M))

)
.

4 Application of Real Data on PFFC

In this section, the real-life data set is used which was originally described by Hoel [23]. From a laboratory
experiment, this data was gained where male mice got a radiation dose of 300 roentgen. For each meal mice,
the reason for death was specified using autopsy. Limiting the analysis to two reasons for death, we consider
reticulum cell sarcoma data for purposes of analysis. In this experiment, the data of m = 38 meal mice were
transformed into the interval [0, 1]. The transformed data is presented below:

(0.420424, 0.421751, 0.529178, 0.656499, 0.696286, 0.710875, 0.787798, 0.790451, 0.802387, 0.811671,
0.823607, 0.832891, 0.83687, 0.843501, 0.852785, 0.85809, 0.859416, 0.860743, 0.876658, 0.87931, 0.883289,
0.888594, 0.921751, 0.924403, 0.928382, 0.935013, 0.944297, 0.945623, 0.97878, 0.992042, 0.998674).

The Kolmogorov-Smirnov (KS) distance between the empirical distribution function and the fitted distribution
was computed in order to check the validity of our model. The MLE of α and β based on reticulum cell sarcoma
data are (1.3086, 5.1244). The result of the K-S distance and the associated p-values are 0.119 and 0.6549.
Based on the p-values, the estimated Kumarswamy model provides an excellent fit to the given data. The data
are randomly ranged into 19 groups with k = 2 within each group. Assume that the predetermined PFFC plan
is applied using the progressive censoring scheme R = (14, 011). The following PFFC data of size (m = 15) out
of 19 groups of reticulum cell sarcoma were observed: (0.420424, 0.421751, 0.529178, 0.656499, 0.710875,
0.732095, 0.738727, 0.740053, 0.787798, 0.802387, 0.832891, 0.843501, 0.860743, 0.921751, 0.924403).

We compute different estimates of the entropy namely, ML estimates and Bayes MCMC estimates by using 10000
MCMC samples and discarding the first 1000 values as ‘burn-in’. We presume the non-informative gamma priors
(a = b = c = d = 0), as well as 95% confidence intervals and credible intervals with the corresponding lengths
since we have no prior information about the unknown parameters. The results are displayed in Table 1.
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We notice from Table 1 that the length credible interval in the Bayes estimate and the length confidence interval
in the maximum likelihood method approximately the same. Fig. 1 shows the histograms and the posterior
density functions for the MCMC output of entropy are plotted. Fig. 2 plot the MCMC output of entropy, using
10000 MCMC samples. The posterior mean is represented by the middle line and the lower and upper bounds
of the 95% probability intervals are represented by the marginal lines.

Table 1. Point estimates, 95% confidence and credible intervals for the entropy.

Method of Estimation Entropy Estimates Interval Length

ML Ĥ(f) -0.7310 (-0.9818, -0.4802) 0.5016

Bayes MCMC H̃(f) -0.7583 (-0.9893, -0.5237) 0.4655

Fig. 1. Histogram of entropy generated by MCMC method.

5 Monte Carlo Simulations

In this section, the entropy estimators obtained by different methods were computed by using the Monte Carlo
simulation method. The PFFC samples are generated and simulated from several censoring schemes of (k, n,m,
Ri) and parameter values using the Kumaraswamy distribution when α = 2 and β = 0.5. In other words, 1000
of these samples were simulated using Kumaraswamy distribution. In addition, these samples were generated by
using the algorithm described in Balakrishnan and Sandhu [24]. In this study, we consider the following main
patterns of different schemes as:
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Fig. 2. Simulation number of the entropy generated by MCMC method.

Table 2. The average MLEs, average Bayesian estimations of H(f) and their mean squared.
errors for different censoring schemes are reported, when α = 0.5, β = 2.0 and H(f) = −0.6931.

Scheme MLE (Bayes-MCMC prior 0) (Bayes-MCMC prior 1)
Mean MSE Mean MSE Mean MSE

S
(1)
1:20:50 -0.692 0.1015 -0.7021 0.1205 -0.7142 0.0853
S
(2)
1:20:50 -0.6701 0.0974 -0.6678 0.0998 -0.6781 0.0739
S
(3)
1:20:50 -0.6877 0.0808 -0.6498 0.0798 -0.7059 0.0725
S
(1)
1:40:50 -0.6898 0.0313 -0.6981 0.0338 -0.7042 0.0315
S
(2)
1:40:50 -0.7197 0.0317 -0.7252 0.0320 -0.7143 0.0324
S
(3)
1:40:50 -0.7287 0.0414 -0.7409 0.0401 -0.7409 0.0399
S
(1)
1:35:70 -0.7675 0.0414 -0.7607 0.0321 -0.7534 0.0388
S
(2)
1:35:70 -0.7171 0.0460 -0.7254 0.0455 -0.7326 0.0434
S
(3)
1:35:70 -0.7057 0.0765 -0.7204 0.0607 -0.7204 0.0607
S
(1)
1:60:70 -0.7262 0.0223 -0.7276 0.0205 -0.7378 0.0267
S
(2)
1:60:70 -0.7312 0.0272 -0.7357 0.0268 -0.7437 0.0299
S
(3)
1:60:70 -0.7208 0.0382 -0.7306 0.0388 -0.7342 0.0388
S
(1)
4:20:50 -0.7158 0.1018 -0.6776 0.0816 -0.6996 0.0695
S
(2)
4:20:50 -0.6724 0.1076 -0.7106 0.0865 -0.6596 0.0433
S
(3)
4:20:50 -0.7987 0.2093 -0.6821 0.0931 -0.6716 0.0448
S
(1)
4:40:50 -0.6972 0.0363 -0.7115 0.0201 -0.7094 0.0294
S
(2)
4:40:50 -0.7129 0.0598 -0.7098 0.0419 -0.7146 0.0303
S
(3)
4:40:50 -0.7062 0.0553 -0.6982 0.0589 -0.6982 0.0489
S
(1)
4:35:70 -0.7103 0.0568 -0.7115 0.0412 -0.7015 0.0347
S
(2)
4:35:70 -0.7296 0.0808 -0.7280 0.0462 -0.7202 0.0448
S
(3)
4:35:70 -0.7474 0.1406 -0.7237 0.0407 -0.7092 0.0461
S
(1)
4:60:70 -0.6687 0.0237 -0.6900 0.0193 -0.6821 0.0186
S
(2)
4:60:70 -0.7041 0.0267 -0.7057 0.0241 -0.7092 0.0226
S
(3)
4:60:70 -0.7148 0.0327 -0.7122 0.0301 -0.7222 0.0237
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S
(1)
k:m:n : All the removals are done at the first failure, i.e. R1 = n−m, Ri = 0 for i 6= 1.

S
(2)
k:m:n : The removals are at middle observations, i.e. Rm

2
= n−m, Ri = 0 for i 6= m

2
.

S
(3)
k:m:n : The removals are at the last observation, i.e. Rm = n−m, Ri = 0 for i 6= m.

After that, we calculate the MLEs and the 95% confidence intervals based on the observed Fisher information
matrix. For all cases, we utilized 1000 replicates to find different estimates of each scheme. For comparison
purposes, we also computed the Bayes estimates and 95% credible intervals relying on 10000 MCMC samples
and then ignore the first 1000 values as “burn-in”. We determine the average maximum likelihood estimates
(AMLEs), average Bayesian estimates (ABEs), mean squared errors (MSEs), coverage percentages (CPs) and
average confidence interval lengths (ACILs). when the hyperparameters are 0, we used the non-informative
gamma priors for the two shape parameters. That means, the prior 0: a = b = c = d = 0. In contrast, the
informative prior includes prior 1, a = 1, b = 2, c = 2 and d = 1, when α = 2 and β = 0.5. We have selected
hyperparameters in the informative prior distributions in such away that the mean of the priors equal to the
parameters, nominal values. Our results are represented in Tables 2 and 3.

Table 3. The 95% average confidence interval lengths and the corresponding coverage percentages
of H(f) for different censoring schemes are reported, when α = 0.5, β = 2.0 and H(f) = −0.6931.

Scheme MLE (Bayes-MCMC prior 0) (Bayes-MCMC prior 1)
ACILs CPs ACILs CPs ACILs CPs

S
(1)
1:20:50 1.1024 0.868 1.2124 0.877 1.0327 0.887
S
(2)
1:20:50 0.9943 0.849 0.9637 0.899 0.9221 0.906
S
(3)
1:20:50 0.9747 0.830 0.943 0.841 0.9254 0.887
S
(1)
1:40:50 0.7861 0.943 0.7812 0.941 0.7729 0.962
S
(2)
1:40:50 0.7504 0.943 0.7415 0.952 0.7453 0.961
S
(3)
1:40:50 0.7983 0.925 0.7961 0.956 0.7803 0.962
S
(1)
1:35:70 0.9051 0.906 0.8865 0.911 0.8751 0.906
S
(2)
1:35:70 0.8137 0.925 0.8133 0.942 0.7953 0.962
S
(3)
1:35:70 0.7969 0.887 0.7843 0.915 0.7747 0.925
S
(1)
1:60:70 0.6676 0.962 0.6659 0.943 0.6644 0.925
S
(2)
1:60:70 0.6588 0.925 0.6667 0.958 0.6567 0.962
S
(3)
1:60:70 0.6343 0.945 0.6745 0.964 0.6393 0.970
S
(1)
4:20:50 1.2543 0.875 1.1724 0.893 0.9561 0.903
S
(2)
4:20:50 1.2606 0.849 1.1130 0.867 0.9741 0.906
S
(3)
4:20:50 1.8307 0.832 1.3210 0.899 1.0233 0.911
S
(1)
4:40:50 0.8273 0.925 0.7643 0.953 0.7677 0.962
S
(2)
4:40:50 0.8867 0.925 0.7837 0.956 0.7746 0.962
S
(3)
4:40:50 0.9165 0.936 0.7775 0.973 0.7794 0.971
S
(1)
4:35:70 0.9128 0.907 0.7989 0.937 0.7836 0.943
S
(2)
4:35:70 1.0464 0.938 0.8765 0.952 0.8514 0.943
S
(3)
4:35:70 0.9987 0.943 0.8922 0.955 0.8740 0.948
S
(1)
4:60:70 0.6645 0.946 0.6432 0.969 0.6372 0.971
S
(2)
4:60:70 0.7307 0.962 0.6836 0.959 0.6781 0.968
S
(3)
4:60:70 0.7461 0.955 0.6777 0.971 0.6837 0.965

6 Conclusions

The statistical inferences for the information entropy of Kumaraswamy distribution using PFFC samples were
investigated in this paper. The maximum likelikood estimation and Bayesian estimation are investigated. For
Bayesian estimation, we apply MCMC method to approximate the Bayesian estimates under square error loss
function. We construct the approximate intervals based on MLEs . In addition, we use the MCMC method to
derive the credible intervals. Based on the results of the simulation study some of the points are clear from this
experiment. We observe the following:
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(i) From the results obtained in Tables 2-3, the MSEs and ACILs of entropy all significantly decrease as the
sample size m increases.

(ii) It was also found that different censoring schemes do have impacts on the estimated results, among which
Scheme 1 performed best.

(iii) Bayesian estimations of entropy with the informative prior and censoring Scheme 1 were good estimates
based on the MSEs and ACILs.

(iv) Form Table 3 all empirical results are close to confidence level 0.95, when the effective sample m increases

(v) As expected the Bayes estimates under the non-informative prior, and the MLEs are quite close to each
other. Moreover, Bayes estimators based on informative prior perform better than the MLEs, in terms
of both MSEs and ACILs.
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