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As a common disease of concrete structure in engineering, cracks mainly lead to durability problems such as steel corrosion, rain
erosion, and protection layer peeling, and then the building gets destroyed. In order to detect the cracks of concrete structure in
time, the bending test of steel fiber reinforced concrete is carried out, and the pictures of concrete cracks are obtained. Fur-
thermore, the crack database is expanded by the migration learning method and the crack database is shared on the Baidu online
disk. Finally, a concrete crack identification model based on YOLOv4 and Mask R-CNN is established. In addition, the improved
Mask R-CNN method is proposed in order to improve the prediction accuracy based on the Mask R-CNN. The results show that
the average prediction accuracy of concrete crack identification is 82.60% based on the YOLO v4 method. The average prediction
accuracy of concrete crack identification is 90.44% based on the Mask R-CNN method. The average prediction accuracy of

concrete crack identification is 96.09% based on the improved Mask R-CNN method.

1. Introduction

Nowadays, the concrete crack detection is mainly through
manual identification [1, 2]. The manual detection method is
not only time consuming but also requires a lot of energy
from the relevant detection personnel [3, 4]. There are some
problems such as low detection accuracy and subjectivity of
operators [5, 6]. In addition, cracks in some special areas
cannot be detected manually, such as bridge piers, moun-
tainous areas, and high-risk urban areas [7, 8]. These cracks,
which are difficult to detect, may cause structural weakness,
leading to ductile failure and brittle failure, leading to serious
safety accidents [9, 10].

In recent years, the deep learning method has been
widely used in the field of civil engineering and has attracted

the attention of many researchers [11]. Hinton et al. [12]
proposed the deep learning model for the first time. The
result showed that the artificial neural network with multiple
hidden layers optimizes the network through layer by layer
initialization, realizes feature learning, and opens a new era
of deep learning. Krizhevsky et al. [13] designed the
AlexNet algorithm, which is the first deep neural network
model established by convolutional neural network. Gir-
shick [14] proposed a new algorithm based on R-CNN and
SPPNet: fast R-CNN. The result showed that the speed and
accuracy have been improved, but there is still a long way to
go from real end-to-end processing. Ren et al. [15] proposed
fast R-CNN algorithm based on fast R-CNN network model
and regional recommendation network, which achieved
78.8% detection accuracy on VOC2007 dataset. Lin et al. [16]
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designed the feature pyramid network according to the
different semantic and target location of different feature
maps, which has certain advantages in small target de-
tection. Redmon et al. [17] proposed a regression problem
that unifies the classification regression problem into a
coordinate frame, that is, Yolo algorithm. The results show
that Yolo algorithm has very fast detection speed, but its
accuracy is lower than that of the existing R-CNN series
algorithm model, and the detection effect is poor when the
object is small. Du et al. [18] proposed a new method to
detect severe vehicle occlusion, which can be applied to
aerial images of weak infrared camera with complex field
background. Yu et al. [19] proposed the Mask R-CNN fruit
detection model. The results show that the average de-
tection accuracy is 95.78%, the recall rate is 95.41%, and the
average intersection rate of instance segmentation is
89.85%. Pang et al. [20] proposed a segmented crack defect
segmentation method, which solved the problems of un-
even brightness and high noise of dam concrete surface
image. Yu et al. [21] proposed a deep learning model
YOLOv4-FPM based on the YOLOv4 model. The results
show that the average accuracy of YOLOvV4-FPM is 0.064
higher than that of original YOLOv4.

This paper takes steel fiber reinforced concrete as the
research object, obtains concrete crack pictures through
bending test, and expands the crack database based on the
transfer learning method. Based on the deep learning
algorithm, an automatic crack detection model is
established, that is, YOLOv4 and Mask R-CNN. Fur-
thermore, an improved Mask R-CNN concrete crack
identification model is proposed based on the Mask
R-CNN model.

2. Image Acquisition and Processing

2.1. Materials. Portland cement (42.5) was produced by
China United Cement Group Co., Ltd., and its main
components are shown in Table 1. Xiamen ISO standard
sand is adopted. Steel fiber is a flat copper plated steel fiber
with diameter of 0.2mm and length of 13 mm. Distilled
water was used.

Steel fiber concrete with fixed water binder ratio and
limestone ratio of 0.4 and 1:2 was prepared. In this ex-
periment, 10 batches of steel fiber mortar specimens were
prepared, which were 0.1%, 0.3%, 0.5%, 1%, 1.5%, 2%, and
3%, respectively. Each batch was divided into five groups
according to the vibration time of 0.5 min, 1 min, 1.5 min,
2min, and 2.5 min. Firstly, sand and cement are added to
dry mix for 1-2 minutes. After mixing evenly, 90% and 10%
water are added in turn. When the cementitious material is
gradually formed, steel fibers are evenly sprinkled and fully
stirred to avoid fiber polymerization at one place of the test
block. After the specimen is vibrated, it is placed in the
room for 24 hours before demoulding and soaking in water
for curing. At the same time, ensure that the water level
overflows the specimen. The curing time of the specimens
was 90 days. The specimens were dried at room temper-
ature for 12 hours in advance. The concrete bending test is
carried out with the size of 100 mm x 100 mm x 400 mm
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TABLE 1: Main components of cement.

Chemical composition (mass ratio (%))
CaO SiO, ALO; Fe,0O; MgO K,O SO; CaO
65.87 21.62 549 408 081 0.85 1.28 65.87

Materials

Cement

prism specimen. Specifically, the effective span of the beam
is 300 mm, the beam height is 100 mm, and the beam width
is 100mm. Based on the CECS 13-2009 standard, the
bending test of fiber-reinforced concrete is carried out, and
then the pictures of concrete cracks are obtained. Figure 1
shows the initial and final crack pictures of different steel
fiber reinforced concrete.

2.2. Image Preprocessing. Because the resolution of the
original image is too large, the calculation cost will be too
high if the original image is directly input [22]. Therefore,
the original image will be cropped to include only the
concrete test block image, which is also conducive to better
learning the defect features of the model, as shown in
Figure 2.

The image input model is transformed into a vector
matrix to enter the network, and the latitude of the vector is
fixed, so the resolution should be adjusted [23]. In this
paper, the image is adjusted to 512 x 512 size, as shown in
Figure 3.

Due to the experimental limitations, it is impossible to
make enough sample data, so the crack data are enhanced to
improve the robustness and generalization ability of the
training model [24]. Rotating, blurring, flipping, and noise
adding can be seen in Figure 4. Specifically, rotation refers to
rotating the image randomly by an angle of 45, 90, and 180
degrees; flipping refers to rotating the image along the
horizontal X axis or vertical Y axis; blurring refers to blurring
the image; and adding noise refers to adding salt and pepper
noise or Gaussian noise into the crack image. Finally, there
are 1200 crack images as the training dataset, 400 crack
images as the validation dataset, and 400 crack images as the
test dataset.

3. Deep Learning Method

3.1. Model of Object Detection Algorithm for YOLOv4.
The YOLOV4 algorithm model not only improves the speed
but also improves the detection accuracy [25]. The YOLOv4
network structure includes four parts [26]. (1) The algorithm
provides data-enhanced mosaic, cmBN, and SAT self-con-
frontation training at the input end, which enriches the
detection dataset and reduces GPU calculation. (2) In feature
extraction network, the activation function uses the Mish
activation function to enhance the learning ability of the
feature extraction network, ensure the lightweight of the
network, reduce the calculation cost, and maintain the ac-
curacy. (3) Neck network consists of SPP module and
FPN + PAN structure. (4) In head detection network and
loss function, CIoU_Loss is the loss function, which can be
expressed by [27]
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FiGure 1: Crack image acquisition (final crack picture). (a) 0.1% steel fiber. (b) 0.3% steel fiber. (c) 0.5% steel fiber. (d) 1.0% steel fiber.
(e) 1.5% steel fiber. (f) 2.0% steel fiber. (g) 3.0% steel fiber.
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(a) (b)

FIGURE 2: Before and after cropping. (a) Before cropping. (b) After cropping.

(a) (b)

FIGURE 3: Resizing to 512 x 512. (a) Original picture. (b) Reconstructed images.

(a) (®) (©

(d) (e)

FIGURE 4: Crack image data augmentation. (a) Original picture. (b) Blurring. (c) Flipping. (d) Noise adding. (e) Rotating.
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where p°(b, b%') represents the Euclidean distance of the
center point of the prediction box and the real box, re-
spectively, and C represents the diagonal distance of the
smallest closure region that can contain both prediction box

and real box.
YOLOv4 model’s parameters are as follows: (1) epoch-

=100, that is, 1200 crack image data are trained for 100
times; (2) batch size = 16, that is, one round of 16 image data
samples is used for model training; (3) iterations = 75, that is,
1200 pictures, 16 pictures are extracted each time, and there
are 75 groups in total, i.e., one epoch is completed; (4)
learning rate = 107%; and (5) momentum = 0.9.

3.2. Model of Object Detection Algorithm for Mask R-CNN.
He et al. [28] proposed the Mask R-CNN algorithm model
to complete the task of target detection combined with
instance segmentation, and at the same time, the target
was segmented at the pixel level, which can be seen in
Figure 5.

The Mask R-CNN network structure includes three parts
[29, 30]: (1) feature extraction network—the fusion feature
map generated by feature extraction network residual net-
work combined with feature pyramid network will cause
aliasing effect, and the target detection feature map is ob-
tained by a 3 x 3 convolution; (2) RPN network—3 x 3 x 256
convolution kernel is used to convolute it into 1 x1x 256
dimensional feature results, and 2n classification and 4n
coordinate regression are obtained through classification
layer and regression layer; (3) head detection network and
loss function—detection network includes mask branch,
prediction category, and frame regression after full con-
nection. The Mask R-CNN model is used to complete
classification and location and mask generation, and its loss
function is composed of the sum of three loss functions,
which can be expressed by [31]

L=Ly+L,,+L

‘mask>
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where L, is the classification loss function; Ly is the re-
gression loss function; L,q is the average binary cross

entropy; p; is the probability of predicting the target; p;*
indicates whether it is a real target; Ny is the number of
classification layers; N, is the number of regression layers; s
is the sum of the total number of a category for each pixel; s;*
is the label of the pixel category; and p(s;) is the probability of
prediction category.

Mask R-CNN model’s parameters are as follows: (1)
epoch=100; (2) batch size=4; (3) iterations=300; (4)
learning rate = 107>; and (5) momentum = 0.9.

3.3. Model of Object Detection Algorithm for Improved Mask
R-CNN. In order to improve the accuracy of classification
and location, the Mask R-CNN algorithm in the crack de-
tection model is improved, which mainly improves the
backbone network and enhances its feature expression
ability. The main network of Mask R-CNN algorithm in the
crack detection model is composed of residual network and
feature pyramid network [32]. Based on the repeat layer
strategy network of residual network, k-1 cardinal num-
bers are added to each module. After splitting, the cardinal
numbers are decentralized. Each cardinal number is
summed and fused by multiple segmentation elements to
get the output of feature graph: h, w, and c. In the Cardinal
layer, the (1 x 1) network is convoluted into (3 x3). (3 x 3)
The input of the base array is divided into r scattered blocks,
and each scattered block is transformed into the distraction
module [33]. The elements are added one by one, and the
feature graph is fused into the output dimension: & x w x c.
Then, the fusion feature map is pooled globally, and the
image spatial dimension is compressed to output dimen-
sion c. The dense ¢ in the weight graph of each scattered
block is calculated based on Softmax. The module input
characteristic graph and its weight are multiplied to get the
cardinality group, and then the output dimension h x wx ¢
is weighted and fused [34]. Distractor fuses the corre-
sponding weights calculated from the scatter block feature
graph to form ResNeSt unit module, which can be seen in
Figure 6.

3.4. Evaluating Indicator. Average precision can reflect the
fracture identification accuracy of the network model, which
can be expressed by [35]

2PR
F1= .
P+R
P=_Tr 100% (3)
Tp+Fp ’
TP
R=—""x100%,
Tp+Fy

where F1 is the average mean precision; P is the accuracy
rate, that is, the proportion of correctly predicted positive
case data to predicted positive case data; R is the recall rate,
that is, the proportion of the predicted positive case data to
the actual positive case data; Tp is the number of positive
samples correctly predicted; Fp is the number of negative



Multi-scale fusion
feature map

Advances in Materials Science and Engineering

FCN

Classifica
tion

O

(h, w, ¢) °

’ Regression
ROI
g T > ' Ali gn _._
Mask
. branch
ResNet + FPN Fixed
’ size
Input feature
I map
Feature map
FiGUre 5: Mask R-CNN model frame.
(h,w,¢c) (h,w,¢c)
input 1 input 2 ee input r
Input
Cardinal 1 / \
Splitl i (h, w, ¢)
Global pooling

©) |

ce ce ce

(c))
- splitattention
(wel) S~ l
Concatenate r-Softmax
(hw, <) 1
(h, w, ¢) é/'
(a)

(®)

FIGURE 6: ResNeSt block and split attention module. (a) ResNeSt block. (b) Split attention.

samples predicted to be positive samples; and Fy represents
the number of negative samples predicted by positive
samples.

4. Calculation Results

4.1. Detection Results of YOLOv4. Figure 7 shows the cal-
culation results based on the YOLOv4. The results show that
the overall effect of YOLOV4 algorithm in crack detection is
better, and the main reason for higher detection accuracy is
that the image interference is low, and the object features are

relatively simple. It can be seen from Figure 7(a) that the
YOLOv4 model has carried out error detection on
jamming objects. One is to detect the jamming items as
cracks, and the other is to detect the jamming items as
substitute numbers. The same error detection occurs in
Figure 7(b), but the detection accuracy of other categories
is high, which shows that the model has strong
robustness.

Furthermore, the detection accuracy and average ac-
curacy of each category are calculated, and the results are
shown in Table 2.
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F1GURE 7: YOLOV4 results.
TaBLE 2: Detection results of YOLOv4.
Average precision
Model verage p F1 (%)
Crack AP (%) Number AP (%) Vocabulary AP (%)
YOLOv4 73.81 84.42 87.96 82.60
(b)
FiGure 8: Mask R-CNN results.
TaBLE 3: Detection results of Mask R-CNN.
Average precision
Model verage precisi F1 (%)
Crack AP (%) Number AP (%) Vocabulary AP (%)
Mask R-CNN 84.32 91.26 95.73 90.44

4.2. Detection Results of Mask R-CNN. Figure 8 shows the
calculation results based on Mask R-CNN. Figure 8 shows
that the effect of fracture prediction is good, and the ac-
curacy of model detection is still insufficient compared with
the other two types. For example, it is difficult to detect and
segment the two ends of the crack in the image, which is due
to the strong background interference of the predicted
image.

Furthermore, the detection accuracy and average ac-
curacy of each category are calculated, and the results are
shown in Table 3.

4.3. Detection Results of Improved Mask R-CNN. Figure 9
shows the calculation results based on the improved Mask
R-CNN. As can be seen from Figure 9, the improved model
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FIGURE 9: The test results of improved Mask R-CNN crack detection model.
TaBLE 4: Detection results of improved Mask R-CNN.
Average precision
Model gep F1 (%)
Crack AP (%) Number AP (%) Vocabulary AP (%)
Improved Mask R-CNN 92.57 97.63 98.08 96.09

can detect and identify cracks well, and the segmentation of
cracks is also more accurate.

Furthermore, the detection accuracy and average ac-
curacy of each category are calculated, and the results are
shown in Table 4.

5. Conclusion

In order to realize the intellectualization of concrete crack
detection and better prevent the occurrence of accidents, in
this paper, a crack recognition model of steel fiber reinforced
concrete is established based on computer vision and the
deep learning method. Therefore, some conclusions are
drawn as follows. (1) In this paper, the crack image is ob-
tained through the steel fiber concrete experiment, and the
crack database is expanded by using the deep learning data
enhancement method. (2) Based on the network of YOLOv4
and Mask R-CNN, the crack recognition model of steel fiber
reinforced concrete is established, and the average recog-
nition accuracy is 82.60% and 90.44%, respectively. (3) Based
on the traditional Mask R-CNN network, this paper pro-
poses an improved Mask R-CNN network model, and its
average recognition accuracy is 96.09%. However, the en-
vironment of concrete is very complex, such as shadows,
stains, and so on, which will interfere with the accuracy of
crack identification in actual engineering. Therefore, we will
consider the crack identification of concrete in complex
environment and further identify the length and width of
cracks in future research.
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