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Abstract

Gompertz Rayleigh (GomR) distribution was introduced in an earlier study with few statistical
properties derived and parameters estimated using only the most common traditional method,
Maximum Likelihood Estimation (MLE). This paper aimed at deriving more statistical properties
of the GomR distribution, estimating the three unknown parameters via a competitive method,
Maximum Product of Spacing (MPS) and evaluating goodness of fit using rainfall data sets from
Nigeria, Malaysia and Argentina.
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Properties of statistical distributions including distribution of smallest and largest order statistics,
cumulative or integrated hazard function, odds function, rth non-central moments, moment
generating function, mean, variance and entropy measures for GomR distribution were explicitly
derived. The fitted data sets reveal the flexibility of GomR distribution over other distributions
been compared with. Simulation study was used to evaluate the consistency, accuracy and
unbiasedness of the GomR distribution parameter estimates obtained from the method of MPS.
The study found that GomR distribution could not provide a better fit for Argentine rainfall
data but it was the best distribution for the rainfall data sets from Nigeria and Malaysia
in comparison with the distributions; Generalized Weibull Rayleigh (GWR), Exponentiated
Weibull Rayleigh (EWR), Type (II) Topp Leone Generalized Inverse Rayleigh (TIITLGIR),
Kumarawamy Exponential Inverse Raylrigh (KEIR), Negative Binomial Marshall-Olkin Rayleigh
(NBMOR) and Exponentiated Weibull (EW). Furthermore, the estimates from MPSE were
consistent as the sample size increases but not as efficient as those from MLE.

Keywords: Gompertz-Rayleigh; probability distribution; smallest and largest order statistics; entropy
measures; maximum product of spacing.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

Rayleigh(R) is a continuous lifetime distribution introduced by [1], it has few properties of the
Weibull (W) distribution. Areas including communication theory, medical imaging science, engineer-
ing among others benefits from this distribution. Compared to other widely used classical distribu-
tions, fewer source of materials were found on R distribution.

Several modification of R exist in literature. The inverted form, Inverse Rayleigh (IR) was introduced
by [2] which have some properties of the Inverse Weibull (IW) distribution. [3] and [4] respectively
studied maximum likelihood estimator, percentile estimator and different estimation methods of the
parameter of IR. Ali et al., 2015 studied and found that ”higher order statistics as well as the variance
of the IR do not exist. [5] introduced the generalized Rayleigh also known as exponentiated rayleigh
(ER) having some properties of log-normal distribution and is a special case of exponentiated weibull
by [6]. Other modifications include transmuted Weibull Rayleigh by [7], Gompertz Rayleigh by [8],
Power Rayleigh by [9] and recent addition in literature are Inverse Weibull Rayleigh by [10] and
extended odd Weibull Rayleigh by [11].

The Maximum Likelihood estimation (MLE) is the most frequently used method of estimation not
just in statistical distributions but in statistics as a whole because of its desirable properties. The
estimates are obtained by maximizing the likelihood function of the PDF. This method however
have it setbacks making the estimators fail sometimes.

Maximum Product of Spacing estimation (MPS), introduced by [12] is likely to serve as a competitor
of MLE in cases where the estimates fromMLE breaks down. The estimators obtained by maximizing
the geometric mean of spacings between cumulative distribution function in close observations are
consistent and as efficient as MLE . [13] noted that ” The MLE perfectly estimates the parameters
of discrete distributions if the contribution to the likelihood function is bounded from above but
not for compound continuous distributions”. The consistency of MPS was studied and shown that
it works in place of MLE.
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[14] introduced Gompertz Exponentiated Rayleigh distribution and adopted MPS method. The
study found estimates of most parameters from MPS more efficient than those from ML especially
at larger sample sizes. More-so, [15] estimates the parameters of newly introduced Marshall-Olkin
Alpha Power Lomax distribution using MPS along with Least Squares Estimation (LSE) and MLE.
The study reveal that all methods were consistent and efficient, but those from LSE have more
relative efficiency for most parameters.

There exist plethora of extended forms of R distributions, however, the traditional method, Maximum
likelihood estimation is mostly used to estimate their parameters. The parameters of extended R
distributions namely Gompertz Rayleigh (GomR) by [8] were estimated using only MLE. Estimation
these parameters using addition method would be very important to reliability and applied statisticians.

Moreso, no extended distribution in literature thus far have utilize the rainfall data sets from these
regions to access their goodness of fit.

2 Gompertz-Rayleigh (GomR) Distribution

Using a family of distribution Gompertz-G by [16], [8] defined the CDF and PDF of GomR
distribution as follows

F (x;α, β, γ) = 1− e
α
β
(1−[1−(1−e

−x2

2γ2
)]−β)

= 1− e
α
β
(1−e

x2β

2γ2
)

(2.1)

and

f(x;α, β, γ) =
αx

γ2
e

−x2

2γ2 [ 1− (1− e
−x2

2γ2 )]−β−1e
α
β
{1−[1−(1−e

−x2

2γ2
)]−β}

=
αxe

−x2

2γ2

γ2
[e

−x2

2γ2 ]−β−1e
α
β
[1−e

x2β

2γ2
]

=
αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
]

(2.2)

where α, β > 0 are shape parameters while γ > 0 is a scale parameter and x > 0 .

2.1 Useful representation

The CDF and PDF of GomR distribution can be represented in simpler as follows.
Using

ex =

∞∑
b1=0

xi

b1!

and

(1−m)b =

∞∑
b2=1

(
b

b2

)
(−1)b2xb2
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the simplified CDF is

F (x) = 1−
∞∑

b1=0

(
α
β

)b1 [
1− e

x2β

2γ2

]b1
b1!

= 1−
∞∑

b1=0

∞∑
b2=0

1

a1!
(−1)b2

(
α

β

)a1
(
b1
b2

)
e

x2βb2
2γ2 (2.3)

the simplified PDF is

f(x) =
αx

γ2
e

x2β

2γ2

∞∑
b1=0

∞∑
b2=0

1

a1!
(−1)b2

(
α

β

)a1
(
b1
b2

)
e

x2βb2
2γ2

=
αx

γ2

∞∑
b1=0

∞∑
b2=0

1

b1!
(−1)b2

(
α

β

)b1
(
b1
b2

)
e

x2β(1+b2)

2γ2 (2.4)

3 Properties of GomR Distribution

[8] presented the shapes of the densities, hazard and survival function of the GomR distribution for
several parameter values. GomR distribution have positively skewed density function, an increasing
hazard function and a decreasing survival function. The study further derived the reliability and
quantile function.

4 Additional Statistical Properties of GomRDistribution

4.1 Order statistic of the GomR distribution

Given a distribution with sample of independent characteristicsX1,X2, . . . , Xn .This can be represented
in a notation X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) or ordered as X(1) ≤ X(2) ≤ · · · ≤ X(n) . X(1)

representing the 1st order is considered the minimum , X(2) representing the 2nd order, the second
minimum while the nth order statistics, X(n), is the maximum.

4.1.1 PDF of the kth order statistics of GomR distribution

Suppose a random sample X1, X2, . . . , Xn is obtained from the densities of the GomR distribution
and represents X(1) ≤ X(2) ≤ · · · ≤ X(n) as the order statistic, then the PDF, f(k,n)(x), the kth

order statistics is expressed as

f(k,n)(x) =
n!

(k − 1)!(n− k)!
f(x)× F (x)k−1 × [1− F (x)]n−k (4.1)

where F(x) and f(x) are the CDF and PDF of the GomR distribution.

For easier simplification, the binomial expansion on [1− F (x)]n−k was used

[1− F (x)]n−k =

∞∑
b3=0

(
n− k

b3

)
(−1)b3(F (x))b3 (4.2)

Substituting (4.2) in (4.1) results to

f(k,n)(x) =

∞∑
b3=0

n!

(k − 1)! (n− k)!
f(x) .

(
n− k

b3

)
(−1)b3(F (x))b3+k−1 (4.3)
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Again, substituting (2.1) and (2.2) in (4.3), gives the kth order statistic of the GomR distribution
as

f(k,n)(x) =

∞∑
b3=0

n! (−1)b3

(k − 1)! (n− k − b3)! b3!

αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
] ×

1− e
α
β
(1−e

x2β

2γ2
)

b3+k−1

(4.4)

4.1.2 PDF of the smallest and largest order statistics

Substituting k=1 into 4.4 gives the PDF of minimum or 1st order statistics as

f(1,n)(x) =

∞∑
b3=0

n! (−1)b3

(n− 1− b3)! b3!

αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
] ×

1− e
α
β
(1−e

x2β

2γ2
)

b3

(4.5)

Similarly, the nth order or the maximum order statistics was obtained by substituting k=n as

f(n,n)(x) =
∞∑

b3=0

n! (−1)b3

(n− k)! (−b3)! b3!

αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
] ×

1− e
α
β
(1−e

x2β

2γ2
)

b3+n−1

(4.6)

4.2 Reliability analysis of GO-R distribution

Suppose a random variable X comes from the GomR distribution with PDF, f(x) and CDF, F(x);
the following properties were obtained.

4.2.1 Cumulative or integrated hazard function

This is a risk function and not a probability. The cumulative hazard function of GomR is derived
as follows

H(x) =

∫ t

0

h(x)dx

=
α

γ2

∫ t

0

x e
β x2

2 γ2 dx (4.7)

let
x2 β

2 γ2
, then

du

dx
=

xβ

γ2
and dx =

γ2 du

xβ

Now, x → 0, u → 0 and x → t, u → t2 β

2 γ2

H(x) =
α

β

∫ t2 β

2 γ2

0

x eudu

=
α

β

[
e

t2 β

2 γ2 − 1

]
(4.8)
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4.2.2 Odds function

This is the odds of the probability that the failure of a unit is bound to happen at a given time, to
the probability that it is bound to survive beyond that time. That is;

O(x) =
F (x)

S(x)

=
1 − e

α
β
(1− e

β x2

2 γ2
)

e
α
β
(1− e

β x2

2 γ2
)

(4.9)

4.3 Moment and moment generating function

4.3.1 rth non-central moment

This is an important property of any distribution and used in obtaining some measures like shapes,
dispersion, central tendencies and so on.

Suppose a random variable X follows GomR distribution, the rth non-central moment, µ′
r, is

obtained using the expression

µ′
r = E(Xr)

=

∫ ∞

0

xrf(x)dx

=

∫ ∞

0

xr αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
]
dx

Recalling the useful representation (2.4)

µ′
r =

∫ ∞

0

xr αx

γ2

∞∑
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b2=0

1

b1!
(−1)b2

(
α

β

)b1
(
b1
b2

)
e

x2β(1+b2)

2γ2 dx

=
α
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0
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where Bb1b2 =
1

b1!
(−1)b2

(
α

β

)b1
(
b1
b2

)

Now

µ′
r =

α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2

∫ ∞

0

xr+1 e
− x2β(−1− b2)

2γ2 dx

let m =
x2β(−1 − b2)

2γ2
and x =

(2m)
1
2 γ

(β(−1 − b2))
1
2

then
dm

dx
=

β x(−1 − b2)

γ2
and dx =

γ2 dm

(β x (−1 − b2))
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Now

µ′
r =

α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2

1

β(−1 − b2)

∫ ∞

0

(
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1
2 γ
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1
2
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e−m .
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x

=
α
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1
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1
2 γ
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1
2
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e−m . dm

=
α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 2
r
2 γr

(β(−1 − b2))
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2

∫ ∞
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m
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=
α
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∞∑
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∞∑
b2=0

Bb1b2 2
r
2 γr

(β(−1 − b2))
1+ r

2
.Γ(1 +

r

2
)

therefore

µ′
r =

α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 2
r
2 γr

(β(−1 − b2))
1+ r

2
.Γ(1 +

r

2
) (4.10)

4.3.2 MGF

Generally, the MGF of any random variable can be obtained using the relation

M(θ) = E(eθx)

since X is a continuous random variable with pdf f(x),

M(θ) =

∫ ∞

0

eθxf(x)dx

or in simpler form

M(θ) =

∞∑
r=0

tr

r!

∫ ∞

0

xr f(x)dx

=
∞∑
r=0

tr

r!
µ′
r

since etx =

∞∑
r=0

(tx)r

r!

and µ′
r is the rthnon− central moment

the MGF of GomR is

α

γ2

∞∑
r=0

∞∑
b1=0

∞∑
b2=0

tr

r!

Bb1b2 2
r
2 γr

(β(−1 − b2))
1+ r

2
.Γ(1 +

r

2
) (4.11)

4.4 Mean and variance of GomR distribution

These are obtained from the rth non-central moment of GomR distribution.
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4.4.1 Mean

If in (4.10), r = 1, the resulting equation is the mean (1st moment) of GomR distribution, That is,

µ′
1 = E(X)

=
α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 2
r
2 γ

(β(−1 − b2))
3
2

.Γ(
3

2
)

=
α

γ2

∞∑
b1=0

∞∑
b2=0

0.8862 Bb1b2 γ

(β(−1 − b2))
3
2

(4.12)

4.4.2 Variance

Using the relation

V ar(X) = E(X2) − [E(X)]2

where E(X2) is the 2nd moment and obtained when r = 2 in (4.10).
Hence

µ′
2 = E(X2)

=
α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 2
2 γ2

(β(−1 − b2))2
.Γ(2)

=
α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 γ2

(β(−1 − b2))2
(4.13)

therefore the variance of GomR distribution is

V ar(X) =
α

γ2

∞∑
b1=0

∞∑
b2=0

Bb1b2 γ2

(β(−1 − b2))2
−

 α

γ2

∞∑
b1=0

∞∑
b2=0

0.8862 Bb1b2 γ

(β(−1 − b2))
3
2

2

(4.14)

4.5 Entropy

Renyi entropy by [17] a measure of uncertainty was defined as

IR(c) =
1

1− c
log

∫ ∞

0

fc(x)dx c > 0 , c ̸= 1 (4.15)

Suppose a random variable X follows the GomR distribution, the degree of uncertainty is obtained
as follows

fc(x) =

αx

γ2
e

βx2

2γ2 e
α
β
[1−e

x2β

2γ2
]

c

(
α

γ2

)c

xc e
βx2 c

2γ2 e
α c
β

[1−e

x2β

2γ2
]

using the expansions earlier

e
α c
β

[1−e

x2β

2γ2
]
=

∞∑
b4=0

∞∑
b5=0

1

b3!

(
α c

β

)b4
(
b4
b5

)
(−1)b5 e

x2β b5
2γ2
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implying that

fc(x) =

(
α

γ2

)c

xc
∞∑

b4=0

∞∑
b5=0

1

b3!

(
α c

β

)b4
(
b4
b5

)
(−1)b5 e

x2β (c+b5)

2γ2

=

(
α

γ2

)c
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∞∑

b4=0

∞∑
b5=0

Cb4,b5 e
x2β (c+b5)

2γ2

where Cb4,b5 =

∞∑
b4=0

∞∑
b5=0

1

b3!

(
α c

β

)b4
(
b4
b5

)
(−1)b5

now

IR(c) =
1

1− c
log

( α

γ2

)c ∞∑
b4=0

∞∑
b5=0

Cb4,b5

∫ ∞

0

xc e
x2β (c+b5)

2γ2 dx

 c > 0 , c ̸=

let n = e
− x2β (−c− b5)

2γ2 then
dn

dx
=

xβ (−c − b5)

γ2
and x =

(2n)
1
2 γ

(β (−c − b5))
1
2

=
1

1− c
log

 αc

γ2c

∞∑
b4=0

∞∑
b5=0

Cb4,b5

∫ ∞

0

(
(2n)

1
2 γ

(β (−c − b5))
1
2

)c

e−n γ2 dn

β x (−c − b5)


=

1

1− c
log

 αc

γ2c−2

∞∑
b4=0

∞∑
b5=0

Cb4,b5

∫ ∞

0

(
(2n)

1
2 γ

(β (−c − b5))
1
2

)c−1

e−n γ2 dn

β (−c − b5)


=

1

1− c
log

 αc γ1−c 2
c−1
2

(β (−c − b5))
c−3
2

∞∑
b4=0

∞∑
b5=0

Cb4,b5
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0

n
c−1
2 e−n dn



=
1

1− c
log

 αc γ1−c 2
c−1
2

(β (−c − b5))
c−3
2

∞∑
b4=0

∞∑
b5=0

Cb4,b5 Γ(
1 + c

2
)

 (4.16)

5 Parameter Estimation

This section provides the estimates of the three unknown parameters (α, β, γ) of GomR distribution
using the method of Maximum Product of Spacing in addition to the MLE from an earlier study.
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5.1 MLE

AssumeX1, X2, . . . , Xn to be a random sample of size n following GomR distribution. The likelihood
function is

L =

n∏
i=1

f(xi; ε)

=

n∏
i=1

αxi

γ2
e

βx2
i

2γ2 e
α
β
[1−e

x2
i β

2γ2
]


=

(
α

γ2

)n n∑
i=1

xi

n∏
i=1

e
β x2

i
2 γ2 + α

β
(1−e

β x2
i

2 γ2
)


The log-likelihood function

L(θ) = n logα − 2n log γ +
n∑

i=1

log(xi) +
β

2 γ2

n∑
i=1

x2
i +

α

β

n∑
i=1

[
1 − e

β x2
i

2 γ

]
To obtain the estimates of the parameters (α̂, β̂, γ̂), we differentiate L(θ) wrt individual parameter
and equate to zero. The resulting differentials are,

∂L(θ)

∂α
=

n

α
+

1

β

n∑
i=1

[
1 − e

β x2
i

2 γ2

]
(5.1)

∂L(θ)

∂β
=

1

2 γ2
.

n∑
i=1

x2
i − α

2βγ2
.

n∑
i=1

(
x2
i e

βx2
i

2γ2

)
− α

β2

n∑
i=1

(
1 − e

βx2
i

2γ2

)
(5.2)

∂L(θ)

∂γ
=

2n

γ
− β

γ3

n∑
i=1

x2
i − α

γ3

n∑
i=1

(
x2
i e

βx2
i

2γ2

)
(5.3)

The above equations are not in explicit form, hence, do not have exact solution. For this reason,
we use the Newton-Raphson method of iteration, to obtain the MLEs of the equations analytically.

To enable the construction of confidence intervals of the parameters and hypothesis testing of the
GomR distribution. The elements of the observed information matrix are found as follows.

∂L(θ)

∂α2
=

−n

α2
(5.4)

∂L(θ)

∂β2
=

−αx4

4βγ4

n∑
i=1

(
e

βx2

2γ2

)
+

αx2

γ2β2

n∑
i=1

(
e

βx2

2γ2

)
+

α

β3
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5.2 MPS

The maximum likelihood estimation is the most common and widely used method but in cases such
as that involving compound continuous distributions and large samples, the method may break
down.

[12] introduced the MPS method serving as an alternative to ML method, a powerful one. Also,
[13] independently studied the method as an approximation to Kullback-Leibler information and
explained its consistency property.

If X1,X2, . . . , Xn are random samples from GomR distribution having CDF F (x, ε) and X(1) ≤
X(2), . . . X(n) represents the corresponding ordered sample. The spacing

0i = F (x(i)) − F (x(i−1)) for i = 1, 2, . . . , n+ 1

where
F (x(0)) = 0 and F (x(n+1)) = 1

Since we are sampling from GomR distribution,

F (x(i)) = 1 − e

α
β

1− e

βx2
(i)

2γ62


(5.10)

and

F (x(i−1)) = 1 − e

α
β

1− e

βx2
(i−1)

2γ62


(5.11)
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α
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1− e

βx2
(i)

2γ62


 −

1 − e

α
β

1− e

βx2
(i−1)

2γ62


 (5.12)

The parameter estimates are obtained by maximizing

T =
1

n+ 1

n+1∑
i=1

loge 0i (5.13)

T =
1

n+ 1
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loge

e

α
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1− e

βx2
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− e

α
β

1− e

βx2
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 (5.14)

The parameters estimates α̂MPS , β̂MPS , γ̂MPS can be found by differentiating T wrt individual
parameters and solving the non-linear equations

∂T (α, β, γ)

∂α
=

1

n+ 1
.

n+1∑
i=1

1

0i(α, β, γ)
.
[
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]
(5.15)
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(5.17)
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where
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The solutions to equations (5.15),(5.16) and (5.17) are the MPS parameter estimates. However, the
equations cannot be obtained analytically but rather with the use of numerical solutions.

6 Applications

We portray the advantage of GomR distribution over some related distributions having at least
two parameters in fitting two rainfall data sets. The comparison was done using the log-likelihood,
Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Corrected Akaike’s Information
Criteria (CAIC) and Hannan-Quinn Information Criteria (HQIC).

AIC = 2(ll) + 2k
BIC = −(2 ∗ ll) + (k ∗ (log(n)))

CAIC = −2(ll) + 2k(k + 1)/(n− k− 1)
HQIC = −(2(ll)) + (2 ∗ k ∗ log(log(n)))

where ll is the log-likelihood, n is the sample size and k is the number of parameters to be fitted.
These information criteria will serve as scores for selecting the distribution that best fit the data.
Using rainfall data sets from three different regions, the goodness of fit of the GomR distribution
was compared with Generalized Weibull Rayleigh (GWR) by [18], Exponentiated Weibull Rayleigh
(EWR) by [19], Type (II) Topp Leone Generalized Inverse Rayleigh (TIITLGIR) by [20], Kumarawamy
Exponential Inverse Raylrigh (KEIR) by [21], Negative Binomial Marshall-Olkin Rayleigh (NBMOR)
by [22] and Exponentiated Weibull (EW) by [6].

6.1 Malaysian Rainfall data

These consists of 30 years means of maximum daily rainfall from 1975-2004 at 35 stations in the
middle and west of peninsular Malaysia. Table below provide the descriptive statistics of the data
Table 3 presents each distribution with their maximum likelihood estimates and maximum product
of spacing estimates while Table 4 the distributions and their corresponding measures of comparison.
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Table 1. Malaysian rainfall data

1.134 1.196 1.181 1.178 1.048 1.077 0.835 1.163 0.880
1.056 1.164 0.914 1.141 1.068 1.007 1.027 1.298 0.842
0.991 0.955 0.703 0.953 1.018 1.003 1.106 1.110 1.249
1.092 1.187 1.047 0.989 0.955 1.234 0.937 0.933

Table 2. Descriptive statistics of Malaysian rainfall data

Variables Description

Sample size 35

Maximum value, Minimum value 1.298, 0.703

Mode 1.05, 1.15

Kurtosis, Skewness -0.0760, -0.3504

Mean, Median, Variance 1.0477, 1.048, 0.0172

Table 3. Models parameter estimates

MLEs MPSs

Distribution α β γ θ α β γ θ
GomR 0.0719 8.5914 1.0561 —- 0.0949 7.4284 1.0303 —-
GWR 40.8144 1.9501 —- —- 28.6915 1.8642 —- —-
EWR 0.4924 1.5769 1.0194 3.1147 0.2412 1.2453 1.4860 2.6946

TIITLGIR 7.8861 0.0418 79.3689 —- 6.1335 0.0623 50.5646 —-
KEIR 4.4906 79.3503 18.9096 0.0613 12.5434 50.5068 0.9696 0.3852

NBMOR 494.5516 1.3154 0.2903 —- 1.2558 8.8050 0.5167 —-
EW 1.4725 0.9432 7.6228 —- 1.3744 0.9367 7.1843 —-

6.2 Nigerian rainfall data

These consists of 115 years average annual rainfall in Nigeria from 1901-2015. Below is the
descriptive statistics of the data Table 7 gives each distribution with their maximum likelihood
estimates and maximum product of spacing estimates while Table 8 the distributions and their
corresponding measures of comparison.

6.3 Argentine rainfall data

These consist of 25 years annual rainfall of Argentina from 1991-2015 . Table below provide the
descriptive statistics of the data Table 3 presents each distribution with their maximum likelihood
estimates and maximum product of spacing estimates while Table 4 the distributions and their
corresponding measures of comparison.
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Table 5. Nigerian rainfall data

1.0158 1.0103 0.9736 0.9584 1.1158 1.0478 0.8551 1.0077 1.1099
0.9432 1.0257 0.8447 0.8696 0.7831 0.9807 1.0687 0.9952 1.0350
0.8836 1.0099 1.0079 0.9125 0.9785 1.0838 1.0005 0.9254 1.0801
1.0457 1.0189 1.0391 1.0490 0.9110 1.0050 1.0240 0.9847 0.9921
0.9343 0.9407 1.0718 0.9947 0.9875 0.9195 0.9584 0.8958 0.9354
0.9492 0.9964 0.9839 0.9626 0.9022 1.0125 1.0204 0.9846 1.1070
1.0952 0.8952 1.1184 0.9070 1.0138 1.0551 0.9284 1.0697 1.1027
0.9794 0.9674 1.0042 0.9595 1.0343 1.0256 0.9325 0.9087 0.8770
0.8120 0.9448 0.9642 0.9146 0.8699 1.0143 0.9688 1.0006 0.9157
0.8568 0.7301 0.8905 0.8858 0.8840 0.828 0.9479 0.9160 0.8901
0.9751 0.9086 0.9576 0.9765 0.9542 1.0192 0.9967 0.9622 1.0135
0.9371 0.8835 0.9046 1.0267 0.9644 0.8712 0.9599 1.0104 1.0931
0.9428 0.9497 0.8024 1.0183 0.7660 0.9070 0.8039

Table 6. Descriptive statistics of Nigerian rainfall data

Variables Description

Sample size 115

Maximum value, Minimum value 1.1184 , 0.7302

Mode 1.025

Kurtosis, Skewness 0.1403, -0.3703

Mean, Median, Variance 0.9640, 0.9674, 0.0061

From Tables 4 and 8, except for NBMOR and GWR in MPS, GomR had the lowest information
criteria and highest log-likelihood than the distributions compared with. These implies that although
GWR, EWR, TIITGIR, KEIR, NBMOR, EW are good distributionss for the Malaysian and
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Table 9. Argentine rainfall data

6.163 6.775 5.685 5.607 4.687 5.871 6.149 5.809
5.936 6.673 6.675 7.040 5.500 5.375 5.277 5.508
5.447 4.944 4.972 5.155 5.178 5.794 5.427 6.523
5.988

Table 10. Descriptive statistics of Argentine rainfall data

Variables Description

Sample size 25

Maximum value, Minimum value 7.04, 4.687

Mode 5.75

Kurtosis, Skewness -0.65405, 0.3784

Mean, Median, Variance 5.7663, 5.685, 0.3844

Nigerian rainfall data, the GomR distribution provides a better fit considering MLE while GomR
only provides a better fit than EWR, TIITLGIR, KEIR and EW distributions when MPSE was
considered. However, Table 12 showed otherwise where GomR distribution was the worst in fitting
Argentine rainfall data while NBMOR and GWR distributions could not fit the data at all.

7 Simulation Study

In this subsection, Monte Carlo approach to simulation study was adopted. The important objective
of simulations is determine the most efficient between MLE and MPS methods for the GomR
distribution parameters. Using different parameters values and sample sizes (30 − 1000), the
estimation methods were compared based on bias and root mean square error (RMSE) of the
estimates.

Bias =
1

1000

1000∑
i=1

(θ̂i − θi) (7.1)
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RMSE =

√√√√ 1

1000

1000∑
i=1

(θ̂i − θi)2 (7.2)

Steps adopted are as follows:

1. Set the sample size and the vector of parameter values θ = (α, β, γ)

2. Generate sample of size n from GomR distribution

3. Using the values obtained above, obtain α̂, β̂ and γ̂ using MLE and MPSE.

4. In 1000 times, repeat steps (2) and (3).

5. Using θ and θ̂, compute Bias and RMSE.
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The results showed that both estimation methods were consistent as the sample size increases from
30 to 1000 since the RMSE decreases and the means converges in probability to the actual values
of the parameters. This consistency of MPSE justify the work of [13]. However, for all sample
sizes and different actual values of parameters α and γ the MLE proved to be better estimators
than MPSE because of their lower RMSEs but for parameter β at sample size from 100− 1000, the
MPSE was better.

8 Conclusions

This study does not introduce a new distribution, rather an innovation by deriving additional
statistical properties of GomR distribution by [8] and estimate the parameters using another method
other MLE from the earlier study. The applications were further demonstrated using data sets
from another area to ascertained its flexibility over sub models and related distributions. Upon
application to rainfall dataset from Nigeria and Malaysia, considering goodness-of-tests statistics,
the proposed distribution provides better fit compared to some related distributions although it
was the worst in fitting the rainfall data from Argentina. The parameters were estimated using
another frequentist method, MPSE. Albeit application to two data sets portray the advantage of
MLE over MPSE considering AIC and BIC, simulation study showed that the parameter estimates
via both methods were consistent since as the sample size increases, the means converges to the
actual values. However those from MLE are more efficient than those from MPSE for majority of
the parameters.
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