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This paper deals with n-players fuzzy cooperative continuous static games (FCCSGs). The cost function coefficients are
characterized by piecewise quadratic fuzzy numbers. One of the best approximate intervals, namely, the inexact interval of the
piecewise quadratic fuzzy number is used. Furthermore, we proposed a new methodology based on the weighted Tchebycheff
method to solve CCSG with n-players. The advantages of the approach are the ability to enable the decision-maker to have
satisfactory solution and applied for different real-world problems with various types of fuzzy numbers. There is also a stability
set of the first kind without differentiability for the optimal compromise solution that was found. In the future, the proposed
methodology could be used in different types of real-world problems and multiple decision-makers. This proposed work can
also be extended to hypersoft set, fuzzy hypersoft sets, intuitionistic hypersoft sets, bipolar hypersoft sets, and pythagorean
hypersoft sets. At the end, a numerical example is given to demonstrate the computational efficiency of the proposed method.

1. Introduction

Game theory has enormous applications in real-world prob-
lems as in economics, engineering, biology, etc. The crucial
types of games are differential games, matrix games, and
continuous static games. Matrix games are named after the
discrete relationship between a finite or countable set of
alternative decisions and the resulting costs. In terms of a
matrix (or two-player games), one player’s decision corre-
sponds to the selection of a row, and the other player’s deci-
sion relates to the selection of a column, with the
accompanying entries signifying the costs. It is evident that
cooperative games do not necessitate the use of decision
probabilities. As a result, there is no interplay between costs
and decisions in games that are purely static. Differential
games are distinguished by a dynamic system regulated by
ordinary differential equations and costs that are always

changing. There are a variety of approaches to solving the
problem of continuous, static games. The player’s own per-
sonality also has a role on how he or she employs these
notions in the context of the game. Depending on the cir-
cumstances, a player may or may not be able to play logi-
cally, cheat, cooperate, bargain, and so on. All of these
considerations must be taken into account by a player when
deciding on a control vector.

Although the mentioned approaches are very suitable,
however, in the real-world problems, all or some of param-
eters are vague and uncertain. Therefore, these techniques
cannot handle CSG with uncertain problem. There are
numerous works in the field of fuzzy and fuzzy extension
set optimization; for example, see [1–15]. However, these
models cannot solve CSG.

Vincent and Grantham [16] introduced different formu-
lations in continuous static games (CSG). This game uses
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three essential concepts: min-max solutions (MMS), Nash
equilibrium solution, (NES), and Pareto minimum solutions
(PMS). Vincent and Leitmann [17] investigated the control-
space features of cooperative solutions for all types of games.
Mallozzi and Morgan [18] introduced ɛ-mixed approaches
for CSG. El Shafei [19] proposed a new formulation of large
scale CSG and explained how they can solve the mentioned
problem by the concept of PMS and in [20] suggested an
interactive compromise programming for a kind of Cooper-
ative CSG (CCSG). Kenneth et al. [21] designated some
methods for solving all solutions of polynomial systems
and then using these compute the equilibrium manifold of
a kind of CSG, see also [22–27].

Continuous static games with fuzzy parameters can be
solved using the Stackelberg leader and min-max follower’s
solution presented by Osman et al. [28]. Osman et al. [29]
also created the Nash equilibrium solution for large-scale
continuous static games with parameters in all cost functions
and constraints, where players are autonomous and do not
participate with any other players, and each player strives to
minimize their cost functions. In addition, the information
that is available to every player contains the cost functions
and constraints. Khalifa and Zeineldin [30] introduced a fuzzy
version of CSG and using α-level sets, and reference attainable
point technique suggested a solution for it. Kenneth et al. [21]
using the solution of multiobjective nonlinear programming
problems proposes a solution for CCSG. She also in [31] stud-
ied a CCSGwith k players in fuzzy environment and presented
an algorithmic approach for it. Elnaga et al. [32] focused on
hybrid CSGs that contain several players playing autono-
mously using the NES and others playing under a secure con-
cept using MMS in fuzzy environment, see also [33–40].
Khalifa et al. [41, 42] studied continuous static games and
applied different approaches for solving this problem. Garg
et al. [43] have introduced CCSG having possibilistic parame-
ters in the cost functions.

In this paper, we proposed a new methodology based on
the weighted Tchebycheff method to solve CCSG with n
-players that have piecewise quadratic fuzzy number
(PQFN) in the cost functions of the players. Moreover, the
stability set of the first kind corresponding to the α-optimal
compromise solution has been determined. One of the main
advantages of our approach is that this method enables the
decision-maker to have satisfactory solution and therefore
can applied it for different real-world problems with various
types of fuzzy numbers.

2. Research Gap and Motivation

(i) The phrase” pentagonal fuzzy number” is actually
meant for dispensing the fuzzy value to each attri-
bute/subattribute in the domain of singleargument/
multiargument approximate function

(1) Many researchers discussed the fuzzy set-like struc-
tures under soft set environment with fuzzy set-like
settings

(2) Along these lines, another construction requests its
place in writing for tending to such obstacle; so,
fuzzy set is conceptualized to handle such situations

The rest of the paper is arranged as follows: Section 3
offers some necessary prerequisites for this work. The math-
ematical model for continuous cooperative static games is
presented in Section 4. Section 5 presents a method for find-
ing the best compromise solution. Section 6 illustrates the
concept with a numerical example. A comparison of existing
algorithms and our suggested technique is shown in Section
7. Finally, in section 8, some findings are presented.

3. Basic Concepts

Here, we study some basic concepts that is need for other
sections; for more details, see [44, 45].

Definition 1. (Zadeh [44]). A fuzzy set ~W characterized by
real line R is referred as fuzzy number, provided the func-
tion: μ~QðxÞ: R⟶ ½0, 1� and confirms the below conditions:

(1) The mapping μ ~WðxÞ is an upper semicontinuous

(2) The set ~W is convex, i.e., μ ~Wðδ x + ð1 − δÞ yÞ ≥min
fμ ~WðxÞ, μ ~WðyÞg∀x, y ∈R ; 0 ≤ δ ≤ 1

(3) The set ~W is normal, i.e., there exists a point x0 ∈R,
so that μ ~Wðx0Þ equals to 1

(4) Supp ð ~WÞ = fx ∈R : μ~QðxÞ > 0 g is treated as sup-

port of ~W, and the set “closure clðSuppð ~WÞÞ” is
compact

Definition 2. (Jain [45]). A PQFN is denoted by ~WPQ =
ðw1,w2,w3,w4,w5Þ, where w1 ≤w2 ≤w3 ≤w4 ≤w5 are real
numbers, and is defined by if its membership function μ ~WPQ

is given by

μ ~WPQ
=

0, x <w1 ;
1
2

1
w2 −w1ð Þ2 x − u1ð Þ2,w1 ≤ x ≤w2 ;

1
2

1
w3 −w2ð Þ2 x −w2ð Þ2 + 1,w2 ≤ x ≤w3 ;

1
2

1
w4 −w3ð Þ2 x −w3ð Þ2 + 1,w3 ≤ x ≤w4 ;

1
2

1
w5 −w4ð Þ2 x −w4ð Þ2,w4 ≤ x ≤w5 ;

0, x >w5:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

μ ~WPQ

ð1Þ

Figure 1 shows a graphical view of PQFN.
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Definition 3. (Jain [45]). Let ~UPQ = ðu1, u2, u3, u4, u5Þ and
~VPQ = ðv1, v2, v3, v4, v5Þ be two piecewise quadratic fuzzy
numbers. The arithmetic operations on ~UPQ and ~VPQ are
as follows:

(i) Addition: ~UPQð+Þ~VPQ = ðu1 + v1, u2 + v2, u3 + v3, u4
+ v4, u5 + v5ÞiÞ

(ii) Subtraction: ~UPQð−Þ~VPQ = ðu1 − v5, u2 − v4, u3 − v3
, u4 − v2, u5 − v1Þ

(iii) Scalar multiplication:

k~UPQ =
ku1, ku2, ku3, ku4, ku5ð Þ, k > 0,

ku5, ku4, ku3, ku2, ku1ð Þ, k < 0:

(
ð2Þ

Definition 4. (Jain [45]). For the close interval approxima-
tion of PQFN of ½U� = ½U−

α ,U+
α �, we called Û = U−

α + U+
α/2

as the associated real number of ½U�:

Definition 5. (Jain [45]). For ½U� = ½U−
α ,U+

α �, and ½V � = ½V−
α ,

V+
α �, we have the following properties:

(1) Addition: ½U �ð+Þ½V � = ½U−
α +Vb−α ,U+

α +V+
α �

(2) Subtraction: ½U �ð−Þ½V � = ½U−
α −V+

α ,U+
α −V−

α �

(3) Scalar multiplication: k½U� = ½kU−
α , kU

+
α �, k > 0

½kU+
α , kU−

α �, k < 0

(

(4) Multiplication: ½U �ð×Þ½V �

U+
αV−

α + U−
α V+

α

2
,
U−

αVb
−
α + U+

α V+
α

2

� �
: ð3Þ

(5) Division: ½U �ð÷Þ½V �

2
U−

α

V−
α +V+

α

� �
, 2

U+
α

V−
α +V+

α

� �� �
, V½ � > 0, V−

α +V+
α ≠ 0,

2
U+

α

V−
α +V+

α

� �
, 2

U−
α

V−
α +V+

α

� �� �
, V½ � < 0, V−

α +V+
α ≠ 0:

8>>><
>>>:

ð4Þ

(6) The order relations:

(i) ½U �ð≲Þ½V � if U−
α ≤V−

α and U+
α ≤V+

α or U−
α +U+

α ≤
V−

α +V+
α

(ii) ½U � is preferred to ½V � if and only if U−
α ≥V−

α ,U+
α ≥

V+
α

4. Problem Formulation and Solution Concepts

A fuzzy cooperative continuous static game (F-CCSG) with
n − players having piecewise quadratic fuzzy parameters in
the cost functions of the players can be formulated as

F − CCSGð Þ G1 b; ;ξ, ~a1ð Þ,G2 b, ξ, ~a1ð Þ,⋯,Gm b, ξ, ~amð Þ
Subject to

,

ð5Þ

gj b, ξð Þ = 0, j = �1, n, ð6Þ

ξ ∈Ω = ξ ∈Rs : hl b, ξð Þ ≥ 0, l = �1, r
� �

, ð7Þ
where Giðb, ξ, ~aiÞ, ji = �1,m are convex functions on Rn

×Rs, hlðb, ξÞ, l = �1, r are concave functions on Rn ×Rs,
and gjðb, ξÞ, j = �1, n are convex functions on Rn ×Rs.
Assume that there exists a function b = f ðξÞ, if the function
gjðb, ξÞ = 0 is of class ∁ð1Þ, then the Jacobian j∂gjðb, ξÞ/∂bqj
≠ 0, j ; q = �1, n in the neighborhood of a solution point ðb,
ξÞ to (6), b = f ðξÞ, is the solution to (6) generated by ξ ∈Ω ;
differentiability assumptions are not needed her for all the
functions Giðb, γ, ~aiÞ, i = �1, n, and hlðb, ξÞ, Ω is a regular
and compact set. ~ai, i = �1,m represents a vector of PQFNs.
Let ~a1, ~a2,⋯, ~am ; μ~a1ða1Þ, μ~a2ða2Þ⋯ , μ~amðamÞ be the PQFNs
in F-CCSG problem with convex membership functions,
respectively.

The following fuzzy form [46, 47] can be used to rewrite
the F-CCSG problem:

α − CCSGð Þ G1 b, ξ, a1ð Þ,G2 b, ξ, a2ð Þ,⋯,Gn b, γ, amð Þ
s:t :

,

ð8Þ

gj b, ξð Þ = 0, j = 1, 2,⋯, n, ð9Þ

Ω = ξ ∈Rs : hl b, ξð Þ ≥ 0, l = �1, r
� �

, ð10Þ

0
a1 a2 a3 a4 a5

x

0.5

1.0

Figure 1: Graphical representation of PQFN.
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ai ∈ Lα ~aið Þ, i = �1,m ð11Þ
Definition 6. Let b = f ðξÞ be the solution to (9) generated by
ξ ∈Ω. A point ξ∗ ∈Ω, is called a α − Pareto optimal solution
to the α-CCSG problem, if and only if there does not exist
ðξ, aÞ ∈Ω × Lαð~aiÞ such that

Gi f ξð Þ, ξ, aið Þ ≤ Gi f ξ∗
� 	

, ξ∗, a∗i
� 	

;∀i
= �1,m andGi f ξð Þ, ξ, aið Þ
< Gi f �ξ


 �
, ξ∗, a∗i


 �
for some i ∈ 1, 2,⋯,mf g:

ð12Þ

Based on the optimality of α-CCSG problem concept, we
can show that a point ξ∗ ∈Ω is a solution to the α-CCSG
problem if and only if ξ∗is solution to the following α −
multiobjective optimization problem:

α −MOPð Þ min �G1 ξ, a1ð Þ, �G2 ξ, a2ð Þ,⋯, �Gm ξ, amð Þ� 	T
Subject to

,

ð13Þ

Ω = ξ ∈Rs : �hl b, ξð Þ ≥ 0, l = �1, r
� �

, ð14Þ

ai ∈ Lα ~aið Þ, i = �1,m, ð15Þ
where �hlðξÞ, l = �1, r is concave functions on Rs, �Giðξ, aiÞ, i
= �1,m are convex functions onRn ×Rt ,�Giðξ, aiÞ = Gið f ðξÞ,
ξ, aiÞ, and �hlðξÞ = hlð f ðξÞ, ξÞ: Assume that the α-MOP is to
be stable [48], problem (13) will be solved by the weighting
Tchebycheff method:

min
ξ∈Ωai∈Lα ~aið Þ

max
1≤i≤m

wi
�Gi ξ, aið Þ − �Gi ξ∗, a∗i

� 	� 	
, ai ∈ Lα ~aið Þ, i = �1,m

� �
,

ð16Þ

min λ : wi
�Gi ξ, aið Þ − �Gi ξ∗, a∗i

� 	� 	
≤ λ, ξ ∈Ω, ai ∈ Lα ~aið Þ, i = �1,m

� �
,

ð17Þ
where wi ≥ , i = �1,m, and �Gið ξ∗, a∗i Þ, i = �1,m are the ideal

targets. It is noted that stability of (α-MOP) implies to the sta-
bility of problem (17).

In addition, problem (13) can be treated using the
weighting method as

min 〠
m

i=1
wi

�Gi ξ, aið Þ: x ∈Ω, ai ∈ Lα ~aið Þ, i = �1,m
( )

, wherew ≥ 0,w ≠ 0:

ð18Þ

We can see that if there is w∗ ≥ 0 such that ðξ∗, a∗Þ is the
unique optimal solution of issue (18) corresponding to the
α − level, then, ðξ∗, a∗Þ is an α − Pareto optimal solution of
Eq. (13).

Remark 7. The stability of Eqs. (17) and (18) is inextricably
linked to the stability of Eq. (13).

5. Solution Procedure

The solution method based on determining the to the α −
best compromise solution within the inexact interval of
PQFNs has the minimum deviation from the�Gið ξ∗, a∗i Þ,
where

�Gi ξ∗, a∗i
� 	

= min
ξ∈Ω,ai∈Lα ~aið Þ

�Gi ξ, aið Þ, i = �1,m: ð19Þ

Step 1. Calculate �Gmin
i , and �Gmax

i (i.e., individual mini-
mum and maximum) at α = 0 and α = 1; separately.

Step 2. Calculate the weight from the following:

wi =
�Gmax
i − �Gmin

i

∑m
i=1

�Gmax
i − �Gmin

i


 � : ð20Þ

Step 3. Formulate and solve Eq. (21).

min λ

Subject to
, ð21Þ

Wi
�Gi ξ, aið Þ − �Gi ξ∗, a∗i

� 	� 	
≤ λ, i = �1,m, ð22Þ

ξ ∈Ω, ai = aið Þ−α , aið Þ+α
� 


, i = �1,m, ð23Þ

where Wi ≥ 0, i = �1,m, ∑m
i=1wi = 1, ½ða1iÞ−α , ða2iÞ+α � = Lαð~ai

Þ, i = �1, m
Let ðξ°, a°i Þ be the α − optimal compromise solution.
Step 4. Determine Sðξ°, a°i Þ
Let d = ðd1, d2Þ ∈R2m, where d1 = ðd11,⋯, dimÞT , d2 =

ðd21,⋯, d2mÞT . Assume that problem (21) can be solved
for ðw°, d°Þ ∈R3m and that an α − Pareto optimum solution
ðξ°, a°i Þ can be found, then Sðξ°, a°i Þ is determined by apply-
ing the following conditions:

ζ°i a°i − d2ið Þ = 0, i = �1,m,

η°i d1i − a°ið Þ = 0, i = �1,m,

ζ°i , η
°
i ≥ 0, d1i, d2i ∈R, a1ið Þ−α , a2ið Þ+α

� 

= Lα ~aið Þ, i = �1,m

ð24Þ

6. A Numerical Example

Consider the following two-player game with

�G1 ξ, ~a1ð Þ = ξ1 − ~a1ð Þ2 + ξ2 − 1ð Þ2,
�G2 ξ, ~a2ð Þ = ξ1 − 1ð Þ2 + ~a2 ξ2 − 2ð Þ2,

ð25Þ

where player 1 controls ξ1 ∈R, and player 2 controls ξ2 ∈R
with

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0: ð26Þ

Let ~a1 = ð1, 2, 3, 4, 5,Þ and ~a1 = ð1, 3, 5, 9, 10Þ with the
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close interval approximation be ½ð~a1Þα� = ½2, 4� and ½ð~a2Þα� =
½3, 9�.

Step 1. Solve the following:

min ξ1 − 1ð Þ2 + ξ2 − 1ð Þ2

Subject to
,

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0, μ~a1 a1ð Þ = 0, μ~a2 a2ð Þ = 0:

ð27Þ

Let ðξ1, ξ2, a1 = 1 Þ = ð1, 1, 1Þ with �Gmin
1 = 0:

Solve

min ξ1 − 1ð Þ2 + 10 ξ2 − 2ð Þ2

Subject to
,

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0, μ~a1 a1ð Þ = 0, μ~a2 a2ð Þ = 0:

ð28Þ

Let ðξ1, ξ2, a2 = 1 Þ = ð1, 2, 1Þ with �Gmin
2 = 0:

Solve

max ξ1 − 3ð Þ2 + ξ2 − 1ð Þ2

Subject to
,

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0, μ~a1 a1ð Þ = 1, μ~a2 a2ð Þ = 1:

ð29Þ

Let ðξ1, ξ2, a1 = 3Þ = ð0, 4, 3Þ with �Gmax
1 = 18:

Solve

max ξ1 − 1ð Þ2 + 5 ξ2 − 2ð Þ2

Subject to
,

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0, μ~a1 a1ð Þ = 1, μ~a2 a2ð Þ = 1:

ð30Þ

Let ðξ1, ξ2, a2 = 5 Þ = ð4, 0, 5Þ with �Gmax
2 = 29:

Step 2. w1 = �Gmax
1 − �Gmin

1 /ð�Gmax
1 − �Gmin

1 Þ + ð�Gmax
2 − �Gmin

2 Þ
= 0:383 and w2 = �Gmax

2 − �Gmin
2 /ð�Gmax

1 − �Gmin
1 Þ + ð�Gmax

2 −
�Gmin
2 Þ = 0:617:
Step 3. Solve the following:

min λ

Subject to
,

ξ1 − a1ð Þ2 + ξ2 − 1ð Þ2 − 47
18

λ ≤ 0,

ξ1 − 1ð Þ2 + a2 ξ2 − 2ð Þ2 − 47
29

λ ≤ 0,

2 ≤ a1 ≤ 4, = 2, 4½ �, and 3 ≤ a2 ≤ 9,

ξ1 − 4 ≤ 0, ξ2 − 4 ≤ 0,−ξ1 ≤ 0,−ξ2 ≤ 0,

ð31Þ

and yields ξ°1 = 1:440665, ξ°2 = 1, a°1 = 2, a°2 = 3 and λ° =
0:1198169:

Step 4. Determine Sð1:440665, 1, 2, 3Þ by applying the
following conditions:

ζ°1 2 − d21ð Þ = 0, ζ°2 3 − d22ð Þ = 0,

η°1 d11 − 2ð Þ = 0, η°2 3 − d12ð Þ = 0 ,

ζ°1, ζ
°
2 ; η

°
1, η

°
2 ≥ 0, c1i, c2i½ � = Lα ~aið Þ, i = 1, 2:

ð32Þ

We have J1k ; J2k ⊆ f1, 2g, for J11 = f1g, ζ°1, >0 ζ°2 = 0:
For J21 = f2g, η°1 = 0, η°2 = 0, then

SJ11,J21 1:440665, 1, 2, 3ð Þ = d1, d2ð Þ ∈R4 : d21 = 2, d22
�

≥ 3, d11 ≤ 2, d12 = 3g:
ð33Þ

For J12 = f2g, ζ°1 = 0, ζ°2 > 0. For J22 = f1g, η°1 > 0, η°2 = 0,
then

SJ12,J22 1:440665, 1, 2, 3ð Þ = d1, d2ð Þ ∈R4 : d21 ≥ 2, d22
�

= 3, d11 = 2, d12 ≤ 3g:
ð34Þ

For J13 = f1, 2g, ζ°1 > 0, ζ°2 > 0. For J23 =∅, η°1 = 0, η°2 = 0,
then

SJ13,J23 1:440665, 1, 2, 3ð Þ = d1, d2ð Þ ∈R4 : d21 = 2, d22
�

= 3, d11 ≤ 2, d12 ≤ 3g:
ð35Þ

For J14 =∅, ζ°1 = 0, ζ°2 = 0. For J24 = f1, 2g, η°1 > 0, η°2 > 0,
then

SJ14,J24 1:440665, 1, 2, 3ð Þ = d1, d2ð Þ ∈R4 : d21 ≥ 2, d22
�

≥ 3, d11 = 2, d12 = 3g:
ð36Þ

Hence,

S 1:440665, 1, 2, 3ð Þ =
[4
k=1

SJ1k ,J2k 1:440665, 1, 2, 3ð Þ: ð37Þ

7. Comparative Study

In order to highlight the merits of the proposed approach,
Table 1 compares the suggested strategy to some current
literature.

8. Conclusions and Future Works

In this paper, the weighted Tchebycheff method has applied
to solve cooperative continuous static games with piecewise
quadratic fuzzy numbers, and then the stability set of the
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first kind corresponding to the α − optimal compromise
solution has determined. The advantages of the approach
are the ability to enable the decision-maker to have satisfac-
tory solution and applied for different real-world problems
with various types of fuzzy numbers. The key features of this
work can be summarized as follows:

(i) The fundamental theory of fuzzy set is developed
and its decision constructed. A real-world problem
is discussed with the support of proposed algorithm
and decision support of fuzzy set

(ii) The rudiments of f fuzzy set are characterized and

(iii) The proposed model and its decision-making based
system are developed. A real-life problem is studied
with the help of proposed algorithm, and decision
system of fuzzy set is compared professionally via
strategy with some existing relevant models keeping
in view important evaluating features

(iv) The particular cases of proposed models of fuzzy set
are discussed with the generalization of these
structures

(v) As the proposed model is inadequate with the situ-
ation in the domain of multiargument approximate
function, it is mandatory. Therefore, future work
may include the addressing of this limitation and
the determination
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