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ABSTRACT 

Vibration suppression using a positive position feedback (PPF) control for a nonlinear dynamical system 

which subjected to an external force is studied. The proposed model is the vertical dynamic excitation of 

structures induced by a single pedestrian walking along a straight path on flat and relatively stiff surfaces. The 

multiple scale perturbation technique was applied to derive the first order approximate solution of the system. 

The response equation and the stability criteria for the system were derived near the simultaneous primary and 

internal resonance cases. MATLAB 14.0 have been used for the numerical studying to show the time history of 

the main system with and without PPF controller. Also, the effect of the system parameters on the response 

system have been studied. A comparison between the approximate and numerical solutions is illustrated and it 

show a good agreement between them. It is found that (PPF) controller is very suitable for small natural 

frequency dynamical systems subjected to primary resonance excitations. 
 

Keywords: Positive position feedback controller; multiple scale perturbation method; response 

equation; primary resonance case; external force. 

1. Introduction 

Studying the dynamical systems and suppressing the high amplitude of the resulted vibration 

attractive many researchers. There exists more one strategy to suppress the vibration of the dynamical 

systems, one of them is the active linear absorber based on positive position feedback (PPF) control. 

The PPF control technique is applied by Jun [1]. It is demonstrated that this strategy is effective in 

suppressing the high amplitude response of a flexible beam subjected to a primary external excitation. 

Wang and Inman [2] used four conventional controller and their versions of hybrid bang_bang control 

(on_off control) respectively. PPF controller was one of the used controllers for vibration suppression 

and compared in terms of their energy consumption.  

Cazzulani et al. [3] presented a technique of an active modal tuned mass damper (AMTMD). The 

technique is compared with the PPF control which already presented in the literature. They resulted 

that AMTMD achieves the same performances of PPF around the resonances, without increasing the 

low frequency response. An experimental study is conducted by Orszulik and Shan [4] to show that a 

PPF controller can be used to suppress the vibrations of a structure with unknown natural frequencies. 

The PPF controller is applied on the structure which of a flexible manipulator with a collocated 

piezoelectric sensor/actuator pair.  

    The active vibration control of clamp beams is investigated by Shin et al. [5]. They used multiple of 

PPF controllers with a sensor/moment pair actuator to overcome the problems of the instability. It is 
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illustrated numerically and experimentally that the vibration levels are reduced at the tuned modes of 

the PPF controllers. Mitura et al. [6] presented nonlinear horizontal and vertical beam models. 

Numerical results show that the PPF controller is a very good absorber for reducing the vibration of 

the vertical beam for low level of excitation amplitudes. El-Ganaini et al. [7] studied a nonlinear 

dynamic model which subjected to external primary resonance excitation. They used the PPF 

controller to suppress the vibration amplitude of the system. An approximate solution is obtained by 

applying the multiple scales perturbation technique (MSPT).  

Jung et al. applied the PPF control [8] to reduce the vibration of the proposed model. 

Experimentally, the PPF controller have shown that more effective than the proportional integral 

derivative (PID) controller. The basic procedures for the modeling and simulation of a smart beam 

were presented by Ghareeb and Schmidt [9]. More than one controller were applied, one of them is 

the PPF controller. They illustrated the effect of the PPF controller on the amplitude of the peak 

displacement of the smart beam and its magnitude. Omidi and Mahmoodi [10] introduced a method of 

a nonlinear integral positive position feedback (NIPPF) that benefits from the advantages of both 

integral resonant control (IRC) and PPF control. The results of the study investigated that the NIPPF 

controller is effectiveness in suppression the nonlinear vibration. They used the multiple scales 

method to get the approximate solution for the system. 

 A cantilever beam subjected to random base excitation is studied by Kaushik et al. [11]. The 

piezoelectric patches and actuation are used as smart materials. The PPF controller is applied to 

control the vibrations at all the resonant modes using piezoelectric sensor voltage feedback. The 

vibrating system with cubic nonlinearities and external excitations is presented by EL-Sayed and 

Bauomy [12]. They used two PPF controller to reduce the vertical vibration of the system. MSPT was 

applied to the equations of the system to find approximate analytical solutions. Amer et al. [13] 

investigated the effect of the PPF controller in suppressing the vibration of a micro-electromechanical 

(MEMS) resonator. They used the multiple scales method to obtain the first order approximate 

solution.  

The techniques of PPF and negative derivative feedback (NDF) controllers was applied by Syed 

[14] on a single link flexible manipulator featuring piezoelectric actuator. Based on the particular 

studied system, the comparison between the two controllers concluded that NDF controller is overall 

more effective in suppressing vibration than PPF controller. A nonlinear magnetic levitation system 

was studied by EL-Ganaini [15]. The horizontal vibration of the system is suppressed by applying the 

PPF controller. MSPT was applied to derive an approximate solution of the system which described 

by a four first order differential equations. A strategy of a compensated positive position feedback 

(CPPF) for active control of flexible structures with piezoelectric actuators was presented by Wu et al. 

[16]. The advantages of the proposed CPPF strategy confirmed by the simulation results compared 

with the conventional PPF methodology.  

Enríquez-Zárate et al. [17] investigated that it could be using the PPF control to reduce the 

vibrations in the building-like structure. The numerical results illustrated that the optimized PPF 

control was effective in reducing the vibrations and lateral displacements of the building-like structure 

by around 97%. Yaghoub and Jamalabadi [18] studied suppression of the mechanical oscillations of 

the galloping system using the PPF control. The results show that the PPF controller is a powerful 

method to decrease the galloping amplitude of the D-shaped prism. Kumar et al. [19] presented a 

model of the vertical dynamic excitation of structures induced by a single pedestrian walking along a 

straight path on flat and relatively stiff surfaces. Amer et al. [20] studied a Duffing oscillator system 

subjected to harmonic force. They applied three different control methods; Positive Position Feedback 

(PPF), Integral Resonance Control (IRC) and Nonlinear Integrated Positive Position Feedback 

(NIPPF).The numerical comparison between the three different control methods illustrated that 

NIPPF controller is the best for reducing vibration at a high rate and after a short time. The nonlinear 

dynamic vibrations of a composite plate with square and cubic nonlinear terms subjected to external 
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and parametric excitations are studied by Bauomy and EL-Sayed [21]. They applied Galerkin 

procedure to convert the nonlinear partial differential equation of motion into a nonlinear ordinary 

differential equation. PPF control is used to reduce the amount of vibration produced by the system. It 

is found that PPF control is better than Nonlinear Saturation Controller (NSC) as presented in a 

comparison which has been made between them. Also, there are many numerical methods for solving 

differential equations [22, 23]. 

In this study the effect of applying the PPF control is illustrated for suppressing the vibration of 

the system which described by (Eqn. 1) and reported in [19]. 
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Fig. 1. Block diagram of the system 

 

2. Formulation of the problem 

The system under studying is proposed to be subjected to an external force and is expressed by 

the following equation: 

( )2 2 2 3 2 2 2 3 2

1 1 1 1 1 4 1 1

1

53
2 5 6

2
2 2 2 2 2 2 cos Ωu u u u u u u u u u u f t


          


+ + + + + + + + =  (1) 

The system is effected by a PPF controller. The system is introduced by: 

2

2 2 2 3 2 53
5 6

2 2 3 2

1 1 1 1 1 4 1 1

1

2
2 2 2 2 2 2u u u u u u u u u u u


          


+ + + + + + + +

( ) 1cos Ω G vf t +=                                                                                                                                    (2) 

2

2 2 2 22 uv v v G  + + =                                                                     (3) 

The values of the system is considered to be: 

( )ˆˆ ˆˆ , , , , 1,2; 1,2,3,4,5,6i i i i n nG G f f i n       = = = = = =                                    (4) 

Equation of the system becomes: 

2 2 2 3 2 2 2 3 2

1 1 1 1 1 4 1
3

1

1

5

2 5 6

ˆ2
ˆ ˆ ˆ ˆ ˆˆ2 2 2 2 2 2u u u u u u u u u u u

 
                


+ + + + + + + + =

( ) 1
ˆˆ cos Ωf t vG +                                                                                                                                    (5) 

2 2

2

2 2
ˆˆ2 G uv v v   + + =                                                                                                                    (6) 

3. Multiple scale perturbation technique 

      Applying the multiple scale perturbation method: 

( ) ( ) ( )10 01

2

0 1, , , ( )u t u T T u T T O = + +                                                                                                   (7) 

( ) ( ) ( )10 01

2

0 1, , , ( )v t v T T T T Ov = + +                                                                                                   (8) 
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where 0 1 ,   T t T t= =                                                                                                                    (9) 

      The relations between the differential operators defined as follows: 

( )
2

2 2 2

0 1 0 0 1 12
,    2

d d
D D D D D D

dt dt
  = + = + +                                                                                  (10) 

where 0 1

0 1

,    D D
T T

 
= =
 

                                                                                                        (11) 

      Substituting equations (7) and (8) into equations (5) and (6) with using the relations (10) and 

equating the like order of  , the following equations are obtained: 

0 : 

( )2

0 1 0

2 0D u+ =                                                                                                                                         (12) 

( )2

0 2 0

2 0D v+ =                                                                                                                                         (13) 

1 : ( ) ( ) ( ) ( ) ( )0

2 2 2

0 1 0 1 1

3

1 0 1 0 1 0 0 0

2 3
1 0 0

1

0 2 0

ˆ2
ˆ ˆˆ2 2 2 2D u D D u D u D u u D u D u


     


−+ − −= − −  

( ) ( )3

0 5 6 1 0

22 2 2 5

4 0 0 1 0 1 0
ˆˆ ˆ ˆ2 2 2 cos Ω ˆu D u Gu u f t v    − − + +−                                                           (14) 

( ) ( )1 0 0 2 0

2 2

0 2 0 1 2 2 0
ˆ2 2 ˆD v D D Dv v G u  =+ +− −                                                                                    (15) 

The general solution of equations (12) and (13) can be expressed in the form: 

( ) ( )1 0 1 0

10 1

i T i T
u A T e A T e

 −
= +                                                                                                                  (16) 

( ) ( )2 0 2 0

10 1

i T i T
Bv T e B T e

 −
= +                                                                                                                  (17) 

Substituting equations (16) and (17) into equations (14) and (15): 

( ) ( ) ( )

( )

1 0

1 0 1 0 1 0

2 2 2 2 2 2

0 1 1 1 1 1 2 3 5 1 6 1

2 3 42 2

2 3

1

3 42 2 2 4

1 1 2 3 5 1 6 1 4 1

ˆ ˆ ˆ ˆˆ2 2 3 3 20

ˆ ˆ ˆ ˆ ˆ ˆ

2

2 2 10 2

i T

i T i T i T

D u i D A A i i A A e

A

A

e i i A eA A

i A

eA



  

        

         

 + = − + + + − + 

     − +− −    + + 

1 0 2 0 05 Ω2 5 2

1

2

6

2

1 1 1 4

ˆ
ˆˆ ˆ ˆ2 2 .

2

i T i T i Tf
A e G B e e A A cA A c

     −−
 

    + + + +     
  

                         (18) 

( ) ( ) 2 0 1 02 2 2

0 2 2 1 2 2 21 2 ˆˆ2
i T i T

D v i D B B e Gi A e
       + = − +  

+


                                           (19) 

The general solution of eqns. (18) and (19) can be expressed as follows: 

( )
1 0 1 0 1 0 1 0

52 4
2

3

3 5 62 3 4 51 4

4

6
1

ˆ ˆ ˆ ˆ ˆˆ ˆ2 2

3 4 15 12

5
i T i T i T i T

i i A AA A
u

A
e e

A
e e

         − −     
= − +      

     

+
+


−


( ) ( )
2 0 0Ω 21

1 42 2 2 2

1

2

1 2

ˆˆ
ˆ ˆ2 .

2

i T i TG B
A

f
e e A A ccA
  

  

   
    + + + + 

− −     

−


              (20) 
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( )
1 02

2

1 2

1 2
.

ˆ
i TG A

v ce c


 

 
 = −

− 
+

 

                                                                                                                   (21) 

Studying the system at the simultaneous resonance case of the primary resonance case: 1Ω  and 

the internal resonance case: 1 2  . 

Define the detuning parameters 1 2
ˆ ˆ,  as follows: 

1 1 1 1
ˆΩ    = + = +  , 2 1 2 1 2

ˆ    = + = +                                                                  (22) 

4. Periodic Solution 

4.1 simultaneous resonance 

Eliminating the secular term in eqns. (20) and (21): 

( ) ( ) 1 11 2ˆ ˆ2 1
1 1 1 2 3 5 1 6

1

2 3

1

1

ˆ ˆ
ˆ ˆ ˆ ˆˆ 3 3 10

4 2

i T i TiGi
D A A

f
A A i A i A e Be       

 
−= − − + − + −    (23) 

( ) 12ˆ2
1 2 2

2

ˆ
ˆ

2

i TiG
D B B Ae  



−= − −                                                                       (24) 

It is convenient to express ,A B in the polar form: 

( ) ( )11̂

1 1

1
ˆ

2

i T
A a T e


= ,  ( ) ( )12ˆ

2 1

1
ˆ

2

i T
B a T e


=                                                                                         (25) 

Substituting equations (25) into equations (23) and (24) 

( )
( ) ( ) ( )1 1 11 1 2 2

ˆ ˆ ˆˆ ˆ2 3 5 1 3 56 1 1
1 1 1 1 1 1 1 1 2

1 1

ˆ ˆˆ ˆ ˆ3 3 ˆ5
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 8 2 2

i T i Ti i iGif
a ia a a a e a e

         
  

 

− − − − −+ −
 + − − − −= +     (26) 

( ) ( )1 12 2
ˆ ˆ ˆ2

2 2 2 2 2 2 1
2

ˆ
ˆˆ ˆ ˆ ˆ ˆ

2

i TiG
a ia a a e

  
  



− −
 + = − −                                            (27) 

where ˆ
ia and ( )ˆ , 1,2i i = represent the derivatives of ˆ

ia  and ( )ˆ , 1,2i i = with respect to 1T . 

Return back every scaled parameter into its original form: 

( )ˆ ˆˆ ˆˆ ˆ ˆ, , , , , , ; 1,2; 1,2, ,6i n i i
i n i i i i i i

Gf
f G a a i n

  
    

    
= = = = = = = = =     (28) 

Substituting equations (28) into equations (26) and (27): 

( ) ( ) ( )1 1 1 2 22 3 5 1 3 56 1 1
1 1 1 1 1 1 1 1 2

1 1

3 3 5

4 8 2 2

i t i ti i iGif
a ia a a a e a e

         
  

 

− − − − −+ −
+ = − + − −   (29) 

( )1 2 22
2 2 2 2 2 2 1

22

i tiG
a ia a a e

  
  



− −
+ = −                                                                                         (30) 

where ia and ( ), 1,2i i = represent the derivatives of ia  and ( ), 1,2i i = with respect to t . 

Consider that: 1 1 1 2 1 2 2,t t      = − = − −                                                                (31) 

Substituting equation (31) into equations (29) and (30): 

( )
( )2 3 1 3 3 55 1 6 1

1 1 1 1 1 1 1 1 1 1

3 3 5

4 4 8
a ia a a i a a

      
  

+  
+ + = − − + + 

 

( ) ( ) ( ) ( )1
1 1 2 2 2

1 1

cos sin cos sin
2 2

iGif
i a i   

 
   − −−−                                    (32) 
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( ) ( ) ( )2
2 2 1 2 1 2 2 2 2 1 2 2

2

cos sin
2

iG
a ia a a i       


 + − + − = − − +           (33) 

Equating real and imaginary parts in eqns. (32) and (33), the following equations obtained: 

( )
( ) ( )2 3 1 3 1 2

1 1 1 1 1 1 2

1 1

3
sin sin

4 2 2

G af
a a a

  
  

 

 +    
= − − −     

   
−

 

     (34) 

( ) ( )2 45 1 6 1 1 2
1 1 1 1 1 2

1 1 1 1

3 5
cos cos

4 8 2 2

G af
a a

a a

   
   

 

    
= − + + −    
   

−
 

     (35) 

( ) ( )2 1
2 2 2 2 2

2

sin
2

G a
a a  



 
= − +  

 
                                                                                                           (36) 

( ) ( )2 45 1 6 1 2 1 1 2
2 2 1 1 1 2

1 1 2 2 1 1

3 5
cos cos

4 8 2 2 2

G a G af
a a

a a a

   
   

  

    
= − + + − + −    
     

   (37) 

4.2 Fixed Point 

Applying the steady state condition 1 2 1 2 0a a  = == = ; the response equation can be expressed in 

the following form. 

10 8 6 4 2

1 1 2 1 3 1 4 1 5 1 6 0d a d a d a d a d a d+ + + + + =                                                                                   (38) 

where ( )1, 2, , 6id i = are constants which have been determined (see Appendix) 

5. Nonlinear Solution 

To study the stability of the nonlinear solution of the obtained fixed points, let: 

1 10 11 1 10 11 2 20 21 2 20 21,,   ,  a a a a a a     = + = + = + = +                                                                (39) 

where 10 10 20 20,,  , a a   are the solutions of eqns. (34), (35), (36) and (37), while 11 11 21 21,,   ,  a a   are 

perturbations which are assumed to be small compared with 10 10 20 20,,  , a a  . 

Substituting equation (39) into equations (34 – 37) and keeping only the linear terms in 11 11 21 21,,   ,  a a   

gives: 

( )
( ) ( )2 3 1 2 1

11 1 1 10 11 10 11 20 21

1 1

3 3
cos sin

4 2 2

Gf
a a a a

  
   

 

    +    
= − + − −        

        

( )1 20
20 21

1

cos
2

G a
 



  
−   

  
                                                                                                                 (40) 

( ) ( )35 1 6 11 1
11 10 10 11 10 11 20 21

10 1 10 1 10

9 25
sin cos

4 8 2 2

Gf
a a a a

a a a

   
   

 

        
= − + + +        

         

−
 

( )1 20
20 21

1 10

sin
2

G a

a
 



  
+   
   

                                                                                                                   (41) 

( )     ( )2 102
21 20 11 21 2 2 21 20 21

2 2

sin 0 cos
2 2

G aG
a a a     

 

      
= + − +      

      
                 (42) 
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( ) ( )35 1 6 11 2
21 10 10 20 11 10 11

10 2 20 1 10

9 25
cos sin

4 8 2 2

G f
a a a

a a a

   
   

 

      
= − + + + +      
         

( )
( ) ( )1 2 1 20 2 101

20 21 20 21

20 1 10 1 10 2 20

cos sin
2 2 2

G a G aG
a

a a a a

 
  

  

   −    
+ − + −      
         

                  (43) 

6. Numerical Solution 

The numerical solution of the system which introduced by the equations (5&6) is determined by 

applying the Runge-Kutta fourth-order method. The selected values for the system parameters are 

given by: 

1 2 1 2 1 2 3 4
ˆ ˆ ˆ ˆˆ ˆΩ 1, 1, 1, 0.5, 0.1, 0.001, 0.15, 0.1, 1/ 30, 0.3,        = = = = = = = = = = −  

5 6 1 2
ˆ ˆ ˆˆ ˆ0.3, 0.2, 0.5, 1.5, 1.3f G G = − = = = = . 

 
Fig.Fig. 2. Time history of the system without control at the resonance case 1Ω = . 

 
The vibration of the system under studying before using PPF control when 1Ω = is illustrated 

by Fig. (1). The amplitude of the system vibration is about 1.3. 

The effect of using a positive position feedback control for reducing the system vibration at the 

simultaneous resonance case of the primary resonance case 1Ω= and the internal resonance case 

1 2 =  is illustrated by Fig.(2). As shown in Fig.(3), the system steady state amplitude under the 

effect of the PPF control is about 0.0005, and the controller effectiveness aE is about 2600.The 

frequency response curves for the main system with PPF control is demonstrated in Fig. (4), which 

gives closed loop case. It is found two peaks are produced at the values 1 0.44 = − and 1 1.84 = , 

so they are creating a bandwidth in-between about 2.28. 
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Fig. 3. A) Main system time history and B) Controller time history with PPF control at the simultaneous 

resonance case 1Ω =  and 1 2 = . 

 

 

Fig. 4. The effectiveness of PPF control for reduction the vibration of the system 

 
Fig. 5. Frequency response curve for the system with PPF control at the selected values for the system 

parameters.Solid line: stable solution & Dot line: unstable solution 

7. Effect of the system parameters on the response curve 

In this section, Fig.s (6 – 15) show the effects of different parameters on the behavior of the 

vibrating system:  A) on the main system and B) on the controller. The selected values of the 

parameters in this study are as mentioned before. 

Fig. (6) show that the steady-state amplitude of both the main system and the controller is 

monotonic decreasing for increasing the frequencies 1  and 2  in the case of the internal primary 

resonance case 1 2 = . So this type of controllers (PPF) is very suitable. The bandwidth of the two 

peaks of both the main system and the controller reduced with increasing of the frequencies. 
 

1 2=ω ω = 0.3  1 2=ω ω = 0.4  1 2=ω ω = 0.5  
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Fig. 6 Effect of the internal resonance on the response curve. 

Effect of the damping coefficients 1  and 2  is illustrated in Fig.s (7&8) respectively. Fig.s (7) 

and (8) appear that within  creasing  of 1 and 2 , the steady-state amplitude of the two peaks for both 

the main system and the controller is decreasing. The bandwidth of the two peaks is to be smaller with 

increasing of 1 . The amplitude is slightly affected by 2 and the bandwidth is not affected. 

 

1μ = 0.010  1μ = 0.035  1μ = 0.060  

 

Fig. 7. Effect of μ 1 on the response curve. 

 

2μ = 0.0005  2μ = 0.0050  2μ = 0.0500  
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Fig. 8. Effect of μ 2 on the response curve. 

Effect of the control signal gain 1G  and the feedback signal gain 2G  is illustrated in Fig.s (9&10) 

respectively. Fig.s (9) and (10) appear that the bandwidth between the two peaks increases with 

increasing of 1G  and 2G  which gives more flexibility for the controller job. This can increase the 

safety factor because the value of 1  may deviate from 0 and go towards one of the values where the 

peaks are located. The peaks values for the main system are not affected by variation of either 1G  or 

2G . 

1G = 0.25  1G = 0.50  1G = 0.75  

 

Fig. 9. Effect of G
1 on the response curve. 

 

2G = 0.15  2G = 0.40  2G = 0.65  
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Fig. 10. Effect of G
2 on the response curve. 

Fig. (11) show that for increasing external excitation force f , the amplitude of the main system 

and the controller is monotonic increasing and the frequency response curves bend away  from the 

linear curves. 

Fig. (12) show effect of the detuning parameter on the response curve. The minimum value of 

both the main system and the controller is observed that it occur when 1 2 = . 

f = 0.25  f = 0.45  f = 0.65  

 

Fig. 11. Effect of f on the response curve. 

 

 

2σ = -0.1  2σ = 0.0  2σ = 0.1  
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Fig. 12. Effect of σ 2 on the response curve. 

Effect of the nonlinear parameter 6 ”the coefficient of the fifth order term” is 

illustrated by Fig. (13) which appears  no effect in the main system amplitude and slightly 

effect in the bandwidth of the two peaks that is slightly increasing with increasing 6 . On the 

other hand the controller amplitude is increasing with increasing 6 in the negative interval 

of 1 ; while the controller amplitude is decreasing with increasing 6  in the positive interval 

of 1 and the bandwidth also slightly increasing with increasing 6 . 

6α = 0.05  6α =0.10  6α =0.15  

 

Fig. 13. Effect of α 6 on the response. 

The relation between the system amplitude and the excitation force  without and with 

the control is demonstrated in Fig. (14). In the absence of control the system amplitude is 

observed to increasing nonlinearly for a slight increase in the excitation force. After applying 

PPF controller, the system amplitude leads to a saturation case that the relation became 

horizontal, so the system amplitude is slightly change for largely increasing the excitation 

force. 
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Fig. 14. Frequency response curve for the system at σ = σ = 0
1 2  

 Fig. (15) show the system with PPF control and illustrated a good agreement between 

the perturbation solution which obtained by MSPT and the numerical solution which 

determined by applying Runge-Kutta fourth-order method. 
 

Perturbation solution Numerical solution 

 
Fig. 15. the agreement between the perturbation solution and the numerical solution with PPF control 

8. Comparison with previously published work 

In a previous work [19], the authors present a model of the vertical dynamic excitation of 

structures induced by a single pedestrian walking along straight path on flat and relatively stiff 

surfaces.  The main goal of the study was to create a model which could describe reliably time and 

frequency domain of continuously measured vertical walking force records.  A linear least square 

identification technique was used in conjunction with the Fourier representation to identify values of 

the modelling parameters. A damping is added to the structure by acting as a negative damper during 

walking. 

In this study, the presented modified system in [19] is controlled using PPF controller to reduce 

the vibration produced of the main system. A damping is proposed to be positive. MSPT is applied to 

get a solution of the studied system and examined the stability of this system.  PPF controller 

succeeded for reducing the produced vibration with ratio 99.5 %. 

9. Conclusions 

In this paper PPF controller is used to reduce the vibration produced from a modified hybrid 

Rayleigh -Van der Pol-Duffing oscillator. The proposed oscillator is considered to be acted by a 
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positive damper and subjected to an external excitation. MSPT technique was applied to derive an 

approximate solution of the system. Oscillator equation is coupled to an active positive position 

feedback (PPF) controller and they have been studied near the simultaneous primary and internal 

resonance case. The results of this paper can be summarized as follows: 

1) The worst resonance cases of the system are the simultaneous resonance case is the primary 

resonance case 1Ω =  and the internal resonance case 1 2 = . 

2) PPF controller is effective for reducing the produced vibration that the controller 

effectiveness aE  is about 2600. 

3) This type of controllers (PPF) is very suitable for small natural frequency dynamical systems 

subjected to primary resonance excitations. 

4) The vibration reduction controller frequency bandwidth may be controlled by controlling the 

control signal gain 1G and the feedback signal gain 2G that gives more flexibility for the 

controller job. 

5) The steady-state amplitudes of the main system is decreasing with increasing of the damping 

coefficients and with decreasing of the excitation force. 

6) The minimum steady-state amplitude of both the main system and the controller is observed 

that it occur when 1 2 = . 

7) After control, the relation between the main system amplitude and the excitation force became 

horizontal that represents to a saturation case; while the relation between the controller and 

the excitation force is directed nonlinearly relation. 

8) Even nonlinear terms have absolutely no effect on the response of the system; while the 

coefficient of the fifth order term has an effect on the response system. It is observed that its 

effect on the negative interval of 1 is different about its effect on the positive interval. 
 

Appendix 
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 كنترول  PPFاد إهتزاز نظام ديناميكى غير خطى تحت تأثير قوة خارجية باستخدام مإخ

 3، كمال محمد رسلان2، ياسر عبد العزيز عامر1فجر أسامه درويش
 

 مدرس مساعد رياضيات قسم العلوم الأساسية المعهد التكنولوجى العالى بالعاشر من رمضان،   1
  كلية العلوم جامعة الزقازيق اتأستاذ الرياضيات البحتة قسم الرياضي 2
 بالقاهرة  أستاذ الرياضيات البحتة قسم الرياضيات كلية العلوم جامعة الأزهر بنين 3

 

 :  الملخص العربى

 

وذلك للحد من الإهتزاز الناتج Positive Position Feedback (PPF) Control فى هذا البحث تم استخدام    

قي الخطى  غير  الديناميكى  النظام  الإهتزازات  ا د  من  المقترح يصف  النموذج  خارجية.  قوة  تأثير  تحت  يقع  والذى  لدراسة 

 MSPTالرأسية للمنشآت والتى تنتج عن سير شخص واحد فى مسار مستقيم على أسطح مستوية وصلبة نسبيا. تم تطبيق  

حالة  لل فى جوار  للإستقرار  اللازمة  الشروط  اشتقاق ودراسة  تم  الأولى.  الرتبة  للنظام من  التقريبية  الحلول  على  حصول 

وهى   الأسوأ  برنامج  Simultaneous Primary and Internal Resonance Casesالرنين  استخدام  تم   . 

MATLAB 14.0  لتوضيح وك  PPF Controlتأثير  وذلك  الإهتزاز  إخماد  بارامترات  على  تغير  تأثير  دراسة  تم  ذلك 

كما تم عرض مقارنة بين الحل التقريبى والحل العددى وتوضيح الإتفاق فيما    Response Systemالنظام المختلفة على  

تطبيق    .بينهم بأن  التحقق  الصغيرة   PPF Controlتم  الترددات  ذات  الخطية  الديناميكية غير  الأنظمة  على  مناسب جدا 

 قوى خارجية ذات ترددات أولية. والتى تخضع ل

 


