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Abstract 

 
Aims: This study aims to develop robust estimation techniques for the scale parameter of the Rayleigh 

distribution under Type-I hybrid censoring, addressing a gap in the existing reliability and survival literature. 

Study Design: A simulation-based study was conducted to compare the performance of maximum likelihood 

estimators (MLEs) and Bayesian estimators for the scale parameter. 

Methodology: We derived likelihood functions and estimators for both MLE and Bayesian approaches. A 

comprehensive Monte Carlo simulation study was employed to evaluate the performance of these estimators, 

focusing on root mean squared errors (RMSEs) under various conditions. 

Results: The results indicated that RMSEs decreased with increasing sample sizes and higher censoring 

parameters. Bayesian estimators consistently outperformed MLEs, particularly with well-chosen priors, 

demonstrating lower RMSEs across all scenarios. 
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Conclusion: The findings highlight the robustness and superiority of Bayesian methods in accurately 

estimating parameters under Type-I hybrid censoring, providing valuable insights for enhancing reliability 

and maintenance strategies in engineering systems. Future research may extend these methodologies to other 

distributions and real-world applications. 

 

 

Keywords: Hybrid censoring; maximum likelihood estimator; conjugate prior; scale-invariant loss; general 

entropy loss function; bayes estimator. 

 

1 Introduction 
 

The Rayleigh distribution is a widely used model in reliability engineering and survival analysis, particularly for 

modeling the lifetimes of mechanical systems and electronic components. Its simplicity and relevance in practical 

applications make it a subject of significant interest. Bhattacharya and Tyagi (1990) used the Rayleigh distribution 

for modeling the survival time distribution for cancer patients in some specific clinical studies. Keeping in mind 

the concept of reliability for electrovaccuum devices, Polovko (1968) discussed the importance of this distribution. 

They consider the following distribution function of 𝑋  which follows Rayleigh distribution. The cumulative 

distribution function of X is  

 

𝐹(𝑥, 𝜆) = 1 − 𝑒−
𝑥2

𝜆  𝑥 > 0, 𝜆 > 0                                                                     (1) 

 

and its probability distribution 

 

𝑓(𝑥, 𝜆) =
2𝑥

𝜆
𝑒−

𝑥2

𝜆  𝑥 > 0, 𝜆 > 0                                             (2) 

 

where 𝜆 is a scale parameter. 

 

Several authors have made unique contributions to Rayleigh model. Mostert et al. (1998, 1999) applied a Bayesian 

approach to this model for analyzing survival data. Kwon et al. (2014) derived an approximate maximum 

likelihood estimator (MLE) for the parameter of the Rayleigh distribution using a Type I hybrid censored sample. 

Jeon and Kang (2021) discussed inference methods based on unified hybrid censored data from the Rayleigh 

distribution. 

 

Censoring is ubiquitous in real life and presents challenges for statistical estimation. It can occur in various forms, 

and recognizing these different types is crucial for effectively analyzing data. The most common types of 

censoring are right censoring, left censoring, and interval censoring. Right censoring occurs when the study ends 

before the event of interest (e.g., failure) happens for some subjects. The exact event time is unknown, but it is 

known to exceed a certain time. Left censoring occurs when the event of interest happens before the study begins. 

The exact event time is unknown, but it is known to be less than a certain time. Interval censoring occurs when 

the event of interest happens within a certain time interval. The exact event time is unknown, but it is known to 

fall between two observed times. 

 

In addition to these basic forms of censoring, there are more specific schemes such as Type-I and Type-II 

censoring. Type-I censoring refers to time-based censoring where the study ends at a pre-specified time, regardless 

of how many events have occurred. Type-II censoring refers to failure-based censoring where the study ends after 

a pre-specified number of events have occurred. However, the Type-I censoring scheme has the advantage that 

the termination time of the experiment is insured, but the number of individuals to be observed is uncertain. On 

the other hand, in Type-II censoring the targeted individual is specified in advance, but the waiting time to 

terminate the experiment is a realized random variable. Indeed, none of these censoring schemes can control the 

total number of individuals to be observed and the termination time to complete the experiment simultaneously. 

 

Hybrid censoring combines features of both Type-I and Type-II censoring. Type-I hybrid censoring, in particular, 

is a scheme where the study ends at a pre-specified time or after a pre-specified number of events, whichever 

comes first. This approach provides a flexible and realistic framework for analyzing life data and is especially 

useful in reliability testing and quality control. 
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Despite its practical relevance, the estimation of the scale parameter of the Rayleigh distribution under Type-I 

hybrid censoring has not been extensively studied, leaving a gap in the reliability and survival literature. Existing 

studies have explored parameter estimation for the Rayleigh distribution under complete and conventional 

censoring schemes. Methods such as maximum likelihood estimation (MLE) and Bayesian approaches have been 

developed, but their performance under Type-I hybrid censoring remains underexplored. 

 

This study aims to address this gap by developing robust estimation techniques for the scale parameter of the 

Rayleigh distribution in the context of Type-I hybrid censoring. The primary objective is to develop and evaluate 

new estimation methods, utilizing comprehensive simulations and analyzing real-world data to validate these 

methods. Understanding and accurately estimating the parameters of the Rayleigh distribution under hybrid 

censoring conditions is crucial for enhancing the reliability and maintenance strategies of engineering systems. 

This research will contribute to the field by offering new insights and methodologies, ultimately supporting better 

decision-making in reliability engineering and related disciplines. 

 

Suppose the ordered lifetimes are denoted by 𝑋1:𝑛 , 𝑋2:𝑛, … , 𝑋𝑛:𝑛. Type-I hybrid censoring scheme is described as 

follows. If 𝑛  identical items are placed on test, and the experiment is terminated at the random time 𝑇∗ =
𝑚𝑖𝑛{ 𝑋𝑅:𝑛 , 𝑇)  where 𝑅 and 𝑇  are fixed in advance, 0 ≤ 𝑅 ≤ 𝑛  and 𝑇 ∈ (0, ∝) . In this research, the scale 

parameter 𝜆 will be estimated under the following sampling plans and we will get one of the following sampling 

plans:   

 

Case 1: {𝑥1:𝑛 < 𝑥2:𝑛 < ⋯ < 𝑥𝑅:𝑛} if 𝑥𝑅:𝑛 < 𝑇 but 𝑥𝑅:𝑛 > 0                           

 

Case 2: {𝑥1:𝑛 < 𝑥2:𝑛 < ⋯ < 𝑥𝑑:𝑛} if 𝑑 < 𝑅 ≤ 𝑛 and 𝑥𝑑:𝑛 < 𝑇 < 𝑥(𝑑+1):𝑛; 𝑑 > 0           

 

Both cases are presented in Fig. 1.                                    

 

 
 

Fig. 1. Type-I hybrid censoring scheme 

 

The organization of this article is as follows. The likelihood functions for both cases and parameter estimations 

via maximum likelihood estimation are discussed in Section 2. The Bayes estimator for the scale parameter under 

different loss functions is derived in Section 3. The simulation study is presented in Section 4. The concluding 

remarks are presented in Section 5, followed by all proofs of the theorems in the Appendix and the Reference 

section. 

 

2 Parameter Estimation  
 

In this section, we present the estimation of the scale parameter using the maximum likelihood estimation (MLE) 

method. MLE is a widely used technique due to its desirable properties, such as consistency and efficiency. We 

derive the likelihood functions for both cases of Type-I hybrid censored data and obtain the MLEs for the scale 

parameter. The detailed steps and mathematical formulations are provided to ensure a thorough understanding of 

the estimation process. 
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2.1 Maximum likelihood estimation 
 

Suppose 𝑋1:𝑛, 𝑋2:𝑛 , … , 𝑋𝑛:𝑛 are ordered of a random sample draw of the density given Equation (1). Based on 

hybrid censored data, the likelihood function is 

 

( ) ( ) ( ) 
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where  TXT nR ,min :

*
=  and 

*
D which takes either dR  and  denotes the number of observed lifetimes 

before time 
*

T .The maximum likelihood estimator of  satisfies the following equations: 
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We may get the following relations 
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Substituting these results in equation (3) finally we get 

 

0)(
1

*

2

1

**2

:2

*

=








−++− 
−

D

i

ni TDnx
D


              

 

and hence the MLE of  for case 1 
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For case 2 
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3 Bayes Estimation 
 

In this section, we focus on the estimation of the scale parameter using Bayesian methods. Unlike the maximum 

likelihood estimation (MLE) approach discussed in the previous section, Bayesian estimation incorporates prior 

information about the parameter in conjunction with the observed data. We derive the Bayes estimator for the 

scale parameter under various loss functions, providing a comprehensive comparison with the MLE approach. 
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Using different priors as well as loss functions, Bayesian estimation criteria have been taken into account here. 

Let us consider the following quasi prior 
 

𝑔1(𝜆) ∞ 
1

𝜆𝑑  , 𝑑 > 0                                                                                                                                 (6) 

 

To obtain Hartigan’s prior replace 𝑑 = 3 in (6) 
 

3

1 )(
−

g                

 

Based on this prior, the joint density function of  and data is 
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Theorem 3.1. The posterior distribution of   under improper prior )(1 g and the censored sampling as 

specified in section 1 is 
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which is nothing but the pdf of an Inverted Gamma distribution. 
 

3.1 Using symmetric loss   
 

If
̂  be a Bayes estimator of  , considering the scale-invariant squared-error loss function (SELF) of the form 
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Then the Bayes estimator of  using this loss function is  
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For case 2: 
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Theorem 3.2. The posterior distribution of   for given data is 
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where Ig for Inverted Gamma distribution. 

 

Thus, based on (6) and (8), the Bayes estimator of   for case 1 is 
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Similarly, we can derive estimator for case 2 using equation (9) as follows: 
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3.2 Using asymmetric loss   
 

A widely used asymmetric loss function generalized by Zellner (1986) is linear-exponential (LINEX) loss 

function. However, it does not sound well for scale parameter (see for example Basu and Ebrahimi 1991).  A 

modified linear exponential (MLINEX) loss function may be defined as follows:   
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where 
̂  is the estimator of   and c is the parameters of loss function. 

 

The Bayes estimator under MLINEX (or general entropy loss (GE)) loss function is 
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Hence, Bayes estimator using ( )1g  prior is  

 

( )  c
c

E
1

3
ˆ −−

=  
                   

 

Now, 
 

( )
( ) ( )

( )







d
D

es
E

s

cDD
c




−
++−+

−

+
=

0 *

32

2

**

 

 

c
s

D

cD −

+

++
=

)2(

)2(
*

*

 

 

Therefore, ( ) 
   

ˆ
1

3
c

c
E

−−
=  

                       

 

s
cD

D
c

1

*

*

2

)2(
 









++

+
=                                                                             (13) 



 
 

 

 
Begum and Karim; Asian J. Prob. Stat., vol. 26, no. 11, pp. 51-62, 2024; Article no.AJPAS.125649 

 

 

 
58 

 

Again ][
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Therefore, Bayes estimator using inverted gamma prior for case 1 is 
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Similarly for case 2 the estimator is 
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In the next section, we conduct a simulation study to compare the performance of the maximum likelihood 

estimator and Bayes estimator under different loss functions. 
 

4 Simulation Study 
 

Conducting an analytical comparison of the performance of different methods can be quite challenging. Therefore, 

we have carried out a Monte Carlo simulation study to facilitate this comparison. We employed the method of 

selecting ordered uniform random variates, as proposed by Balakrishnan and Aggarwala (2000). With some 

modifications to their approach, we followed these steps to generate hybrid censored samples: 
 

i. Generating 𝑛 independent 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) random variates 𝑊1, 𝑊2, … , 𝑊𝑛 . 

ii. Setting 𝑉𝑖 = 𝑊
𝑖

1

𝑖  for 𝑖 = 1,2, … , 𝑛. 

iii. Setting 𝑈𝑖 = 1 − (𝑉𝑛𝑉n-1 … 𝑉n-i+1) for 𝑖 = 1,2, … , 𝑛  so that 𝑈1 < 𝑈2 < ⋯ < 𝑈𝑛  is a set of ordered 

sample of size 𝑛from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution. 

iv. Using inverse transformation method let 𝑋𝑖 = √−𝜆 𝑙𝑛( 1 − 𝑈𝑖). Then 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛 are observation 

obtained from Rayleigh distribution. 

v. Selecting Type I hybrid censoring sample for 𝑇 and 𝑅.  
 

Considering data as derived by using the above six steps, we have computed the values of MLEs 𝜆̂1and 𝜆̂2 

specified in equation (4) and (5). We have also computed the values of Bayes estimators 𝛿̂𝑖
𝜋;  𝑖 = 1,2,3,4 using 

(7), (10), (11), (13), (14) and (15). This process will be repeated for 𝑀 =10000 times and finally the summarized 

results are presented in the following tables.  

 

Table 1. For particular value of 𝝀 = 𝟐, the root mean squared errors of 𝝀 considering 𝒈𝟏(𝝀)as a prior 
 

𝑻 𝒏 𝑹  𝝀̂ 𝜹̂𝟏
𝝅 𝜹̂𝟑

𝝅(𝒄 = 𝟐) 𝜹̂𝟑
𝝅(𝒄 = −𝟐) 

2.0 10 8 0.650250 0.588981 0.525250 0.491019 

5 0.673721 0.657137 0.600728  0.572910 

20 15 0.606781 0.526661 0.485212 0.457626 

10 0.621620  0.568486 0.503121 0.474548 

30 25 0.560429 0.445666 0.434098 0.404926 
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𝑻 𝒏 𝑹  𝝀̂ 𝜹̂𝟏
𝝅 𝜹̂𝟑

𝝅(𝒄 = 𝟐) 𝜹̂𝟑
𝝅(𝒄 = −𝟐) 

15 0.583516 0.496122 0.454696 0.428335 

2.5 10 8 0.650445 0.588821 0.525250 0.491000 

5 0.673822 0.657076 0.600728  0.572711 

20 15 0.606898 0.526567 0.485212 0.457552 

10 0.621743  0.568362 0.503121 0.474414 

30 25 0.560467 0.445550 0.434098 0.404732 

15 0.583592 0.496082 0.454696 0.428213 

3.0 10 8 0.650487 0.588622 0.525122 0.489801 

5 0.673865 0.657000 0.600523  0.572645 

20 15 0.606911 0.526454 0.485110 0.457478 

10 0.621786 0.568126 0.503082 0.474311 

30 25 0.560479 0.445445 0.433970 0.404633 

15 0.583601 0.496024 0.454519 0.428121 

  

Based on Table-1, several observations can be made regarding the root mean squared errors (RMSEs) of the 

parameter estimates under different scenarios for maximum likelihood estimator 𝜆̂ and Bayesian estimators 𝛿̂1
𝜋, 

𝛿̂3
𝜋(𝑐 = 2), 𝛿̂3

𝜋(𝑐 = −2).  

 

In Bayesian estimation, as 𝑇 increases from 2.0 to 3.0, a general trend of decreasing RMSEs is observed across 

all estimators. This suggests that higher values of 𝑇  tend to produce more accurate parameter estimates. In 

contrast, the trend is reversed for the classical estimator (MLE). For instance, when 𝑇 increases from 2.0 to 3.0, 

RMSEs increase from 0.650250 to 0.650487, with other factors (𝑛, 𝑅) held constant 

 

With 𝑇 and 𝑅 unchanged, increasing sample size (𝑛) considerably (10 to 30) results in decreases RMSEs across 

all methods. For example, RMSE of 𝜆̂ decreases from 0.673721 to 0.583516, resulting a value of 0.066734 when 

𝑇 = 2 and 𝑅 (50 % sample) are held constant. Also, the Bayes estimators, 𝛿̂1
𝜋, 𝛿̂3

𝜋(𝑐 = 2), 𝛿̂3
𝜋(𝑐 = −2, show a 

reduction in RMSEs, with values of 0.092859, 0.070554, and 0.062684, respectively. This trend suggests that 

increasing the sample size enhances the accuracy of parameter estimates. 

 

When the number of censored observations (𝑅) rises (50% to 80% of the sample), it results in a decrease in RMSEs 

for both traditional and Bayesian approaches, with 𝑇 and 𝑛 remain the same. For 𝑇 = 2.0 and 𝑛 = 10, the RMSEs 

decrease to 0.068156, 0.075478, and 0.081891 with the Bayesian approach, compared to 0.023471 when the 

classical method is used. 

 

Bayes estimators, 𝛿̂1
𝜋, 𝛿̂3

𝜋(𝑐 = 2), 𝛿̂3
𝜋(𝑐 = −2), consistently show lower RMSEs compared to MLE. For instance, 

for T=2.0, n=10, and R=8, the RMSEs for 𝛿̂1
𝜋, 𝛿̂3

𝜋(𝑐 = 2) and 𝛿̂3
𝜋(𝑐 = −2) are 0.588981, 0.52525, and 0.491019, 

respectively, all of which are lower than the RMSE for MLE (0.65025). However, among the Bayesian estimators, 

𝛿̂3
𝜋(𝑐 = −2) generally shows the lowest RMSEs, indicating that it may be the most effective in minimizing 

estimation errors. 

 

The trends of decreasing RMSEs of Bayes estimators are consistent across all combinations of  𝑇, 𝑛, and 𝑅. This 

consistency indicates robust performance improvements using Bayesian methods over MLE. 

 

Table 2. For particular value of 𝝀 = 𝟐, the root mean squared errors of 𝝀 considering inverted gamma 

prior assuming 𝜶 = 𝟐, 𝜷 = 𝟏 

 

𝑻 𝒏 𝑹  𝝀̂ 𝜹̂𝟐
𝝅 𝜹̂𝟒

𝝅(𝒄 = 𝟐) 𝜹̂𝟒
𝝅(𝒄 = −𝟐) 

2.0 10 8 0.650250 0.502302 0.491491 0.464686 

5 0.673721 0.580486 0.553286 0.517214 

20 15 0.606781 0.488592 0.479760 0.448673 

10 0.621620  0.537854 0.483452 0.465459 

30 25 0.560429 0.430220 0.403633 0.385526 

15 0.583516 0.472132 0.449651 0.416259 

2.5 10 8 0.650445 0.502211 0.491233 0.464418 

5 0.673822 0.580324 0.553161 0.517141 
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𝑻 𝒏 𝑹  𝝀̂ 𝜹̂𝟐
𝝅 𝜹̂𝟒

𝝅(𝒄 = 𝟐) 𝜹̂𝟒
𝝅(𝒄 = −𝟐) 

20 15 0.606898 0.488456 0.479564 0.448417 

10 0.621743  0.537655 0.483327 0.465291 

30 25 0.560467 0.430137 0.403473 0.385322 

15 0.583592 0.472085 0.449566 0.416155 

3.0 10 8 0.650487 0.502054 0.491130 0.464211 

5 0.673865 0.580132 0.553062 0.517044 

20 15 0.606911 0.488287 0.479422 0.448171 

10 0.621786 0.537432 0.483175 0.465015 

30 25 0.560479 0.430011 0.403230 0.385156 

15 0.583601 0.471702 0.449561 0.416023 

 

From Table 2, we observed that to estimate parameter using Bayes approach with conjugacy, as T increases from 

2.0 to 3.0, a general trend of decreasing RMSEs is observed across all estimators (𝛿̂2
𝜋, 𝛿̂4

𝜋(𝑐 = 2), 𝛿̂4
𝜋(𝑐 = −2)), 

suggesting higher values of 𝑇 lead to more accurate parameter estimates; but the trend reverses for the classical 

estimator (MLE) 

 

When 𝑇 and 𝑅 are kept constant, an increase in sample size (10 to 30) results in a decrease in RMSEs for all 

approaches. For example, the RMSE of reduces to 0.090205 when 𝑇(=  2) and 𝑅(= 50% sample) are held 

constant. Moreover, the Bayes estimators, (𝛿̂2
𝜋 , 𝛿̂4

𝜋(𝑐 = 2), 𝛿̂4
𝜋(𝑐 = −2), exhibit a decrease in RMSEs, with 

values of 0.108354, 0.103635, and 0.100955, respectively. This tendency indicates that a larger sample size 

improves the accuracy of parameter estimates. 

 

As the proportion of censored observations (𝑅) increases from 50% to 80% of the sample, RMSEs decrease for 

both frequentist and Bayesian approaches, while 𝑇 and 𝑛 remain constant. 

 

Bayes estimators (𝛿̂2
𝜋, 𝛿̂4

𝜋(𝑐 = 2), 𝛿̂4
𝜋(𝑐 = −2)) consistently show lower RMSEs compared to MLE. For instance, 

for T=2, n=10, and R=8, the RMSEs for 𝛿̂2
𝜋, 𝛿̂4

𝜋(𝑐 = 2), and 𝛿̂4
𝜋(𝑐 = −2)are 0.502302, 0.491491, and 0.464686 

respectively, all of which are lower than the RMSE for MLE (0.65025). Among the Bayes estimators, 𝛿̂4
𝜋(𝑐 =

−2) generally has the lowest RMSEs, suggesting it provides the most accurate parameter estimates.  
 

All combinations of 𝑇, 𝑛, and 𝑅 exhibit the same patterns of declining RMSEs of Bayes estimators, demonstrating 

consistent gains in performance over ML estimation 
  

5 Concluding Remarks 
 

In this study, we have addressed the estimation of the scale parameter of the Rayleigh distribution under Type-I 

hybrid censoring, a topic that has not been extensively explored in existing reliability and survival literature. 

Through the development and evaluation of robust estimation techniques, our research has aimed to fill this gap 

by leveraging both maximum likelihood estimation (MLE) and Bayesian approaches. We compared the 

performance of MLE and Bayesian estimators for the scale parameter through a simulation study. 
 

Using simulated data, the results from Tables 1 and 2 reveal several key insights into the performance of different 

estimation methods under various conditions. Bayes estimators perform better than the ML estimator in every 

aspect of hybrid censoring; in general, 𝛿̂4
𝜋(𝑐 = −2) has the lowest RMSEs, indicating improved accuracy. These 

findings highlight the robustness of Bayesian methods, particularly with well-chosen priors, in enhancing the 

accuracy of parameter estimation. Thus, employing Bayesian approaches, especially 𝛿̂4
𝜋(𝑐 = −2) , is 

recommended for more precise parameter estimation. 
 

The flexibility and practical relevance of Type-I hybrid censoring make it an effective framework for analyzing 

life data, and our methodologies offer valuable insights and tools for enhancing reliability and maintenance 

strategies in engineering systems. This study not only contributes to the theoretical understanding of parameter 

estimation under hybrid censoring but also supports improved decision-making in reliability engineering and 

related disciplines. 
 

Future research could explore extensions to different distributions or incorporate real-world datasets to validate 

these findings further. 
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Appendix 
 

Proof of Theorem 2.2.1 

 

The posterior density function of 𝝀 given data is 

 

𝝅(𝝀|𝒅𝒂𝒕𝒂) =
𝒍(𝒅𝒂𝒕𝒂, 𝝀)

∫ 𝒍(𝒅𝒂𝒕𝒂, 𝝀)𝒅𝝀
∞

𝟎

 

=
𝝀−(𝑫∗+𝟑) ∏ 𝒙𝒊:𝒏

𝑫∗

𝒊=𝟏 𝒆−
𝒔
𝝀

∫ 𝝀−(𝑫∗+𝟑) ∏ 𝒙𝒊:𝒏
𝑫∗

𝒊=𝟏 𝒆−
𝒔
𝝀𝒅𝝀

∞

𝟎

 

=
𝒔(𝑫∗+𝟐)𝝀−(𝑫∗+𝟑)𝒆−

𝒔
𝝀

𝜞(𝑫∗ ⥂ +𝟐)
 

 

Proof of Theorem 2.2.2 Considering case 1, the posterior density function of 𝝀, for given data is 

 

𝝅𝟏(𝝀|𝒅𝒂𝒕𝒂) =
𝒍𝟏(𝒅𝒂𝒕𝒂, 𝝀)

∫ 𝒍𝟏(𝒅𝒂𝒕𝒂, 𝝀)𝒅𝝀
∞

𝟎

 

 

=
𝝀−(𝑹+𝜶+𝟏) ∏ 𝒙𝒊:𝒏

𝑹
𝒊=𝟏 𝒆

−
𝟏
𝝀

(𝒔𝟏+
𝟏
𝜷

)
 

∫ 𝝀−(𝑹+𝜶+𝟏) ∏ 𝒙𝒊:𝒏
𝑹
𝒊=𝟏 𝒆

−
𝟏
𝝀

(𝒔𝟏+
𝟏
𝜷

)
𝒅𝝀

∞

𝟎

 

 

=
(𝒔𝟏 +

𝟏
𝜷

)𝑹+𝜶

𝜞(𝑹 + 𝜶)
𝝀−(𝑹+𝜶+𝟏)𝒆

−
𝟏
𝝀

(𝒔𝟏+
𝟏
𝜷

)
 

 

which is the density function of Inverted Gamma with parameters specified in equation (20). 

 

This completes the proof for case 1. Likewise, case 2 can be proved. 
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