Zuniga, Gerardo Antonio Ovando and Gil, Jose Juan Pena and Rivas, Jesus Morales (2023) Algebraic Approach to the Position-Dependent Mass Quantum Systems. In: Fundamental Research and Application of Physical Science Vol. 3. B P International, pp. 97-119. ISBN 978-81-19217-05-2
Full text not available from this repository.Abstract
The position-dependent mass Schrodinger equation (PDMSE) comes from the O von Roos quantum Hamiltonian which models to position-dependent effective mass quantum systems. The algebraic study of its factorization is compared in this work with the factorization of the traditional constant mass Schrödinger equation so that both equations are related by similarity transformations. The approach allows building solvable cases of the PDMSE for any value of the ambiguity parameters in the general Hamiltonian of O von Roos, so it can be considered as a unified treatment of the PDMSE that contains as particular cases those Hamiltonians of various authors such as BenDaniel-Duke, Gora-Williams, Zhu-Kroemer and Li- Kuhn, among others. We explicitly show the PDMSE solutions coming from the harmonic, Morse and multiparameter exponential-type potentials. The method is general and can be easily extended to other potential models and position dependent mass distributions useful in the mathematical modeling of quantum systems.
Item Type: | Book Section |
---|---|
Subjects: | ScienceOpen Library > Physics and Astronomy |
Depositing User: | Managing Editor |
Date Deposited: | 03 Oct 2023 12:48 |
Last Modified: | 08 Jun 2024 08:40 |
URI: | http://scholar.researcherseuropeans.com/id/eprint/2044 |