
 

________________________________________ 
 
*Corresponding author: Email: maryngendogithinji@gmail.com; 

 
Cite as: Githinji, M. N., & Chepkwony, I. (2024). Investigating the Impact of TB or COVID-19 Infections on a Population Suffering from 

TB/COVID-19 Coinfection. Asian Journal of Probability and Statistics, 26(6), 49–62. https://doi.org/10.9734/ajpas/2024/v26i6624 

 

 
 

 

Asian Journal of Probability and Statistics 

 
Volume 26, Issue 6, Page 49-62, 2024; Article no.AJPAS.118170 
ISSN: 2582-0230 
 

 
_______________________________________________________________________________________________________________________________________ 

 

Investigating the Impact of TB or  

COVID-19 Infections on a Population 

Suffering from TB/COVID-19 Coinfection 
 

Mary Ng’endo Githinji a* and Isaac Chepkwony a 
 

a Department of Mathematical Sciences, Kenyatta University, Kenya. 

 

Authors’ contributions 

 

This work was carried out in collaboration between both authors. Both authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/ajpas/2024/v26i6624 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/118170 

 

 

Received: 29/03/2024 

Accepted: 03/06/2024 

Published: 04/06/2024 

__________________________________________________________________________________ 
 

Abstract 

 
The discovery that the spread of tuberculosis reduced significantly in the last two years has been associated 

with the preventive measures placed to combat the spread of COVID-19. This shows a string correlation 

between the spread of COVID-19 and tuberculosis in any population. It is worth noting that tuberculosis and 

COVID-19 are among the leading most deadly diseases in the world today. The correlation in their spread 

also leaves us to believe that the spread of one can enhance the spread of the other. Hence, we propose the 

situation where a population is co-infected with the two diseases. The mathematical model is formulated 

using conservative laws and the resulting model analysed. The stability of the co-infection is analysed and the 

non-negativity conditions for the solution is established. It is found that tuberculosis sub-population reaches 

the highest capacity when the recruitment into the COVID-19 subpopulation is the lowest while the COVID-

19 sub-population is attained when the rate of recruitment into the COVID-19 subpopulation is the highest. 
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Nomenclatures 
 

Symbol  Meaning Symbol  Meaning 

𝑆  Susceptible compartment  𝑇  Tuberculosis infected compartment 

𝐶  COVID-19 infected compartment  𝐼  co-infected compartment 

𝛬 
 influx rate into the susceptible 

population  
𝑅 

 recovered compartment 

𝛼1  recruitment rate into 𝐶  𝑝1  proportion of 𝐸 migrating into 𝐶 

𝛼2  recruitment rate into 𝑇  𝑝2  proportion of 𝐸 migrating into 𝑇 

𝑟1 
 recovery rate of 𝐶  

𝛽1 
 rate at which members of 𝐶  get co-infected with 

tuberculosis 

𝑟2 
 recovery rate of 𝑇  

𝛽2 
 rate at which members of 𝑇  get co-infected with 

COVID-19 

𝑟3  recovery rate of 𝐼  𝜖  rate at which 𝑅 losses its immunity 

𝑑1  COVID-19-induced death rate  𝜇  natural death rate 

𝑑2  tuberculosis-induced death rate   

 

1 Background Information 
 

COVID-19, a short form of coronavirus disease that spiked into a pandemic in 2019, is a disease caused by 

SARS-CoV-2. It originated from Wuhan, China. The coronavirus is a virus family that originated in animals but 

has now been discovered to infect humans with respiratory diseases. They were not considered fatal until 

COVID-19 evolved, which has claimed the lives of over 6 million people globally. Although the first instance 

was reported in Wuhan, China, it is still unknown how the sickness was transmitted to humans. However, it is 

thought that the disease originated in bats, wolf pulps, or Toit, [1].  Ever since the virus into one human from an 

unknown origin, it has since spread from human to human. The spread happens by contaminated droplets when 

infected people sneeze, or cough [2,3]. Symptoms of infection include high fever, breath shortness, cough, and 

running nose. Symptoms begin to appear within the fourteen days from the day of infection [4,5]. Emergence of 

COVID-19 in 2019 has brought about a paradigm shift in many facets of human endeavours. The mortality rate 

was very high and it became the most deadly disease in 2020. It is also important to note that in spite of the 

enormous resources directed into research on COVID-19, little progress has been made to unravel the mysteries 

surrounding the disease. The rapid evolution and mutation of COVID-19 makes it difficult for scientists to come 

up with a cure. In the least, vaccines have been developed to prevent infection with COVID-19 [6]. Tuberculosis 

on the other hand has been around for decades but it has not been considered as a global pandemic despite 

claiming more lives that 90% of other infectious diseases. Tuberculosis has been given less attention than it 

deserves in this past decade and Bates and Stead [7] had advocated that tuberculosis should be named a global 

epidemic. Bates and Stead [7] pointed out that the duration of tuberculosis in a population is an important factor 

in properly understanding the trend in the population. 

 

Tuberculosis is bacterial infection caused by the mycobacterium tuberculosis. It is an infection of the lungs, 

kidney and the spine that is transmitted via droplets from infected individuals. The infection is in two phases; 

the latent phase and the active phase [8]. The latent phase of the tuberculosis infection is not harmful to the body 

and produces no symptom but the active phase becomes a major sickness after months or years of infection     

[9,10]. 

 

COVID-19 disease presence in an individual makes the individual vulnerable to tuberculosis while the presence 

of tuberculosis makes the individual vulnerable to COVID-19. Hence, one of the diseases can come as 

secondary infection when an individual is infected with the other. COVID-19 has claimed the lives of around 

6.32 million human beings globally since 2019 and it is classified as the most deadly infectious disease globally. 

Tuberculosis is the next in line, killing over 1.5 million individuals in 2020. This shows the threat posed on an 

individual if they are co-infected with both COVID-19 and tuberculosis [11]. Equipped with these pieces of 

information, it becomes very pertinent to examine the flow of COVID-19/tuberculosis co-infection in a 

population. A mathematical model to examine the dynamics of COVID-19/tuberculosis co-infection in a 

population is investigated in this study. The qualitative analysis of the model shall be carried out to establish the 
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conditions for the existence and uniqueness of solution. By simulating the model for various parameter values, 

the variation of COVID-19/tuberculosis co-infection in a given population is investigated. 

 

Mathematical modelling provides scientists with a very economical approach to study the trend of an epidemic. 

The disease and its trend can be studied before it hits the population and vital recommendations can be made 

even before the disease hits the population [12,3,13,14,15,16,17]. In the case of COVID-19, scientists were 

quick to formulate mathematical models for the transmission of the disease [18,19,20,21,22,23]. Proposed a 

mathematical model for investigating effects of social distancing as a measure for controlling the COVID-19 

spread, with emphasis on prompt testing. Annas et al. [24] adopted mathematical model for studying the spread 

of COVID-19 in Indonesia. Oke et al. [25] studied the possibility of re-infection, relapse or recurrence of 

COVID-19 in recovered individuals. Wangari et al. [26] included the hospitalised compartment, contact tracing, 

and testing in large groups on the impact of reinfection of COVID-19 in the mathematical modelling of trend of 

COVID-19 in Kenya. The mathematical model formulated by Ayinla et al. [27] was used to predict tuberculosis 

epidemic and they found that lowering the rate of vaccination gives tuberculosis a higher chance of persisting in 

any population. Recently, Mekonen et al. [28] had considered the possibility of co-infection of tuberculosis and 

COVID-19. The study proposed an 8-compartment mathematical model in which the recovered compartment is 

considered as an absorbing state. This study aims at modifying the work of Mekonen et al. [28] It is interesting 

to observe that some of the 8 compartments proposed by Mekonen et al. [28] can be merged into a single 

compartments. Also, Mekonen et al. [28] had considered the recovered compartment as an absorbent state, 

whereas it has been recorded by Oke et al. [25] that relapse and reinfection are possible. Hence, this study 

proposes a 5-compartment mathematical model to investigate the co-infection of COVID-19 and tuberculosis 

dynamics. 

 

The social nature of human beings makes the human population vulnerable to rapid spread of infectious 

diseases. COVID-19 and tuberculosis are the two leading most deadly infectious diseases. It is alarming to 

observe that over 2 million deaths were related to COVID-19 in 2020 and over 1.5 million deaths were related 

to tuberculosis in 2020. This indicates the possible fatality embedded in the existence of the co-infection of both 

diseases in a population. Hence, this research focuses on COVID-19/tuberculosis co-infection dynamics in a 

population. The preventive measures against COVID-19 are also good measures to achieve reduction in the 

transmission of tuberculosis in a population. Meanwhile, if the two diseases should hit a certain population at 

the same time, it appears the population will be badly affected. In lieu of this, this study considers the trend 

when there is COVID-19/tuberculosis co-infection in a population. The simulations from this study shall 

provide a trend to expect in any case the a population is hit by the COVID-19/tuberculosis co-infection. In 

addition, the outcome of this research shall provide a significance for further research. 

 

2 Methodology 
 

An SCTIR mathematical model that considers the dynamics of the individuals who get co-infected with both 

tuberculosis and COVID-19 is formulated in this section. The population is compartmentalised into five groups 

of susceptible group 𝑆, COVID-19 infected group 𝐶, Tuberculosis infected group 𝑇, COVID-19 and tuberculosis 

co-infected group 𝐼, and Recovered group 𝑅. The susceptible group is the part of the population who possess a 

chance of contracting either COVID-19 or tuberculosis. Individuals who have COVID-19 only are classed into 

the COVID-19 infected group, individuals who are infected with tuberculosis only are classed into the 

tuberculosis group and individuals who have both COVID-19 and tuberculosis are classed in the Infected group. 

The recovered class consists of all individuals who have been cured of any of the diseases. The model is 

formulated built on the following assumptions;    

 

(i) Every member of the population gives birth to healthy children (i.e. without tuberculosis or COVID-19). 

(ii) Tuberculosis and COVID-19 are transmitted by interaction with infected individuals. 

(iii) Individuals infected with either tuberculosis or COVID-19 or both either recover or die. 

(iv) Individuals from each compartment can die a natural death.  

 

In subsequent sections, the reproduction numbers for the co-infection are obtained using the next generation 

matrix (NGM) for the mathematical model. The non-negativity conditions are established for the model and the 

stability of the equilibrium points are also obtained. 
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2.1 Modal formulation 
 

In this model, we assume that individuals are born into the population without tuberculosis or COVID-19 and at 

the rate Λ. An individual is considered susceptible if they are not infected with COVID-19 or TB. Susceptible 

individuals get COVID-19 at the rate 𝛼1  when they interact with individuals carrying COVID-19. Also, a 

susceptible individual gets infected with tuberculosis at the rate 𝛼2 when they interact with individuals who are 

already infected with tuberculosis. Individuals infected with COVID-19 or TB remain in thier category unless 

they there is an interaction between the classes. The COVID-19 infected individuals who interacted with 

tuberculosis patients also get tuberculosis at the rate of 𝛽1 while tuberculosis-infected individuals who interacted 

with COVID-19-infected get also get COVID-19 at the rate of 𝛽2. The rates at which individuals infected with 

COVID-19 only, tuberculosis only, and co-infected with both diseases recover from their infections are 𝑟1, 𝑟2, 𝑟3 

respectively. Individuals from the population die natural death at the rate 𝜇, COVID-19 induced deaths occur at 

the rate 𝑑1, tuberculosis-induced deaths occur at the rate 𝑑2. Fig. 1 shows the pictorial representation of the 

model. 

 

 
 

Fig. 1. Spread configuration 

 

The dynamics of co-infection of both COVID-19 and tuberculosis described so far is modelled into the system 

of equations;  

 
𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛼1𝑆𝐶 − 𝛼2𝑆𝑇,                                                                                                              (2.1) 

𝑑𝐶

𝑑𝑡
= 𝛼1𝑆𝐶 − 𝛽1𝐶𝑇 − (𝜇 + 𝑑1)𝐶 − 𝑟1𝐶,                                                                                              (2.2) 

𝑑𝑇

𝑑𝑡
= 𝛼2𝑆𝑇 − 𝛽2𝐶𝑇 − (𝜇 + 𝑑2)𝑇 − 𝑟2𝑇,                                                                                              (2.3) 

𝑑𝐼

𝑑𝑡
= 𝛽1𝐶𝑇 + 𝛽2𝐶𝑇 − (𝜇 + 𝑑1 + 𝑑2)𝐼 − 𝑟3𝐼,                                                                                       (2.4) 

𝑑𝑅

𝑑𝑡
= 𝑟1𝐶 + 𝑟2𝑇 + 𝑟3𝐼 − 𝜇𝑅.                                                                                                                 (2.5) 

 

with the following conditions;  

 

0 ≤ 𝜇, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑑1, 𝑑2, 𝑟1, 𝑟2, 𝑟3, 𝜖 ≤ 1, 
 

and the entire population 𝑁(𝑡) at any time 𝑡 is given by  

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).                                                                                        (2.6) 
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2.2 Nonegativity and boundedness 
 

Summing up equations (3.2.1) - (3.2.5), we have 

 
𝑑

𝑑𝑡
(𝑆 + 𝐶 + 𝑇 + 𝐼 + 𝑅) = Λ − 𝜇(𝑆 + 𝐶 + 𝑇 + 𝐼 + 𝑅) − 𝑑1𝐶 − 𝑑2𝑇 − (𝑑1 + 𝑑2)𝐼.                         (2.7) 

 

 

Using equation (3.2.6), we have 

 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − 𝑑1𝐶 − 𝑑2𝑇 − (𝑑1 + 𝑑2)𝐼 ≤ Λ − 𝜇𝑁.                                                                        (2.8) 

 

Hence, by separating the variables, the equation is solved to get 

 

𝑁 ≤
Λ

𝜇
− (

Λ

𝜇
− 𝑁(0)) exp(−𝜇𝑡),                                                                                                         (2.9) 

 

 

where 𝑁(0) is the initial population. As 𝑡 → ∞, 
 

𝑁 →
Λ

𝜇
.                                                                                                                                                 (2.10) 

 

 

Hence, the problem is epidemiologically feasible and the solution can be sought in the region 

 

ℛ = {(𝑆, 𝐶, 𝑇, 𝐼, 𝑅)  ∶   𝑆 + 𝐶 + 𝑇 + 𝐼 + 𝑅 ≤
Λ

𝜇
}.                                                                               (2.11) 

 

2.3 Qualitative analysis of the model 
 

2.3.1 Equilibrium points 

 

The first step in the qualitative analysis is to obtain the equilibrium points. This is done by setting the right hand 

side of each of the equations (3.2.1) - (3.2.3) to zero as follows;  

 

Λ − 𝜇𝑆 − 𝛼1𝑆𝐶 − 𝛼2𝑆𝑇 = 0,                                                                                                             (2.12) 

𝛼1𝑆𝐶 − 𝛽1𝐶𝑇 − (𝜇 + 𝑑1)𝐶 − 𝑟1𝐶 = 0,                                                                                             (2.13) 

𝛼2𝑆𝑇 − 𝛽2𝐶𝑇 − (𝜇 + 𝑑2)𝑇 − 𝑟2𝑇 = 0,                                                                                             (2.14) 

𝛽1𝐶𝑇 + 𝛽2𝐶𝑇 − (𝜇 + 𝑑1 + 𝑑2)𝐼 − 𝑟3𝐼 = 0,                                                                                      (2.15) 

𝑟1𝐶 + 𝑟2𝑇 + 𝑟3𝐼 − 𝜇𝑅 = 0.                                                                                                                (2.16) 

 

The disease free equilibrium (DFE) is the equilibrium obtained in the absence of diseases in the population, that 

is, 𝐶 = 𝑇 = 𝐼 = 0. Thus, we have the DFE 𝐸0 as 𝐸0 = (𝑆0, 𝐶0, 𝑇0, 𝐼0, 𝑅0) = (
Λ

𝜇
, 0,0,0). 

 

The endemic equilibrium point (EEP) is obtained as (𝑆∗, 𝐶∗, 𝑇∗, 𝐼∗, 𝑅∗), where  

 

𝑆∗ =
Λ

𝜇+𝛼1𝐶
∗+𝛼2𝑇

∗ ,   𝑅
∗ =

𝑟1

𝜇
𝐶∗ +

𝑟2

𝜇
𝑇∗ +

𝑟3

𝜇
𝐼∗,                                                                                  (2.17) 

 

𝐼∗ =
(𝛼1𝐶

∗+𝛼2𝑇
∗)Λ−(𝜇+𝛼1𝐶

∗+𝛼2𝑇
∗)((𝜇+𝑑1+𝑟1)𝐶

∗−(𝜇+𝑑2+𝑟2)𝑇
∗)

(𝜇+𝑑1+𝑑2+𝑟3)(𝜇+𝛼1𝐶
∗+𝛼2𝑇

∗)
.                                                                (2.18) 

 

2.3.2 Reproduction number 

 

The reproduction number, denoted as 𝑅0, tracks the new infections brought about by the introduction of one 

infectious individual into a susceptible population. The next generation matrix is used to find the reproduction 



 
 

 

 
Githinji and Chepkwony; Asian J. Prob. Stat., vol. 26, no. 6, pp. 49-62, 2024; Article no.AJPAS.118170 

 

 

 
54 

 

number by considering the infectious classes (𝐶, 𝑇, 𝐼) and classifying the new infections into ℱ and the negation 

of the outward transmission into 𝒱, thus  

 

 

ℱ = (

𝛼1𝑆𝐶
𝛼2𝑆𝑇
𝛽1𝐶𝑇 + 𝛽2𝐶𝑇

) , 𝒱 = (

𝛽1𝐶𝑇 + (𝜇 + 𝑑1 + 𝑟1)𝐶

𝛽2𝐶𝑇 + (𝜇 + 𝑑2 + 𝑟2)𝑇
(𝜇 + 𝑑1 + 𝑑2 + 𝑟3)𝐼

).   (2.19) 

 

which implies that 

 

(∇𝐹)𝐸0(∇𝒱)𝐸0
−1 =

(

 
 

𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
0 0

0
𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
0

0 0 0)

 
 
.   (2.20) 

 

The eigenvalues of (∇𝐹)𝐸0(∇𝒱)𝐸0
−1 are found from the equation  

 

|

|

𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
− 𝜆 0 0

0
𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
− 𝜆 0

0 0 −𝜆

|

|
= 0 

 

As 

 

 
𝜆1 =

𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
, 𝜆2 =

𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
, 𝜆3 = 0 (2.21) 

 

Finally, the basic reproduction number is  

 

 
𝑅0 = max{𝜆1, 𝜆2, 𝜆3} = max {

𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
,

𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
, 0}.     (2.22) 

 

Theorem 2.1: The DFE is locally asymptotically stable if 𝑅0 < 1.  
 

Proof: The Jacobian matrix for the system (2.1 – 2.5) is 

 

 𝐽 =

(

 
 

−(𝜇 + 𝛼1𝐶 + 𝛼2𝑇) −𝛼1𝐶 −𝛼2𝑆 0 0

𝛼1𝐶 𝛼1𝑆 − 𝛽1𝑇 − (𝜇 + 𝑑1 + 𝑟1) −𝛽1𝐶 0 0

𝛼2𝑇 −𝛽2𝑇 𝛼2𝑆 − 𝛽2𝑇 − (𝜇 + 𝑑2 + 𝑟2) 0 0

0 𝛽1𝑇 + 𝛽2𝑇 𝛽1𝐶 + 𝛽2𝐶 −(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) 0
0 𝑟1 𝑟2 𝑟3 −𝜇)

 
 
. 

 

When we substitute the DFE, we get  

 

𝐽 =

(

 
 
 
 
 
 
−𝜇 0 −𝛼2

Λ

𝜇
0 0

0
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) 0 0 0

0 0
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) 0 0

0 0 0 −(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) 0
0 𝑟1 𝑟2 𝑟3 −𝜇)

 
 
 
 
 
 

. 

 

The characteristic equation therefore gives 
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|

|

|
−𝜇 − 𝜆                 0            −𝛼2

Λ

𝜇
                0       0

      0
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) − 𝜆                 0                 0       0

      0                 0
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) − 𝜆                 0       0

      0                 0                 0 −(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) − 𝜆       0
      0                 𝑟1                 𝑟2                 𝑟3 −𝜇 − 𝜆

|

|

|

= 0. 

 

Taking the determinant along the last row and last column, we have 

 

(−𝜇 − 𝜆)

|

|
−𝜇 − 𝜆                   0             −𝛼2

Λ

𝜇
                  0

      0
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) − 𝜆                   0                   0

      0                   0
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) − 𝜆                   0

      0                   0                  0 −(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) − 𝜆

|

|

= 0. 

 

Again, taking the determinant along the last row and last column, we have 

  

(−𝜇 − 𝜆)(−(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) − 𝜆)

|

|
−𝜇 − 𝜆                      0               −𝛼2

Λ

𝜇

       0
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) − 𝜆                      0

       0                      0
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) − 𝜆

|

|

= 0 

 

Taking the determinant along the last row and last column one more time, we have  

 

(−𝜇 − 𝜆)(−(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) − 𝜆) (
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) − 𝜆) |

−𝜇 − 𝜆                      0

       0
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) − 𝜆

| = 0 

 

and finally  

 

(−𝜇 − 𝜆)(−(𝜇 + 𝑑1 + 𝑑2 + 𝑟3) − 𝜆) (
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) − 𝜆) (

𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) − 𝜆) (−𝜇 − 𝜆) = 0 

 

which means  
 

𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝑑1 + 𝑑2 + 𝑟3), 𝜆3 =
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2), 𝜆4 =

𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1), 𝜆5 = −𝜇. 

  
All eigenvalues are negative only if  
 

for   𝜆3 < 0,   we require 
𝛼2Λ

𝜇
− (𝜇 + 𝑑2 + 𝑟2) < 0  ⇒   

𝛼2Λ

𝜇
< (𝜇 + 𝑑2 + 𝑟2)   ⇒   

𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
< 1, 

for   𝜆4 < 0,   we require  
𝛼1Λ

𝜇
− (𝜇 + 𝑑1 + 𝑟1) < 0,   ⇒   

𝛼1Λ

𝜇
< (𝜇 + 𝑑1 + 𝑟1) ⇒

𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
< 1 ⇒  𝑅0

< 1. 
2.3.3 Model solution 
 

The numerical method adopted in solving the model is the Runge-Kutta method [29]. Given a system of 

differential equations  
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𝑋̇ = 𝐺(𝑡, 𝑋) 
 

for some vector variable 𝑋, the Runge-Kutta scheme of the order 4 is as follows ;  
 

𝐾1 = ℎ𝐺(𝑡, 𝑋𝑛),     𝐾2 = ℎ𝐺 (𝑡 +
ℎ

2
, 𝑋𝑛 +

1

2
𝐾1) , 𝐾3 = ℎ𝐺 (𝑡 +

ℎ

2
, 𝑋𝑛 +

1

2
𝐾2),   𝐾4 = ℎ𝐺(𝑡 + ℎ, 𝑋𝑛 + 𝐾3) 

  
and the updated solution at the next time step 𝑛 + 1 is  
 

𝑋𝑛+1 = 𝑋𝑛 +
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4). 

 

The model (2.1 - 2.5) is autonomous equation since the right hand side of all equations are not explicitly 

dependent on time and the Runge-Kutta scheme becomes  
 

𝐾1 = ℎ𝐺(𝑋𝑛),    𝐾2 = ℎ𝐺 (𝑋𝑛 +
1

2
𝐾1),    𝐾3 = ℎ𝐺 (𝑋𝑛 +

1

2
𝐾2),   𝐾4 = ℎ𝐺(𝑋𝑛 + 𝐾3) 

  
with  
 

𝑋𝑛+1 = 𝑋𝑛 +
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4), 

 

where  
 

𝑿𝑛 =

(

 
 

𝑆𝑛
𝐶𝑛
𝑇𝑛
𝐼𝑛
𝑅𝑛)

 
 
, 𝑮(𝑿𝑛) =

(

 
 

Λ − 𝜇𝑆𝑛 − 𝛼1𝑆𝑛𝐶𝑛 − 𝛼2𝑆𝑛𝑇𝑛
𝛼1𝑆𝑛𝐶𝑛 − 𝛽1𝐶𝑛𝑇𝑛 − (𝜇 + 𝑑1)𝐶𝑛 − 𝑟1𝐶𝑛
𝛼2𝑆𝑛𝑇𝑛 − 𝛽2𝐶𝑛𝑇𝑛 − (𝜇 + 𝑑2)𝑇𝑛 − 𝑟2𝑇𝑛
𝛽1𝐶𝑛𝑇𝑛 + 𝛽2𝐶𝑛𝑇𝑛 − (𝜇 + 𝑑1 + 𝑑2)𝐼𝑛 − 𝑟3𝐼𝑛
𝑟1𝐶𝑛 + 𝑟2𝑇𝑛 + 𝑟3𝐼𝑛 − 𝜇𝑅𝑛 )

 
 

 

 

It is worth noting that there are 11 parameters whose values are obtained from literature or by estimation. The 

parameters pertaining to tuberculosis and its spread can be found in Das et al. [30] and while the parameters 

pertaining to the spread of COVID-19 can be found in Oke et al. [25]. The choices of the parameter values are 

as follows;  
 

Λ = 0.0001; 𝜇 = 0.0012; 𝛼1 = 0.000085044; 𝛼2 = 0.4048; 𝛽1 = 0.01; 𝛽2 = 0.01; 
𝑑1 = 2.51357𝑒 − 6; 𝑑2 = 2.51357𝑒 − 6; 𝑟1 = 0.000334287; 𝑟2 = 0.104; 𝑟3 = 0.01. 

 

By varying the values of the parameters, the model is solved and the outcomes are graphed for visualisation. 

The validation of the the findings from the qualitative analysis are shown in Fig. (2a) and (2b) where the 

behaviours of the different sub-populations are illustrated [31,32]. 
 

2.3.4 Validation of solution 
 

For the sake of validation, the solutions are considered for two cases where 𝑅0 < 1 and 𝑅0 > 1. From Fig. (2a), 

it is clear that the system is stable for 𝑅0 < 1 and Fig. (2b) shows that the system is unstable for 𝑅0 > 1. This 

validates the quantitative analysis and the numerical approach can therefore be used to find the solution as we 

vary the values of the parameters [33]. 
 

3 Results and Discussion  
 

The aim of this study is to investigate the trend of co-infection of COIVD-19 and tuberculosis in a population. 

The pertinent parameters are varied and the impact on the dynamics of both diseases are studied [34]. 
 

The rate at which the susceptible sub-population gets infected with COVID-19 is denoted as 𝛼1 and the rate at 

which susceptible sub-population gets infected with tuberculosis is denoted as 𝛼2. The rates are varied to 

investigate their effects on the five sub-populations and the outcomes are shown in Fig. (4 – 5). As shown in 

Fig. (4), increasing the rate at which individuals get infected with one disease will lead to extinction of the 

susceptible sub-population. The consequence of increasing 𝛼1 and 𝛼2 is a rapid removal from the susceptible 
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class and thus, reduction in the susceptible class is expected. However, comparing Fig. (3a) and (3b) shows that 

the effect of increasing rate of contracting tuberculosis is more significant than the effect of increasing rate of 

contracting COVID-19. Fig. (5) illustrate the dynamics of the COVID-19 sub-population as the rate of 

contracting only COVID-19 and the rate of contracting only tuberculosis are varied. The COVID-19 sub-

population continues to rise as the rate of contracting only COVID-19 increases while the COVID-19 sub-

population reduces as the rate of contracting only tuberculosis increases. By comparing Fig. (4a) and (4b), it can 

be seen that rates of increase in the COVID-19 sub-population as 𝛼1 increases is higher than the rate at which 

COVID-19 sub-population decreases with increasing 𝛼2. Fig. (4) shows that as the rate of single infection 

increases, the tuberculosis sub-population experiences an initial increase before the trend changes downward 

until there are no tuberculosis subpopulation any more. Fig. (4a) depicts the response of the tuberculosis sub-

population to an increase in the rate (𝛼1) of contracting COVID-19 only. The maximum population of the 

tuberculosis sub-population is obtained at the lowest 𝛼1 and the peak of the COVID-19 subpopulation reduces 

with increasing 𝛼1. Meanwhile, Fig. (4b) shows that the response of the tuberculosis sub-population to an 

increase in the rate (𝛼2) of contracting tuberculosis only. The maximum population of the tuberculosis sub-

population is obtained at the highest 𝛼2  and the peak of the tuberculosis sub-population increases with 

increasing 𝛼1. As the rate at which susceptible sub-population get infected with only one disease increases, the 

co-infected sub-population increases. The increase is more pronounced when the rate of infection with 

tuberculosis only increases. Fig. (4a) and  (4b) show that the coinfected population increases with increasing 

rate of recruitment into any diseased subpopulation. The recovered sub-population is shown in Fig. (5a) to 

reduce as the rate of getting COVID-19 only increases and Fig. (4b) shows that the recovered sub-population 

increases when the rate of getting tuberculosis only increases [35]. 

 

   
 

         (a) All sub-populations when R_0<1                           (b) All sub-populations when R0 > 1 

 

Fig. 2. Verifying the stability of the equilibrium points 

 

   
(a) Susceptible class with α1   (b) Susceptible class with α2 

 

Fig. 3. Susceptible class with rates of single infection 
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(a) COVID-19 class with α1   (b) COVID-19 class with α2 

 

Fig. 4. COVID-19 class with rates of single infection 

 

   
(a) Tuberculosis class with α1   (b) Tuberculosis class with α2 

 

Fig. 5. Tuberculosis class with rates of single infection 

 

   
 

(a) Co-infected class with α1   (b) Co-infected class with α2 

 

Fig. 6. Co-infected class with rates of single infection 

 



 
 

 

 
Githinji and Chepkwony; Asian J. Prob. Stat., vol. 26, no. 6, pp. 49-62, 2024; Article no.AJPAS.118170 

 

 

 
59 

 

   
(a)  Recovered class with α1  (b) Recovered class with α2 

 

Fig. 7. Recovered class with rates of single infection 

 

4 Conclusion 
 

This study investigates a popualtion where individuals can be coinfected with COVID-19 and tuberculosis. A 

deterministic mathematical model is formulated to explain the trend in the co-infection of COVID-19 and 

tuberculosis in a population. The equilibria for the governing equations were obtained as  

 

𝐸0 = (
Λ

𝜇
, 0,0,0)  and (𝑆∗, 𝐸∗, 𝐶∗, 𝑇∗, 𝐼∗, 𝑅∗) 

 

Where 

 

𝑆∗ =
Λ

𝜇 + 𝛼1𝐶
∗ + 𝛼2𝑇

∗
,   𝑅∗ =

𝑟1
𝜇
𝐶∗ +

𝑟2
𝜇
𝑇∗ +

𝑟3
𝜇
𝐼∗, 

𝐼∗ =
(𝛼1𝐶

∗ + 𝛼2𝑇
∗)Λ − (𝜇 + 𝛼1𝐶

∗ + 𝛼2𝑇
∗)((𝜇 + 𝑑1 + 𝑟1)𝐶

∗ − (𝜇 + 𝑑2 + 𝑟2)𝑇
∗)

(𝜇 + 𝑑1 + 𝑑2 + 𝑟3)(𝜇 + 𝛼1𝐶
∗ + 𝛼2𝑇

∗)
. 

 

 

The reproduction number is also calculated to track the number of possible new infections and we obtain the 

reporduction number as 

 

𝑅0 = max {
𝛼1Λ

𝜇(𝜇 + 𝑑1 + 𝑟1)
,

𝛼2Λ

𝜇(𝜇 + 𝑑2 + 𝑟2)
, 0}. 

 

The disease-free equilibrium point is found to be locally asymptotically stable if 𝑅0 < 1. The non-negativity 

condition for the model was establised and the Runge-Kutta method of order 4 was used to solve the model. The 

model is simulated for various parameter values and the following outcomes are observed; 

 

(i) Increasing the rate at which individuals get infection with a single disease (either COVID-19 or 

tuberculosis) poses the risk of coinfecting every member of the population. Also, it is found that the rate 

of contracting tuberculosis poses more significant effect on the possibility of coinfection than COVID-19. 

(ii) The maximum tuberculosis sub-population is obtained at the lowest rate of recruitment into the COVID-

19 subpopulation while the maximum COVID-19 sub-population is obtained at the highest rate of 

recruitment into the COVID-19 subpopulation. 

(iii) Migrations from COVID-19 to co-infected sub-population or from tuberculosis to co-infected sub-

population both result in an increase in the co-infected population. The effects of migration from 

tuberculosis sub-population is more significant than migration from COVID-19. 

 

Based on the results obtained from this project, the below are the recommendations made; 
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(i) Since the rate of contracting tuberculosis poses more significant effect on the possibility of coinfection 

than COVID-19, caution has to be placed to ensure that COVID-19 is not allowed to thrive in the 

population where tuberculosis is rampant. 

(ii) Stringent measures (such as the use of nose mask, travel restrictions, handwashing, periodic sanitisers, 

and social distancing) are necessary to prevent the tuberculosis from reaching the maximum. These 

measures are able to reduce recruitment into the COVID-19 subpopulation. 
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