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Abstract 
 

Time series of count with over-dispersion is the reality often encountered in many biomedical and public 
health applications.  Statistical modelling of this type of series has been a great challenge. Rottenly, the 
Poisson and negative binomial distributions have been widely used in practice for discrete count time series 
data, their forms are too simplistic to accommodate features such as over-dispersion. Unable to account for 
these associated features while analyzing such data may result in incorrect and sometimes misleading 
inferences as well as detection of spurious associations. Therefore, the need for further investigation of count 
time series models suitable to fit count time series with over-dispersion of different level. The study therefore 
proposed a best model that can fit and forecast time series count data with different levels of over-dispersion 
and sample sizes Simulation studies were conducted using R statistical package, to investigate the 
performances of Autoregressiove Conditional Poisson (ACP) and Poisson Autoregressive (PAR) models. The 
predictive ability of the models were observed at different steps ahead. The relative performance of the 
models were examined using Akaike Information criteria (AIC) and Hannan-Quinn Information Criteria 
(HQIC). Conclusively, the best model to fit was ACP at different sample sizes. The predictive abilities of the 
four fitted models increased as sample size and number of steps ahead were increased 
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1 Introduction 
 
Over-dispersion is a phenomenon that occurs in count data from binomial, poison or negative binomial 
distributions. Data is overdispersed, if the variance of the data distribution is greater than the mean. In other 
words, if the estimated dispersion after fitting is not near the assumed values, then the data may be 
overdispersed, the value is greater than the expected value. It is underdispersed, if the value is less than 
expected. It is generally caused by positive correlation between responses or by excess variation between 
response probabilities or counts. It also arises when there are violations in the distributional assumptions of the 
data [1]. Violations of Poisson assumptions usually result in over-dispersion, where the variance of the model 
exceeds the value of the mean. Excess or (deficiency) of zero counts result in over-dispersion. Violations of 
equidispersion indicate correlation in the data, which affect standard errors of the parameter estimates. Model fit 
is also affected [2].  
 
In medical and health related research, data are often collected in the form of counts which are related to the 
number of times that an event of interest occurs. Because of their simplicity, one-parameter distributions for 
which the variance is directly determined by the mean are often used at least in the first method to model this 
data. However, the equal mean-variance relationship rarely happens with real-life data [3,4,5]. In most cases, the 
observed variance is larger than the assumed variance, which is known as over-dispersion. If the over-dispersion 
is ignored, statistical inference results in an inaccurate conclusion by underestimating the variability of the data 
[3]. If this dispersion is not taken into account, then using these models may lead to biased estimates of the 
parameters and consequently incorrect inferences about the parameters. Several statistical methods have been 
proposed for analysis of count data with over-dispersion. Many of them used negative binomial distribution to 
model the count data [6,7,8]. In their studies, they demonstrated the use of various models for overdispersed 
count data. These are Poisson, negative binomial, Quasi-Poisson, and Zero-inflated models. The models 
underestimated the standard errors and overstated the significance of some covariates. 
 
Ndwiga et al. [9] confirmed the in appropriate use of negative binomial distributions and poison distributions in 
modelling count time series especially with over dispersion. The researcher further proposes the use of hurdle 
poison model for analysing data with ove-dispersion. Qian et al. [10] considered modelling of heavy tailed count 
time series data on number of traded stock in 5 min for interval Empire District Electric Company using heavy 
tailed probabilities, he further recommend the use of INAR of order p to analyse heavy tailed count time series 
data. The commonly used INAR and ACP in aforementioned literature is of order one [INAR(1) and ACP(1,1)]. 
This study therefore, aimed at extending the order of the models in order to determining the best model to fit and 
forecast count data at different levels of over-dispersion, sample sizes and steps aheads. 
 

2 Methodology  
 
Data set were simulated in R statistical software with sample sizes of 30, 60, 90, …  and 300, from poison and 
negative binomial distributions to produce count data with equidispersion and over-dispersion respectively. The 
two models under study, namely: PAR and ACP were fitted to the simulated data so as to examine the effect of 
the proportion of over-dispersion on their performances. Levels of over-dispersion were imposed with 
difference between means and variances to be 5, 10 and 20 from the simulated data on observation of yi in the 
different data sets generated, which were randomized and replicated 1000 times each for the respective selected 
sample sizes. 
 
In simulation, we set our parameters to be ∅� =1  ∅� = 1 to ensure discrete nature of count data generated. The 
response ��� in 3.1 were generated from poison and negative binomial distributions. The two models under study 
were considered to analyze how well each of the model fits the selected data sets having some degree of over 
dispersion and excess zeros.  
 
Data were generated from linear second order of autoregressive function given as follows: 
 

Model 1. AR (2): ��� = 0.2����� + 0.4����� + ��                                                                                      1 
 

� = 30, 60, 90, 120, 150, 180, 210, 240, 270, 300. � = 1,2, … , 1000 
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Where ���  will be simulated from poison and negative binomial families for equidispersion/excess zeros and 
over-dispersion respectively as follows: 
 
The basic count model is the Poisson regression model which is based on the Poisson distribution with 
probability density function 
 

�������

��!
, ��� �� = 0,1,2, …                                                                                                                                        2  

  
Thus, for the Poisson models  �(��) = �(��) = �� . The restrictive condition that the mean must equal the 
variance is often violated by overdispersed data (where variance exceeds the mean). As a result of that Poisson 
model is generally considered inappropriate for count data, which are usually highly skewed and overdispersed 
[11]. 
 
The over-dispersion is achieved from the Negative binomial distribution function given as follows; 
 

�(��; �� , ��) =
� ��� +

1
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�

�(�� + 1)� �
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1 + ����
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1 + ����
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, � = 1, … , 1000                                                3 

 
Here, the dispersion parameter�� > 0,  �� = �(��); and �(��) =  �� + ����

�   
 
The Negative Binomial model can be used to impose the over-dispersion problem on ��  by creating larger 
values of variances than means. Lawal [12] argued that the Negative Binomial (NB) model might be a suitable 
alternative to the Poisson model especially for overdispersed count data. This is because the NB model in this 
case would account for the heterogeneity in the data by introducing the dispersion parameter α. In order to 
compare the modeling and forecasting accuracy of the models, AIC and HQIC criteria for performance 
evaluation procedure were used in this study. The model with the minimum criteria values were considered as 
the best for the fitting and forecasting. Note that a number of steps ahead were forecasted from each model. 
 

2.1 Autoregressive Conditional Poison (ACP) model 
 
The ACP Model proposed in this study has counts follow a Poisson distribution with an autoregressive mean.  
Let Ft denote the information available on the series up to and including time t. In the simplest model, the counts 
are generated by a Poisson distribution 
 

��/����~�(��, ��) =
� ����

�!
                                                                                                                                     4 

 
with an autoregressive conditional intensity as in the ACD model of Engle and Russell [13] or the conditional 
variance in the GARCH (Generalised Autoregressive Conditional Heteroskedasticity) model of Bollerslev [14]: 
 

����/����� = �� = � ��

�

���

���� + � ��

�

���

���� +  �                                                                                              5  

 
for positive αj’s, βj’s and ω. 
 
We call this model the Autoregressive Conditional Poisson (ACP (p,q)). The following properties of the 
unconditional moments of the ACP can be established. 
 
Unconditional mean of the ACP (p,q)). Provided that  
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� ��� + ��� < 1

��� (�,�)

���

                                                                                                                                               6 

 
the ACP(p,q) is stationary and its unconditional mean is  
 

�(��) = � =
�

1 − ∑ ��� + ���
��� (�,�)

���

                                                                                                                    7 

 
This proposition shows that, as long as the sum of the autoregressive coe�cients is less than 1, the model is 
stationary and the expression for its mean is identical to the mean of an ARMA process.  For instance, the mean 
equation of ACP (1,1) is then given as: 
 

����/����� = �� = � + ������ + ������                                                                                                             8 

 

2.2 Poisson Autoregressive (PAR) model 
 
The poison autoregressive or PAR (p) model can be define as  
 

� �
��

��
� � =  

��
������

��!
                                                                                                                                                 9 

 
Where �� is the conditional mean of the linear autoregressive AR process with �(�� ����⁄ ) in (16) 
 
This represent the measurement equation for the observed data. The one step ahead for the conditional PAR (p) 
model forecast is given by 
 

�(���� ��⁄ ) = ���� �⁄ = � ����
�

��
+ (1 − � ��

�

���

�

���

)�                                                                                         10 

 

���(���� ��⁄ ) =
1 + ���� �⁄

���� �⁄
���� �⁄                                                                                                                        11 

 
Where �, �, ����� �� are the optimized values of a PAR series, the induced covariance ��  has the 
 � = �(���). See [15]. 
 
2. 2.1 PAR (p) Forecast density for the one step ahead distribution 
 
The PAR (p) forecast density is given by  
 

�(�� ����)⁄ = �Pr (
∅

�� ∅�⁄ )Pr (∅� ����)�∅⁄                                                                                                                  12 
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=
Γ��� ���⁄ �� ���⁄ + ���

Γ(�� + 1)Γ��� ���⁄ �� ���⁄ �
(�� ���⁄ )�� ���⁄ �� ���⁄ × (1 + �� ���⁄ )�� ���⁄ �� ���⁄ ���                                    13 

 
This is a negative binomial distribution function with a gamma function Γ(∙) . 
 
The forecast function for the conditional mean and variance of a PAR (p) series realizations are based on the 
optimized values of �, �, ����� ��. The log-likelihood function for the PAR (p) model is given as 
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�( ����,���� ��, … , ��; ����   )⁄ = �� � �(�� ����)⁄

�

���

                                                                                     14 

 

= � ��Γ��� ���⁄ �� ���⁄ + ���

�

���

− ��Γ(�� + 1) − ��Γ(��������) 

+�������� ln(����) − (�������� + ��) + ln(1 + ����)                                                                                    15 
 
Using the linear autoregressive equation 
 

�(�� ����⁄ ) = � ������ +

�

���

�                                                                                                                                 16 

 
Where �� ��� � are real number values.  
 
We can obtain AR (1) for ��  which yield PAR (1) model with a negative binomial predictive distribution, for 
order p can also be generated as well. There is no restriction for the linear AR process with respect to the 
density�(�� ����)⁄ . The �� density choice resulted constraints to  �� ��� � to require admissible values. 
 

3 Analyses, Results and Discussion 
 
The results of simulation and analysis for relative performances of different orders of the ACP and PAR models 
based on the criteria of the assessment at different sample sizes and levels of over-dispersion are presented in 
Tables 1-10. The corresponding values of the tables are plotted in graphs for more clarity. 
 

 
 

Fig. 1a. AIC of the fitted ACP (p, q) models when there is no over-dispersion 
 
The AIC values tabulated in Table 1 and the values were shown in Fig. 1a and 1b for the ACP and PAR 
respectively, the ACP(2, 2) model performed well compared to ACP (2, 1) at all scenarios of sample sizes. The 
ACP (1, 1) and ACP (1, 2) gave similar results in most scenarios. As per the results of the AIC, ACP (2, 2) 
seems the preferred choice for equidispersed count time series data. Relatively, PAR (4) performed greatly in 
comparison to their PAR models followed closely by PAR (2) while PAR (1) performed poorly. Generally, ACP 
(2, 2) is the best among all at different sample sizes. 
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Table 1. AIC values of the fitted models in the absence of over-dispersion 
 

Sample Sizes 30 60 90 120 150 180 210 240 270 300 
Model                     
ACP(1,1) 4.665 4.764 4.639 4.694 4.723 4.678 4.697 4.6647 4.633 4.6018 
ACP(1,2) 4.869 4.645 4.661 4.6877 4.709 4.661 4.68 4.6491 4.6225 4.594 
ACP(2,1) 4.549 4.601 4.607 4.6379 4.711 4.656 4.603 4.6172 4.61 4.6191 
ACP(2,2) 4.208 4.134 4.519 4.6539 4.705 4.536 4.612 4.6035 4.6057 4.5243 
PAR(1) 59.488 107.060 150.541 226.18 289.07 350.652 408.34 460.980 510.301 555.605 
PAR(2) 57.829 104.560 147.503 205.91 261.39 312.037 359.51 407.400 456.553 500.005 
PAR(3) 58.890 104.920 145.985 208.334 263.35 314.528 362.89 409.740 456.815 505.011 
PAR(4) 55.230 101.370 142.812 203.193 259.34 306.787 354.85 400.030 436.834 493.270 

 
Table 2. HQIC of models performance when there is no over-dispersion 

 
Sample Sizes 30 60 90 120 150 180 210 240 270 300 
 Models                     
ACP(1,1) 152.923 291.968 423.519 569.806 715.264 849.148 993.675 1127.13 1258.695 1388.477 
ACP(1,2) 152.823 291.892 423.148 567.047 711.275 844.178 988.272 1117.579 1253.854 1380.763 
ACP(2,1) 154.505 294.462 423.978 568.601 709.826 841.957 985.563 1118.652 1252.291 1381.776 
ACP(2,2) 151.497 294.454 423.954 538.327 701.812 831.718 980.457 1108.31 1242.015 1371.521 
PAR(1) 61.281 110.335 154.573 230.708 293.962 355.831 413.750 466.589 516.081 561.534 
PAR(2) 59.622 107.833 151.535 210.438 266.284 317.216 364.921 413.007 462.333 505.934 
PAR(3) 60.683 108.193 150.017 212.862 268.243 319.706 368.299 415.351 462.595 510.94 
PAR(4) 57.023 104.642 146.844 207.721 264.228 311.966 360.262 405.635 442.614 499.199 
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Fig. 1b. AIC of PAR Model across Sample Sizes when there is No Over-Dispersion 
 

 
 

Fig. 2a. HQIC of the fitted ACP (p, q)) models when there is no over-dispersion 
 

 
 

Fig. 2b. HQIC of the Fitted PAR (p) Models When There is No Over-dispersion 
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The plot of HQIC values from Table 2 of the fitted APC (p, q) and PAR (p) models are displayed in Fig. 2a and 
2b. ACP (2, 2) has the best fits across samples with no over-dispersion, followed by ACP (2, 1) which exhibits 
good performance closely to rest of the ACP models across sample sizes. The PAR (p) model HQIC values 
follows similar pattern with the earlier reported criterion with PAR (4) as the better fitted, having the minimum 
HQIC values across sample sizes, followed by improved PAR (2) especially at sample sizes above 240.  
 

 
 

Fig. 3a. AIC of the fitted ACP (p, q) models when there is low over-dispersion 
 

 
 

Fig. 3b. AIC of the fitted PAR (p) models when there is low over-dispersion 
 

The average values of AIC of each model at various sample sizes when there is low over-dispersion are 
presented in Table 3. ACP (2,1) model exhibits great performance especially below the sample size of 250 
followed by ACP (2, 2). When the sample size increases the performances of ACP (2, 2) and other models 
increase. In, PAR models, the trend shows PAR (4) as the most well performed followed by PAR (3) as reported 
by the AIC values. Generally ACP (2, 1) is the best among all the models. 
 

 
 

Fig. 4a. HQIC of the fitted ACP (p, q) models when there is low over-dispersion 
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Table 3. AIC of performance of models when there is low over-dispersion 
 

Sample Sizes 30 60 90 120 150 180 210 240 270 300 
 Models                     
ACP(1,1) 4.946 4.942 5.001 4.867 4.818 4.882 4.908 4.983 4.823 4.854 
ACP(1,2) 4.961 4.869 4.972 4.880 4.795 4.862 4.869 4.857 4.868 4.835 
ACP(2,1) 4.939 4.960 4.875 4.857 4.813 4.849 4.839 4.928 4.908 4.819 
ACP(2,2) 4.875 4.948 4.889 4.861 4.817 4.853 4.847 4.936 4.787 4.812 
PAR(1) 69.384 130.109 209.532 296.340 308.388 385.975 493.652 556.198 581.594 689.140 
PAR(2) 56.257 124.194 183.449 283.977 280.763 377.155 448.157 484.546 558.775 642.966 
PAR(3) 53.218 125.165 183.628 282.210 282.121 375.353 449.984 484.928 558.506 640.447 
PAR(4) 52.407 125.471 182.338 277.485 281.155 375.229 451.131 485.677 552.496 636.167 

 
Table 4. HQIC of performance of models when there is low over-dispersion 

 
Sample Sizes 30 60 90 120 150 180 210 240 270 300 
 Models                     
ACP(1,1) -5.748 1.6404 5.0758 -25.616 -15.41 7.3478 -15.277 -11.945 -55.056 -51.105 
ACP(1,2) -8.118 -8.7969 0.511 -25.728 -22.84 1.2982 -25.519 -72.293 -33.616 -60.073 
ACP(2,1) -19.69 -9.322 -10.875 -35.165 -18.61 -2.804 -33.012 -31.068 -47.874 -65.905 
ACP(2,2) -19.17 -6.1306 -9.3957 -31.294 -20.86 -3.688 -33.271 -31.044 -74.047 -71.685 
PAR(1) 71.177 133.386 213.564 300.868 313.28 391.154 499.065 561.808 587.374 695.07 
PAR(2) 58.05 127.471 187.481 288.505 285.655 380.334 453.569 490.156 564.555 648.895 
PAR(3) 55.011 128.442 187.661 286.738 287.014 380.531 455.397 490.538 564.286 646.376 
PAR(4) 54.200 128.748 186.370 282.013 286.047 380.408 456.544 491.287 558.276 642.096 
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Fig. 4b. HQIC of the fitted PAR (p) models when there is low over-dispersion 
 

The values of HQIC of each model at various sample sizes when there is low over-dispersion are presented in 
Table 4. ACP (2,1) performed good at low sample sizes from the ACP models especially below the sample sizes 
of 120 followed by ACP (2,2) become best above sample size of 270 based on the minimum values of the HQIC 
criteria. When the sample size increases the performances of ACP (2, 2) and other models increase. Relatively, 
PAR (4) display good trend pattern across sample size followed by PAR (3) in closed linear trend in Fig. 4b 
based on the minimum reported HQIC values.   
 

 
 

Fig. 5a. AIC of the fitted ACP (p, q) models when there is high over-dispersion 
 

 
 

Fig. 5b. AIC of the fitted PAR (p) models when there is high over-dispersion 
 

Table 5 shows the fitted performances of the ACP and PAR models to data simulated under high levels of over-
dispersion with the average values of AIC of each model at various sample sizes. The results obtained were 
plotted on the graphs as shown in Fig. 5a and 5b respectively. However, the performance of the APC (2, 1) 
models supersedes others at the moderate sample size of 120 based on AIC criterion, whereas, ACP (1, 2) well 
performed above 120 sample sizes. In Fig. 5b, the PAR (3) model takes the lead at lower sample sizes below 
120 while PAR (3) fitted best to the data with high over-dispersion when the sample size increases from 120.  
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Table 5. AIC of models’ performance when there is high over-dispersion 
 

Sample Sizes 30 60 90 120 150 180 210 240 270 300 
 Models                     
ACP(1,1) 5.175 5.072 4.805 4.835 4.846 4.864 4.783 4.739 4.774 4.731 
ACP(1,2) 5.274 4.874 4.820 4.834 4.834 4.847 4.766 4.727 4.763 4.719 
ACP(2,1) 5.011 4.800 4.746 4.857 4.861 4.867 4.775 4.737 4.766 4.719 
ACP(2,2) 5.274 4.932 4.863 4.874 4.865 4.871 4.779 4.742 4.772 4.724 
PAR(1) 74.58 130.144 188.625 260.059 347.376 395.961 478.435 530.096 581.229 672.386 
PAR(2) 66.098 130.388 180.997 260.824 344.699 394.287 470.679 491.140 582.200 672.578 
PAR(3) 60.095 124.167 178.072 257.294 334.585 378.622 469.404 491.978 595.877 671.328 
PAR(4) 61.299 126.373 181.082 258.406 332.904 377.198 468.359 487.501 560.898 670.636 

 
Table 6. HQIC of Models’ performance when there is high over-dispersion 

 
Sample Sizes 30 60 90 120 150 180 210 240 270 300 
 Models                     
ACP(1,1) 13.060 11.130 -41.367 -48.402 -50.405 -47.201 -74.308 -102.14 -114.93 -127.6 
ACP(1,2) 12.827 -29.135 -42.714 -52.272 -57.181 -55.579 -84.277 -111.44 -123.24 -137.10 
ACP(2,1) 1.726 -27.167 -40.049 -47.56 -53.465 -53.56 -83.409 -110.08 -122.81 -138.93 
ACP(2,2) 12.827 -27.380 -40.836 -47.498 -56.079 -55.971 -85.699 -111.55 -123.43 -139.52 
PAR(1) 76.373 133.42 192.657 264.587 352.269 401.140 483.848 535.706 587.009 678.315 
PAR(2) 67.891 133.665 185.029 265.352 349.591 399.465 476.091 496.749 587.980 678.507 
PAR(3) 61.088 126.844 182.405 260.822 339.477 383.801 474.816 497.588 601.657 677.257 
PAR(4) 63.092 129.650 185.114 262.935 337.796 382.376 473.771 439.111 566.678 675.565 
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Fig. 6a. HQIC of the fitted APC (p, q) models when there is high over-dispersion 
 

 
 

Fig. 6b. HQIC of the fitted PAR (p) models when there is high over-dispersion 
 
Table 6 shows the fitted performances of the ACP and PAR models to data simulated under high levels of over-
dispersion with the average values of HQIC of each model at various sample sizes recorded. The results 
obtained were plotted on the graphs as shown in Fig. 6a and 6b respectively. The ACP (2,1) model takes the 
lead at lower sample sizes below 60 while ACP (1,2) at less than 180, APC (2, 2) fitted best to the data with 
high over-dispersion when the sample size increases from 180. Indeed, the ACP (2, 1) and ACP (2, 2) are best at 
lower and higher sample sizes respectively. More so, in Fig. 6b, PAR (3) model takes the lead at lower sample 
sizes below 150 while PAR (4) fitted best to the data with high over-dispersion when the sample size increases 
from 150. Indeed, the PAR (3) and PAR (4) are best performed at lower and higher sample sizes respectively. 
 

3.1 Forecast ability of the selected best models  
 
The predictive ability of the best three models selected from ACP and PAR where examined using Theil U 
statistics. Theil U statistics is the relative accuracy measure that compares forecasted results with the results of 
forecasting with minimal historical data it also requires the deviations to give more weight to large errors and to 
exaggerate errors, which can help eliminate methods with large errors. U>1 indicate that the forecasting 
technique is better than guessing, U = 1, indicate that the forecasting technique is as good as guessing, U<1 
indicates that the forecasting technique is worse than guessing. The results for the Theil U test of the two best 
orders forecasted for at different steps ahead in the three models with different level of over-dispersions  are 
presented in Table 4.21 and 4.22. 
 
The relative forecast performance of the selected best models among APCs and PARs at different categories of 
dispersion using TheilU statistics were presented in table 7. ACP (2,2) has the best forecasting ability when 
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there is no and low overdispersions, while ACP (2,1) considered to be better in forecasting ability at high 
overdispersion than PAR models. 
 

Table 7. Forecast performance of the models without over-dispersion, with over dispersion and there is 
low over dispersion using theil U statistic 

 
No Over Dispersion High Over Dispersion Low Over Dispersion 

Steps Ahead ACP (2,2) PAR (4) ACP (2,1) PAR (3) ACP (2, 2) PAR (4) 
5 2.8411 2.5721 2.7249 1.9439 2.2642 1.3301 
10 2.8142 2.5452 2.7065 1.9239 2.2439 1.3032 
15 2.7873 2.5184 2.6843 1.9038 2.2246 0.2734 
20 2.7604 1.4915 2.665 1.8838 2.2043 0.2044 
25 2.7335 1.4646 2.6490 1.1086 2.1843 0.2255 
30 2.7066 1.4377 2.6249 0.8385 2.1647 0.1565 
35 2.6797 1.4108 2.6049 0.7667 2.1424 0.1376 
40 2.6528 1.3839 2.5849 0.6123 2.1240 0.1218 
45 2.6259 1.3570 2.5648 0.5901 2.1048 0.1149 
50 2.59908 1.3301 2.5448 0.5736 2.0841 0.0880 

 

4 Conclusion 
 
This study discovered the highest performing model in fitting and forecasting different count time series data 
with different levels of over-dispersion is the ACP model based on all criteria of the assessment. The model has 
the speedy fitting capabilities at both high and low sample sizes. PAR models has the slowest fitting speed 
across sample sizes. Specifically, the ACP (2,2) has the highest performance followed by ACP (2,1) among all 
the models in fitting any time series count data with the underlying features reported in this research. The 
research focused on the simulated data and recommend for further application on real life data. 
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