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ABSTRACT

We examine variability and change components of precipitation and minimum and maximum
daily temperatures, and the derived variables potential evapotranspiration (PET) and the Palmer
Drought Severity Index (PDSI), over rangelands in the region 30◦-50◦N, 100◦- 125◦W. We focus on
areas administered by the U.S. Bureau of Land Management (BLM) and Bureau of Indian Affairs
(BIA), with a view toward understanding how future climate variations may affect ecosystems, and
ultimately, grazing on these lands. Based on an analysis of the annual precipitation cycle we adopt
a three-season partition for the year, classifying land areas by season of maximum precipitation;
this yields a coherent subregional map. Masking with a combined BLM/BIA footprint, we find that
in all subregions both tmin and tmax have increased in response to anthropogenic forcing, the rate
being generally greater for tmax. Significant precipitation trends are not detected, whereas PET
exhibits significant upward trends in all regions. While PET-normalized precipitation, as well as
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PDSI, do not exhibit significant trends individually (by variable and region), the fact that most
trend downward nevertheless suggests a systematic drying. We conclude that temperature
constitutes the principal detectable control on hydroclimatic changes in rangelands within the
study area. Although ecosystem responses may be complex, future temperature increases
are expected generally to reduce soil water availability. The unforced component of variability is
investigated with respect to several key climate indices on both interannual and decadal time scales.

Keywords: Rangelands; grazing; Western U.S.; climate; climate variability.

1 INTRODUCTION

The United States Bureau of Land Management
administers grazing rights on about 155
million acres, mostly in the American west.
This represents ca. 80% of all western
BLM lands, and indeed, grazing represents
the primary use of these lands. Grazing
activity is managed through a system involving
nearly 18000 permits and more than 21000
grazing allotments, mostly for cattle and sheep.
These lands also support populations of wild
horses and burros. Totals in 2014 were
approximately 1.5 million cattle and nearly
50000 wild horses, for a domestic:feral ratio of
30:1 (http://www.fs.fed.us/rangelands/ftp/docs/-
GrazingStatisticalSummaryFY2014.pdf).

We assess climate variability and change in
rangelands administered by the BLM and BIA
since 1901, as a first step in evaluating the
degree to which current grazing populations
and supporting ecosystems may be affected
going forward in light of expected increases in
global temperatures and other climatic changes
in coming decades [1]. Variability is assessed
in terms of both anthropogenically forced and
naturally occurring variations. For the former we
investigate the degree to which local temperature
changes are associated with those in global
mean temperature; for the latter we consider
several large-scale modes of oceanic variability
known to influence local climates [2, 3, 4, 5, 6, 7].
Vegetation ultimately depends not on rainfall per
se but on soil moisture, which has a significant
temperature dependence: shifts in temperature
will propagate to water availability aside from
any concomitant changes in precipitation. Thus
we also consider two temperature-dependent
measures of aridity, potential evapotranspiration

(PET) [8] and the Palmer Drought Severity Index
(PDSI) [9].

Since the translation of climatic shifts in terms of
ecosystem responses is complex, and dependent
as well on additional factors (prior conditions,
soils, extant plant and animal communities,
and so on) [8] we can only provide a general
idea of how projected shifts may play out in
the ecological sphere. We suggest a modeling
pathway for further clarification in this regard.

The aim of this paper is thus to present key
features of climate variability and change over
BLM and BIA lands as observed during the 20th,
and first decade and a half of the 21st, centuries,
and based on that analysis to suggest likely
inferences for the hydroclimatic future of these
key areas.

2 MATERIAL AND METHODS

2.1 Synopsis

Using both observational and model-
generated data (Section 2.2), we carry out
a range of procedures. We differentiate
between anthropogenic (i.e., human-caused)
and naturally-occurring variation, using a
straightforward linear regression technique
(Section 2.3). The study area is partitioned
into subregions using a cluster analysis, based
on the season in which the greatest fraction
of annual rainfall is received. In a departure
from traditional practice, seasonal definitions
are implemented using principal components
analysis (PCA) applied to the seasonal cycle over
the study area, which comprises the continental
U.S. west of 100◦W and lying between 30◦ and
50◦N (Section 2.4). Climate analysis is carried
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out over this full domain, rangelands impacts then
being computed by masking to the (combined)
BLM/BIA region (Sections 2.5, 3.1).

In addition to precipitation and the monthly
means of daily maximum and minimum
temperatures, which constitute our primary
variables, we consider two derived measures
of aridity, PET and PDSI (Section 3.2). We
proceed to an examination of remote influences
forced by large-scale modes of climate variability,
on both interannual and decadal time scales
(Sections 3.3, 3.4), including a brief digression
into the the far-field sea-surface temperature
(SST) and atmospheric characteristics of these
modes and their specific impacts on regional
precipitation (Section 3.6). Finally we generate
a set of subregionally-specific projections, using
the statistical relations derived in Section 3.1.

2.2 Data

2.2.1 Observations

We utilized bias-corrected regional climate data
[A. P. Williams, pers. comm., Jan 2019]. Original
sources comprise several datasets, including
ClimGrid [10] for precipitation and TOPOWX [11]
for tmax and tmin. The derived variables PET and
PDSI were also provided, additional fields having
been utilized for their computation. These include
saturation vapor pressure (also from TOPOWX),
ambient vapor pressure from the PRISM
dataset [12] and wind speed and insolation
from the GLDAS2 and NLDAS2 datasets
(http://hydro1.gesdisc.eosdis.nasa.gov/data/,
accessed 2019-01-03). The data were provided
and utilized at a uniform resolution of 0.25◦ [A. P.
Williams, pers. comm., Jan 2019]. To evaluate
remote influence of large-scale oceanic modes
we obtained the NINO3.4 index, based on the
HadISST1 dataset [13], from the IRI data library
(https://iridl.ldeo.columbia.edu/SOURCES/.Indices/.-
nino/.EXTENDED/.NINO34/) and indices
for the Pacific Decadal Oscillation (PDO)
[14] and Atlantic Multidecadal Oscillation
(AMO), based on the Kaplan dataset [15]
from the NOAA Earth Systems Research
Laboratory, Physical Sciences Division
(https://www.esrl.noaa.gov/psd/data/climate-
indices/, accessed 2018-10-16). Values for

the 200-mb geopotential height field were
taken from the Twentieth-century Reanalysis
[16]. A global mean temperature dataset
was obtained from the NASA Goddard
Institute for Space Studies (GISTEMP Team;
https://data.giss.nasa.gov/gistemp/, accessed
2018-10-16) [17]. The time period 1901–2016
is utilized for all observational data.

2.2.2 Model Simulations

We utilize simulations from the Coupled Model
Intercomparison Project, Phase 5 (CMIP5),
described in the Fifth Assessment Report
of the Intergovernmental Panel on Climate
Change (IPCC) [1]. Extensive evaluations
have been carried out of North American
climate as represented in these simulations,
from the perspective of historical climatology
[18], historical variability on seasonal to decadal
time scales [19] and 21st-century projections
[20]. We utilize a global-mean, multimodel
mean temperature index (Section 2) to estimate
regional sensitivities to anthropogenically-forced
climate change, the inferred relations being used
to project “near-term” regional climate changes.
The temperature index is computed over the
period 1901–2041, the 1901–2016 period being
used for estimation and the projections extending
over the succeeding 25 years. Regional CMIP5
values for tmin and tmax are also utilized,
for comparison with these statistically-based
projections. Regional CMIP5-based PDSI fields,
computed offline (B. Cook, pers. comm. Jan
2019) [43], are also utilized for this purpose. A
list of the models utilized appears in Table 1.

2.3 Identification of Human-
driven Climate Change

Natural, unforced fluctuations among the models
can be expected to be mutually incoherent (i.e.,
uncorrelated), since, by construction, they are
not “coordinated” across models by any external
driving force. They thus tend, in the multimodel
mean, to cancel, To the extent that the models
are driven by an imposed external forcing, on the
other hand, their responses would be expected
to be similar. Thus the global multimodel mean
temperature (Tmmm) can be thought of as
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a best estimate, given the size of the
model ensemble, of the Earth’s response to
climate forcing (primarily increasing atmospheric
concentrations of greenhouse gases) and the

ensemble spread about the mean
as an estimate of the magnitude of
natural, or unforced climatic fluctuations.

Table 1. Climate models utilized in the construction of the signal shown in Figure . Model
resolution in degrees is given as latitude/longitude (for spectral models this corresponds

approximately to the study location)

Modeling center Model Resolution

Commonwealth Scientific and Industrial Research Organization
(CSIRO) and Bureau of Meteorology (BOM), Australia

ACCESS1-0 1.250/1.875

— ACCESS1-3 1.250/1.875
Beijing Climate Center, China Meteorological Administration BCC-CMS1.1 2.791/2.813
— BCC-CMS1.1(m) 1.122/1.125
Canadian Centre for Climate Modelling and Analysis CanESM2 2.791/2.813
National Center for Atmospheric Research, USA CCSM4 0.942/1.250
Centre National de Recherches Météorologiques / Centre Européen
de Recherche et Formation Avancée en Calcul Scientifique

CNRM-CM5 1.401/1.401

Commonwealth Scientific and Industrial Research Organization
in collaboration with Queensland Climate Change Centre of Excellence

CSIRO-Mk3.6.0 1.865/1.875

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
and CESS,Tsinghua University

FGOALS-g2 2.791/2.813

— FGOALS-s2 1.659/2.813
The First Institute of Oceanography, SOA, China FIO-ESM 2.791/2.813
NOAA Geophysical Fluid Dynamics Laboratory, USA GFDL-CM3 2.000/2.500
— GFDL-ESM2G 2.022/2.500
— GFDL-ESM2M 2.022/2.500
NASA Goddard Institute for Space Studies, USA GISS-E2-H 2.000/2.500
— GISS-E2-R 2.000/2.500
Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)

HadGEM2-CC 1.250/1.875

— HadGEM2-ES 1.250/1.875
Institute for Numerical Mathematics, Russian Academy of Sciences INM-CM4 1.500/2.000
Institut Pierre-Simon Laplace, France IPSL-CM5A-LR 1.895/3.750
— IPSL-CM5A-MR 1.268/2.500
— IPSL-CM5B-LR 1.895/3.750
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies
and Japan Agency for Marine-Earth Science and Technology

MIROC4h 0.562/0.563

— MIROC5 1.401/1.401
Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), and
National Institute for Environmental Studies

MIROC-ESM 2.791/2.813

— MIROC-ESM-CHEM 2.791/2.813
Max-Planck-Institut für Meteorologie MPI-ESM-LR 1.865/1.875
— MPI-ESM-MR 1.865/1.875
— MPI-ESM-P 1.865/1.875
Meteorological Research Institute, Japan MRI-CGCM3 1.121/1.125
Norwegian Climate Centre NorESM1-M 1.895/2.500
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A multimodel mean, global mean temperature
index can thus be taken as the modeled global
response to imposed radiative forcing. Our index,
based on historical simulations through 2005
followed by the RCP8.5 scenario, a “business-
as-usual,” or high-emissions trajectory, is shown
in Figure along with the GISTEMP annual-
mean Land-Ocean Temperature Index, a high-
quality observational record. It is clear that
over the 1901-2016 observational period Tmmm
reproduces quite closely the observed trajectory.
As noted above, the model index is extended
for an additional 25 years in order to provide
a basis for projections (Section 3.7). Using a
global rather than a regional index decreases
statistical uncertainty, minimizing possible effects
of regional deviations. As discussed in [18, 19],
even when multimodel mean fields provide close
approximations to observed regional climate
characteristics, individual model behavior may
vary considerably on these scales. We
emphasize that the climate model (i.e., CMIP5)
simulations employed for projection purposes are
utilized only in the global ensemble mean, as

described above. Regional model fields are
utilized for comparison with the statistically-based
projections.

Forward projections are possible because Tmmm
comprises not just past, but also future values.
Such projections, however, are contingent on
a stationarity assumption, viz., that statistical
relationships between global mean temperature
and local climate variables remain stable. This
calls for prudence in setting the temporal reach
of projections, which we limit here to 25 years.

2.4 Seasonal Partition

Fig. 2a shows the first three empirical
orthogonal functions (EOFs) of the annual cycle
of precipitation, which explain 87%, 8.9% and
2.3% of variance in the data, respectively.
Figures 2b, 2c and 2d show the corresponding
PCs. This analysis identifies the most important
temporal patterns in the annual cycle and their
corresponding expressions in space.
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Fig. 1. The global-mean, multimodel mean index utilized for detrending (Tmmm), shown with
the GISTEMP Land-Ocean Temperature Index. GISTEMP is a high-quality observational

record
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Based on the breadth of the EOF 1 winter peak, a
four-month season (NDJF) is first defined. Since
the precipitation-based comparison (to follow) is
most comprehensible when the seasonal lengths
are equal, we complete the annual partition with
MAMJ and JASO. While it is less straightforward
to map EOFs 2 and 3 into precise seasonal
definitions, the identification of MAMJ and JASO
with spring and summer, as well as the July
boundary separating them, accords well with
both the early summer peak of EOF 2 and the
abrupt June-July transition of EOF 3. As we
will see, these definitions result in well-separated
climatologies.

We then identify subregions based on the
season, among the three defined, that accounts
locally for the greatest fraction of total annual
precipitation. In this relatively dry part of the
continent, given a stable temperature regime
precipitation constitutes the dominant control on
vegetative biomass production [21]. We thus
focus, in each locality, on the wettest part of the
year. A map of these seasonal affinities is shown
in Figure 3, where it can be seen that the study
area has been partitioned into three more-or-less
contiguous zones.

As a check, Figure 4 shows the seasonal cycle of
precipitation for the three subregions. While not

identical to the three leading EOFs (cf. Figure
2) these cycles do capture a good deal of their
structure.

The NDJF-maximum subregion in Figure 3 can
be seen to correspond roughly to the area of
positive loading on EOF 1; this is to be expected,
given the utilization of that pattern in defining
the initial season as well as the large fraction of
variance explained by the leading EOF. In fact,
by construction each of the patterns must reflect
some aspect of the climatological seasonal cycle.
Thus, the NDJF region corresponds to the
coastal and mountain regions with climatological
winter precipitation maxima, the JASO region
with areas under the influence of the North
American Monsoon [22] and the spring (MAMJ)
maximum region to interior areas shielded from
westerly-borne winter precipitation.

2.5 Masking to the BLM/BIA
Footprint

Figure 5 shows the locations of BLM and BIA
lands, as well as the regional/seasonal partition
discussed above and shown in Figure 3, but
now masked to the combined BLM/BIA footprint.
We examine climatologies, climatic changes and
unforced variations within each of the masked
seasonal-maxima areas.
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Fig. 4. Deconstruction of the precipitation seasonal cycle. The seasonal cycle of
precipitation in each of the climate-defined subregions
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respectively) and the regional partition of Figure 3, masked to their combined footprint (c)

3 RESULTS

3.1 Regional-mean Time Series

Figure 6 shows time series for precipitation, tmax
and tmin for each of the subregions, masked
to the combined BLM/BIA footprint and for the
season of maximum precipitation. Each series
has been linearly regressed on the global Tmmm
sequence, and the fitted regression lines are
also shown. Each fitted line reproduces the
Tmmm index, scaled and shifted (i.e., linearly
transformed) so as to best fit, in the least-squares
sense, the corresponding regional climate record.

Coefficients and p-values for those regressions
are provided in Table 2. None of the precipitation
coefficients is statistically significant, so it is not
possible to reject the null hypothesis that the
regional precipitation variables during the 20th
century (seasonalized and masked) do not trend,
in terms of their association with the rise in global
mean temperature.

The situation is different for both tmax and tmin,
both of which show significant responses to
changes in global mean temperature. In JASO
the coefficients are both very close to unity,
implying that changes have been numerically
similar to changes in global mean temperature.
For tmin in MAMJ, on the other hand, warming
has been less, while increases in the remaining
three temperature/season combinations have

outpaced the global mean. (Note that global land
temperatures have risen more than those over
the oceans; coefficients near unity thus imply
warming rates that are somewhat lower than that
of the mean global land surface. For consistency
when projecting forward, the full global mean is
utilized.) For all regions, trends in tmax exceed
those in tmin, indicating a general increase in the
diurnal temperature range (DTR) over the period
of record.1

Figure 7 provides a spatially distributed
perspective on the series shown in Figure 6,
here without the regional or BLM/BIA masks.
The area-wide increases in both tmax and tmin
are clear throughout the year. While precipitation
trends are both weaker and more mixed, the
MAMJ plot (Fig. 7a) shows a pattern — drying
along the southern tier but moistening to the
north — that has been previously documented
[24], and which is projected to intensify [25, 26].
Echoes of certain features in the precipitation
trend plots – high positive values in the extreme
Pacific northwest in all seasons, a concentration
of negative values near 30◦N, 110◦W, particularly
in JASO, large-scale N-S dipolar structure in
MAMJ, high values to the northeast in JASO
– can be identified in the PDSI plots. These
suggest that there may be some influence of
precipitation change on the evolution of soil
moisture, while at the same time reminding us of
the relatively low S/N in the precipitation signal.

1DTR averaged over the entire domain has undergone large decadal fluctuations over the 20th
century, increasing until about 1940, decreasing from then until about 1980 and increasing thereafter.
This comports with findings discussed in, e.g., [23].
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Table 2. Coefficients and p-values for precipitation, tmax and tmin, regressed on the
multimodel temperature index. Units for the pr coefficients are mm mo−1 per degree
global mean temperature change. For tmax and tmin the units would be degrees regional
temperature change per degree global mean temperature change, which is dimensionless

Region pr tmax tmin
(Season) coeff p-val coeff p-val coeff p-val

MAMJ 1.75 0.48 1.55 7.7e-5 0.86 2.3e-4
JASO 1.59 0.51 1.01 2.9e-6 0.98 6.5e-12
NDJF -3.60 0.48 1.24 5.5e-5 1.13 7.9e-5

3.2 Measures of Aridity: PDSI
and PET

Ultimately it is the moisture available to plants
that determines vegetative characteristics, for
which we examine potential evapotranspiration
(PET) and PDSI, variables that are derived,
rather than measured directly. The former, which
characterizes the moisture that the atmosphere
could extract from a well-watered surface, is
used to normalize precipitation. PDSI, computed
with the aid of a water balance model (thus not
completely independent of PET) is a more direct
proxy for soil moisture and serves as an alternate
way to gauge water availability [27].

Figure 8 shows time series of PET,
precipitation/PET and PDSI for the precipitation-
defined regions, where the data have been
masked to the BLM/BIA footprint prior to spatial
averaging. The consistent upward trends in PET
are significant at better than 0.001 for all three
regions. Neither the MAMJ nor JASO trends in
pr/PET, the former downward and the latter nearly
flat, are statistically significant, however, while
that for NDJF is (p = 0.05). This difference can be
related, at least in part, to a considerably larger
trend in NDJF (-9.1, vs. -3.6 and -2.9 for MAMJ
and JASO, respectively) relative to variance,
which is similar across regions. Trend differences
are also masked here by the change in scale
engendered by the larger ratio of precipitation
to PET in NDJF than in the two other seasons,
nearly an order or magnitude. Further, pr in NDJF
trends downward even before normalization by
PET. Note that the denominator in pr/PET can be
arbitrarily small, increasing variance and making
trend detection more difficult.

On an interannual basis pr and PET are
anticorrelated, with coefficients -0.55, -0.48 and
-0.06 for MAMJ, JASO and NDJF, respectively,
reflecting a general inverse relationship between
precipitation and surface temperature, at least
during the warm part of the year [28, 29]: dry
conditions increase the sensible heat flux at
the expense of evaporation, increasing the air
temperature and thus PET directly.

3.3 Time Scale Decomposition
Figure 9 shows the series of Figure 6 with the
long-range climate-change trends removed. On
each plot, a lowpassed version, obtained by the
application of a fifth-order Butterworth filter with
half-power point at 0.1 yr−1, is superimposed,
providing a view of the decadal component of the
signal. Subtracting this lowpassed signal in turn
yields high-frequency residuals, for which most of
the energy resides in the interannual-to-decadal
band. As an aid to visualizing this interannual
component, values above the lowpass line are
plotted as red, those below as blue. Within
each region the three variables may thus be
assessed on both interannual and decadal time
scales, providing a multiscale background for the
exploration of remote influences. The southeast
(JASO region) drought of the 1950s, e.g., is
particularly clear in the corresponding tmax time
series, and follows from surface drying [30, 31].

3.4 Remote Influences on
Regional Climates

Many large-scale modes of climate variability
are characterized by variations in SST,
which, through the atmosphere, can exert
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remote influences on regional climates.
The SST variations themselves can be
used to construct indices to characterize
modal behavior. Here we test our regional
climate records against three such indices.
Two, the NINO3.4 index, based on the
El Niño-Southern Oscillation (ENSO, see
https://www.esrl.noaa.gov/psd/enso/) and the
PDO [14, 32], represent Pacific ocean modes;
the third is the AMO [33, 34, 35]. Each of these
modes have been implicated as having far-field
effects on western US climate [36, 2, 3, 4, 5, 6, 7].

The three index series are shown in Figure 10,
seasonalized to correspond with the regional
variables. Notable in the NINO3.4 record (labeled
simply “NINO”) for NDJF (Fig.10g) are peaks in
1983 and 1998, years of strong warm events in
the tropical Pacific. (As we have seasonalized
the indices here, the assigned record year of the
1982-1983 NDJF season is 1983.) Values of the
PDO index reflect, for all the seasons, known low
(high) anomalies during the period 1950-1975
(1977-1998), signaling its more prominent low-
frequency, or decadal, character as compared
with the strong interannual-band energy of ENSO
[37]. In the case of the AMO this decadal
character is even more pronounced.

3.5 Association of Variability
with Atmospheric Circulation
and SSTs

The correlation maps of Figure 11 provide a
larger-scale perspective on the three climate
indices and the chain of effects that mediates
their influence on western US precipitation. The
maps are based on annual mean values; for
the PDO and AMO plots (center and rightmost
columns) the indices have been lowpass filtered,
suppressing responses to interannual variations
in favor of the decadal time scale, where

these phenomena have the greatest influence
(cf. Fig. 10).

The upper row of plots (Figs. 11a–11c) show
correlations with the SST field, key features
being for NINO a narrow equatorial zone of
warm SSTs extending westward from the South
American Coast to approximately the date line,
surrounded on the west by a “horseshoe” of SSTs
of opposite sign. In the next row (Fig. 11d), we
see that positive correlations with the NINO3.4
index correspond to a region of higher-than-
normal anomalies above the tropical Pacific in
the 200 mb geopotential height field (z200), with
low anomalies to the north (these are mirrored in
the south), similar to the so-called Pacific-North
American (PNA) pattern, a large-scale wave train
extending from the Pacific over North America
[38]. Finally, in the lower panel (Fig. 11g) we
see the effect on precipitation in the western
US, namely the enhanced values to the south of
approximately 40◦S, with reductions to the north.

The PDO signatures are similar to those for
NINO, but involve a broadened equatorial warm
SST region and enhanced intensity for both SST
and z200 in the Northern Pacific, a defining
characteristic of this mode. The classical SST
signature of the AMO, meanwhile, a basinwide
warming of the entire North Atlantic, appears
clearly in Figure 11c. The z200 response here
is broader than those of either NINO or PDO,
tropically centered and hemispherically quasi-
symmetric; the effect on study-area precipitation
is generally a reduction (Fig. 11i)2. For
NINO, and to a lesser extent the PDO, the
height anomalies indicate stronger (weaker)
westerlies entering southwestern (northwestern)
North America. This is associated with a
southward-shifted Pacific storm track [39, 40]
and the wet-dry north-south dipole. The AMO
causes anomalous high pressure across the
west, reducing precipitation.

2At interannual time scales the AMO precipitation response is of opposite sign (not shown).
We believe, however, that this represents an indirect influence, in which ENSO, which is active
principally on interannual time scales, forces the tropical North Atlantic, which in turn drives a positive
precipitation response over much of the study area. Further discussion of these teleconnections can
be found in the references cited.
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3.6 Influence of the Large-
scale Modes on Regional
Precipitation

Figure 12 shows seasonal correlation maps for
precipitation and the three climate indices, again
utilizing interannual variations for NINO and
lowpassed series for PDO and AMO. The maps
are stippled where correlations are significant
at α = 0.05 (two-sided test). Lowpass filtering
introduces temporal dependence, reducing
effective degrees of freedom, thus increasing the
significance threshold. In this case the relevant
values are 0.183 and 0.576, for interannual and
10-year lowpassed correlations, respectively.
Because of this, and owing to the fixed record
length, decadal-scale correlations are intrinsically
more difficult to verify, which is reflected by the
sparsity of significant points in the PDO and AMO
maps. ENSO and PDO responses show a degree
of similarity, a fact that has been previously noted
[41, 42].

Several of the NDJF maps, particularly Figure
12g, exhibit dipolar responses, which would
mix areas with opposing signs when computing
region-averaged correlation coefficients. To avoid
this complication we compute, for NDJF only, two
coefficients, for areas north and south of the 40th
parallel, an approximate nodal line (again, most
evident in Fig. 12g). Responses in the other
regions are primarily of a single sign (cf. Fig. 3).

Table 3 shows correlation coefficients for the
three regional/seasonal precipitation, tmax and
tmin records and the three correspondingly
seasonalized index series, the climate data
having been masked to the combined BLM/BIA
footprint prior to area-averaging. As with Figures
11 and 12, PDO and AMO indices used for these
computations have been lowpassed. Significant
coefficients are shown in boldface.

There are just two significant interannual
correlations for precipitation, both for NINO:
in JASO and NDJF (south). There is also a
significant NINO correlation for tmin in MAMJ.
In light of the congruence of ENSO and PDO
the matching signs for pr and PDO in both JASO
and NDJF (both north and south) are also of
interest, as are those for tmin in MAMJ. There

are no significant decadal coefficients, although
the PDO-NINO agreement is indicative, as are
the uniformly negative precipitation responses to
AMO [2, 3, 4].

We also performed a reverse analysis, correlating
SST fields with regional climate indices.
The results (not shown) were generally in
agreement, indicating clear ENSO, PDO and
AMO influences.

3.7 Near-term Climate Change
Projections

Figure 13 shows observed temperature and
PDSI time series for the three climatically-defined
regions, as masked to the BLM/BIA footprint,
along with 25-year projections (red lines). For
comparison, corresponding records from the
CMIP5 ensemble are also shown, extended to
match the projections. The idea is to compare
the latter, which are obtained by applying the
computed 20th-century regression coefficients to
future values of Tmmm, with direct outputs from
the models. The CMIP5 model runs generally
extend through the end of the century (some are
longer); the length of these projections has been
limited so as to not stray too far from the domain
over which the coefficients are computed. As
discussed in Section 3.1, coefficients for pr were
not significant, so no attempt is made to project
that variable. Models do provide some idea
of how precipitation may change in the future,
however (see., e.g. [25]).

It can be seen from Figure 13 that tmax in all
seasons, as well as tmin for JASO, exhibits a
cold bias (Table 4 gives the mean observational-
period offsets). CMIP5 temperature trends,
particularly for JASO, also show some biases,
the model trends beginning around 1970 being
somewhat oversteepened. Biases in PDSI are
quite small. This variable is not intrinsic to the
models, however, but has been computed (and
calibrated) offline [43]. The projections agree in
every case with the sense of the CMIP5 trends,
the differences amounting to second-order
corrections. The projections, by construction,
also remove the additive component of the biases
evident in the CMIP5 simulations.
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Fig. 12. Correlation maps for precipitation and climate indices. Maps are shown for
precipitation and (a, d, g) NINO3.4, (b, e, h), PDO and (c, f, i), AMO, for MAMJ, JASO and

NDJF, respectively. Stippling is applied in areas where significance levels are < 0.05.
Interannual (decadal) variations are utilized for NINO (PDO, AMO)

Table 3. Correlation coefficients for each of the BLM/BIA-masked regional precipitation, tmax
and tmin series with NINO, PDO and AMO indices. For NDJF, values before and after the
vertical dividing line within each box refer to areas north and south of the 40th parallel,

respectively. As in Figures and , PDO and AMO indices have been lowpass filtered. Values
significant at the 0.05 level are shown in boldface

Index Season precip tmax tmin

NINO
MAMJ 0.09 0.07 0.21
JASO 0.23 -0.08 0.02
NDJF -0.18 | 0.24 0.12 | -0.11 0.09 | 0.13

PDO
MAMJ -0.01 0.26 0.39
JASO 0.12 -0.20 0.00
NDJF -0.10 | 0.13 -0.08 | 0.01 -0.09 | 0.15

AMO
MAMJ -0.07 0.08 0.01
JASO -0.09 0.33 0.25
NDJF -0.02 | -0.08 0.09 | 0.04 0.02 | -0.07

66



Greene and Seager; IJECC, 10(6): 52-74, 2020; Article no.IJECC.56192

1900 1950 2000
12

14

16

18

Te
m

pe
ra

tu
re

, 
C

(a)

tmax MAMJ
Obs
CMIP5

1900 1950 2000

0

2

Te
m

pe
ra

tu
re

, 
C

(d)

tmin MAMJ

1900 1950 2000
Year

−2

0

2

(g)

PDSI MAMJ

1900 1950 2000

26

28

30

(b)

tmax JASO

1900 1950 2000
10

11

12

13

(e)

tmin JASO

1900 1950 2000
Year

−2.5

0.0

2.5

5.0

(h)

PDSI JASO

1900 1950 2000

6

8

10

(c)

tmax NDJF

1900 1950 2000
−6

−4

−2

0

(f)

tmin NDJF

1900 1950 2000
Year

−2

0

2

4

(i)

PDSI NDJF

Fig. 13. Projections for tmax, tmin and PDSI. Twenty-five-year projections (red) are shown for
tmax, tmin and PDSI, based on the relationship of these variables to Tmmm over the

1901-2016 period. Green traces, with the exception of PDSI, which is derived from the models
ex post facto, are the CMIP5 multimodel mean values. PDSI is dimensionless

Table 4. Biases in tmax and tmin in CMIP5 multimodel means for 1901-2016, seasonalized
and masked similarly to the observational data to which the model simulations are

compared. Units are degrees C

(Season) tmax tmin
MAMJ -3.07 -0.13
JASO -1.80 -0.52
NDJF -2.44 -0.34

Table 5. Projected shifts, by region, in tmax, tmin and PDSI. Values for the first two of these
are given in degrees C; PDSI [27] is dimensionless

(Season) tmax tmin PDSI
MAMJ 1.29 0.67 -0.49
JASO 1.07 1.05 -0.69
NDJF 1.19 1.01 -0.62

The upward trends projected for tmax and tmin,
and inverse trends in PDSI, are not surprising,
given the relationships established in Section
3.1 and shown in Table 2, along with the

well-defined future tendency of Tmmm (Fig. 1).
Mean changes between the standard 1980-
2010 climatological period and projections for
the 2031-2040 decade, by region, are given in

67



Greene and Seager; IJECC, 10(6): 52-74, 2020; Article no.IJECC.56192

Table 5. These shifts, averaging 1.05◦C for tmax
and tmin over all seasons, and -0.60 in PDSI,
are substantial, and can be expected to have
measurable impacts.

Owing to the use of a multimodel-mean record
for their computation, both the projections and
CMIP5 values lack the strong variability evident
in the 20th-century records. (Variability in the
former is additionally suppressed because it is a
global, rather than a regional mean.) This does
not imply that future climate will be characterized
by such low variance. Indeed, natural variations
will continue, with teleconnections to the large-
scale modes creating a complex spatiotemporal
background against which forced changes will
play out.

4 DISCUSSION AND CONCLU-
SIONS

4.1 General Implications

Given the observational statistics and the
methods utilized, relations between global mean
temperature, in the form of Tmmm, and the
primary regional variables can be established
only for tmax and tmin. The lower S/N ratio
of precipitation generally, as compared with
temperature variables, has frequently been
remarked [1], so this is not a surprising finding. In
an examination of future precipitation changes in
CMIP5, also utilizing the RCP8.5 experiment,
[20] determined that multimodel ensemble
mean changes across most of the study were
significant. That assessment, performed entirely
within the model domain, compared the 2070–
2099 period with 1961–1990 climatological
means and utilized precipitation amounts directly
(rather than dependencies on Tmmm), so it is not
strictly comparable with what we have done here.
According to [20], the CMIP5 models indicate
that by the end of the present century our entire
domain will have reduced precipitation during
JJA; for DJF a dipolar shift is projected, with
moistening to the north of about 35◦N and drying
to the south (Fig. 1 in [20]).

Despite the lack of significant Tmmm-
precipitation relations in our analysis it is

nonetheless true that temperature, through
its effects on atmospheric moisture demand,
thus evapotranspiration, and potentially also on
land-surface processes, exercises an important
control on soil water availability. The net
effect of rising regional temperatures during
the observational period, as estimated via the
indirect variable PDSI as well as pr/PET, has
been a reduction in soil moisture. This effect is
consistent across the seasonally-based regions
defined herein but is robust with respect to
alternate seasonal definitions as well as other
metrics, such as precipitation minus evaporation
(P-E) [44]. (It is perhaps worth noting that long-
term soil moisture data that might be used to
verify these observation-based inferences do not
exist.)

Using the statistical relations developed during
the analysis, simple 25-year regional-scale
projections were developed. Owing to the
dependence of regional temperatures on the
global mean, and the continuing rise projected
for the latter, both tmax and tmin are expected
to increase, and PDSI to decrease, over the
projection time horizon. Comparison with directly
modeled regional temperatures show similar
trends, but with additive biases in the models,
particularly for tmax (the statistical projection
method utilized implicitly removes these biases).
The expectation is thus that soil water availability
in the subject regions, and in particular on
BLM/BIA rangelands, will continue to decline in
coming decades, likely exacerbated seasonally
by reductions in precipitation.

The influence of natural variability was
also assessed, particularly with regard to
precipitation. Such variability may significantly
modulate the identified anthropogenically-driven
trends, over periods of years to decades. A
primary driver of interannual (i.e., year-to-year)
variations was shown to be ENSO, which has
long been known to influence North American,
and particularly, western, climate. On decadal
scales, effects of both Pacific and Atlantic
influences, in the form of the PDO and AMO,
respectively, were considered. For decadally-
varying influences it is difficult to establish grid-
level statistical dependence using records of the
length of our observational dataset. However
these modes have separately been shown
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to be influential [34]. None of these natural
drivers have (yet) proven to be predictable
beyond the time horizon of perhaps a year, but
decadal prediction is an active area of research
[45, 46, 47, 48].

The projections indicate declining soil water
availability, resulting essentially from increases in
regional temperature, an outcome reinforced by
previous findings [49, 44]. Although no attempt is
made to project precipitation changes this should
not be taken as a finding that no precipitation
change is expected to occur, and indeed,
there is some evidence for future seasonal and
subregional drying (as well as moistening, see
Section 3). However it is simply not possible
to assign statistical significance based on the
observational records alone.

A starting point, then, is the expectation that the
future will see rising temperatures, with tmax
in the study regions possibly increasing faster
than tmin. Reductions in soil water availability,
even in the absence of reductions in precipitation
(and likely in their presence), are an expected
corollary.

4.2 Contribution of Natural
Variability

In addition to the anthropogenically-forced
response, natural climate system fluctuations
can be expected to impose variations, by
season, climate variable and time scale, as
discussed in Section 3.7. As has been the case
during the 20th century, these variations may
at times be comparable to, or larger than, the
comparatively slow monotonic trends resulting
from anthropogenic influence. This situation
implies limits to predictability – or at the least a
careful consideration of natural climatic “noise” as
a component of prediction uncertainty – on more
distant time horizons, at least until the science of
decadal prediction has become more mature.

4.3 Additional Effects
Certain other consequences of increasing
temperature are not considered directly but
are likely to play a role in future hydroclimatic
changes. Important among these are changes in

snowfall and snowpack, and the seasonal cycle
of runoff. There is also a general expectation that
hydroclimate variability will increase as the globe
warms [50]. From the thermodynamic standpoint
this owes to the rapid increase of water vapor
saturation pressure with temperature. Such an
increase may presage changes in the frequency
of extreme weather events at both the wet and
dry ends of the spectrum, although these events
would be occurring relative to an ever-drier soil
moisture baseline. In addition there are likely to
be dynamically-motivated effects, i.e., changes in
atmospheric circulation, that affect both the mean
climate and variations about the mean.

4.4 Consequences for Eco-
Systems

Beyond the direct effects of temperature change
on soil water availability, there are many potential
indirect and consequent effects and interactions,
making detailed inference difficult without some
sort of follow-on modeling. We survey some of
these effects here.

It is pointed out in [21] that ecosystem changes
are in general dependent on antecedent
conditions, suggesting a degree of hysteresis,
or at least memory. Such changes may also
be asymmetric, since the demise of some
species may be more or less rapid than the
establishment of replacements. Aside from the
availability of suitable habitats, establishment
of new species is also constrained by seed
dispersal mechanisms (wind, insects, birds) and
their respective environmental controls.

Based on the same increase in atmospheric
carbon dioxide (CO2) that drives global
temperature changes, a fertilization effect is
expected, which may offset to some extent the
direct effects of drying by increasing the water-
use efficiency of plants. Counterintuitively, CO2

fertilization, by shifting the partitioning of water
toward plant utilization and away from runoff,
may also act to increase leaf area, producing a
“greening,” even in the face of drying ([51, 52]
and references cited therein). Increases in net
primary production (NPP) are dependent not only
on CO2 but on the availability of nutrients, which
may prove in some cases to be limiting [53].
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The declining values of PDSI, as a function of
both time and global temperature (Fig. 8) suggest
that the future pathway in all of our BLM/BIA
seasonal regions will be toward reduced soil
water availability. Thus future changes are
likely to occur on a fundamental level. Clearly,
however, attempting to project these and other
complex responses and gauge their effects on
grazing potential in a region of even limited
extent would require the deployment of well-
calibrated hydrology, ecosystem and grazing
models, perhaps coupled to a climate generator.
(An agricultural prototype is discussed in [28]).
Such analysis lies beyond the scope of the
present research.

4.5 Strategic and Policy
Recommendations

Many considerations come into play when
considering possible pathways for mitigation
and/or adaptation measures. Among them are
national agricultural, economic and recreational
priorities, stakeholder interests, ecosystem
impacts and larger questions of sustainability.
These considerations involve potentially
competing values, and not all share a common
decision time frame. Striking a balance among
them will also involve factors at the strategic level,
and, given the conclusions of this research, a
balance will evidently have to be achieved against
a slowly but inexorably drying background state
for the decades ahead. Developing a program
of specific recommendations is itself a complex
problem deserving of careful study and analysis.
Very broadly, overall environmental health, and
the sustainability of natural landscapes, species
diversity and ecosystems must be prioritized.
These factors underpin all uses, including
grazing, to which these rangelands may be
put.

More specifically with respect to grazing,
projected declines in soil water availability imply
a concomitant loss of carrying capacity. A
conservative policy choice in this case might
be to modify grazing allotments in accordance
with confirmed shifts in forage availability. Since
changes are not likely to be spatially uniform
and will fall across a variety of landscape
features, such reductions will necessarily be

adaptive, taking into account the interplay
between landscape morphology, geology, soil
typologies and the local pattern of hydrological
shifts.

With respect to the expected primary reductions
in soil water availability per se, it might be
feasible to ameliorate these to a degree via
direct ecosystem intervention, for example by
planting, or at least encouraging the growth of,
drought-tolerant forage options. Such a strategy
will ultimately require both modeling and in-situ
testing, first to determine feasibility, and then for
optimization. In the end, specific policy choices
will be governed by the balance of potentially
competing priorities described above.

5 IMPLICATIONS

It is likely that the American West, including
BLM and BIA lands therein, will experience
reductions in soil water availability as the planet
continues to warm in coming years and decades.
Indeed, it is likely that such reductions have
already begun, accelerating during the second
half of the 20th century. This is most easily
verifiable, from the statistical standpoint, as a
consequence of increasing temperatures, rather
than reductions in precipitation, although future
changes in the latter are certainly within the
realm of possibility [20]. The observed regional
temperature increases can be sensibly related to
the well-understood anthropogenically driven
rise in global mean temperature, particularly
during the latter part of the observation
period.

The reduction in available soil water may
well result in a decrease in forage availability,
thus grazing capacity, on BLM and BIA
lands. However ecosystems and the potential
interactions among effects are complex, and we
have seen that counterintuitive responses (e.g.,
increases in leaf area at the same time that
soils are drying) are possible. More definitive
projections await the application of suitable
models, driven by downscaled and elaborated
climate projections (preferably accompanied
by uncertainty estimates). Such an elucidation
constitutes a logical next step in this work.
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