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Abstract
Accurate and efficient tools for calculating the ground state properties of interacting quantum
systems are essential in the design of nanoelectronic devices. The exact diagonalization method
fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as
the gold-standard for few electron systems. However, by increasing the number of instances to be
solved, the computational costs become prohibitive and new approaches based on machine
learning techniques can provide a significant reduction in computational time and resources,
maintaining a reasonable accuracy. Here, we employ pix2pix, a general-purpose image-to-image
translation method based on conditional generative adversarial network (cGAN), for predicting
ground state densities from randomly generated confinement potentials. Other mappings were also
investigated, like potentials to non-interacting densities and the translation from non-interacting
to interacting densities. The architecture of the cGAN was optimized with respect to the internal
parameters of the generator and discriminator. Moreover, the inverse problem of finding the
confinement potential given the interacting density can also be approached by the pix2pix
mapping, which is an important step in finding near-optimal solutions for confinement potentials.

1. Introduction

Machine learning (ML) has found extensive applications in multiple research fields in the last decade,
bringing along a new paradigm in science, based on a more efficient and versatile analysis of experimental
and simulated data [1, 2]. Statistical models and high-end programming have led to the build-up of deep
learning techniques that solve problems of clustering, regression and classification [3]. In particular, material
science and nanotechnology have adapted ML algorithms in order to provide an accelerated interpretation of
data and reduce the resources needed for materials [4–6] and device [7, 8] design, based on calculated
examples or experimental results. The field of artificial intelligence has also extended to a variety of topics
such as predicting molecular electron densities [9], reduction of the noise level in high-resolution electron
microscopy images [10] or more theoretical areas of condensed matter [11], such as quantum phase
transitions [12] and learning topological invariants [13].

The physics of nanoelectronic devices and quantum information applications relies heavily on an
accurate and efficient description of many-body states. Traditionally, the many-body systems have been
approached by mean-field theories like Hartree–Fock and density functional theory (DFT), the latter being
mostly employed in the context of atomistic calculations. However, for applications that require q-bit level
descriptions beyond mean-field approaches, computationally more demanding methods such as the exact
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diagonalization (ED) method [14–16] are necessary. Many-electron states have been previously analyzed in
quantum dot (QD) systems with top gate arrays [17], where the exponential increase in the number of gate
voltage configurations leads to a prohibitively large computation effort. Efficiently solving a large number of
many-body Hamiltonian diagonalizations is typically required in the design of nanoelectronic devices and
this is a suitable task for ML approaches. A lot of effort has been devoted to learning the electron densities,
particularly in DFT frameworks, using the local atomic environment [18], equivariant graph neural
networks [19] or by solving the many-body Schrödinger equation using a PauliNet as a deep-learning
wavefunction Ansatz [20] or trial wave-functions implementing Pauli principle [21].

Visualization has always been essential for the understanding and interpretation of the data. In the
context of condensed matter, one idea is the use of graphs as means to encode the information about atomic
and molecular structures [22–24]. Along with the development of advanced deep learning methods, it also
became possible to create algorithms that gain insights into raw representations such as pixels of an image.
For this particular domain, convolutional neural networks (CNNs) have proved to be decisive. In material
physics, CNNs have been employed for a variety of applications, from the prediction of the ionic
conductivity of a ceramic material from image quality maps [25] to the prediction of the space groups and
the crystallographic dimensionality of thin film materials from XRD spectral inputs [26] and a lot of work is
now invested in explaining the mechanism through which CNNs make accurate predictions [27, 28].

Autoencoders, which have CNNs embedded in their architecture, were used to learn low-dimensional
representations of the data from a material database and subsequently incorporate it in a data-driven solver
to improve efficiency [29]. Other methods, like flow-based models have achieved significant results for
variational inference [30], while high quality image synthesis was obtained using diffusion probabilistic
models [31]. One step further from conventional convolutional networks, generative adversarial networks
(GANs), are gaining importance lately. Several research articles have focused on using GANs for
microstructure synthesis [32, 33] and materials design, by capturing the characteristics of complex materials
and learning the mapping between latent variables and the structure [34].

Another remarkable network architecture that is suitable for image processing is the conditional
generative adversarial network (cGAN), in which both the discriminator and generator are given additional
information and, from this point of view, are trained in a conditional setting. cGANs have already been
employed in the field of many-body physics to genenerate quantum state tomographies [35] and even
simulate the dynamical correlators for many-body systems [36]. They have also been proved to be efficient in
the prediction of Ising spin configurations at temperatures outside the training data set [37].

Based on this type networks, Isola et al proposed an algorithm for image translation known as pix2pix,
which learns a loss function that adapts to the data and can be applied to a wide range of image processing
related tasks. This type of model is a valuable tool in image dehazing tasks, which aim to for improve the
quality of images and increase visibility [38]. Pix2pix is also already employed in the field of medical
imaging to generate lesion images from tumor sketches for effective data augmentation [39], for the
detection, colorization and classification of tumor images [40] and to generate synthetic CT images MRI
radiotherapy planning [41]. In the field of industry research, pix2pix was employed for the purpose of
generating new images with surface quality defects, relevant in the production of metal workpieces [42]. Due
to the popularity of the algorithm, there is also considerable interest to increase the speed of training and
improve its efficiency [43].

In this paper, we investigate cGANs implemented in pix2pix method for predicting many-body charge
densities in the ground state, for randomly generated quantum systems. In the training process of the cGAN,
the mapping is performed between the confinement potentials and the densities corresponding to Coulomb
interacting systems, calculated by ED method. A similar mapping is performed to yield the non-interacting
densities. In this way, the ED is bypassed, which is a considerable advantage as diagonalizing many-body
Hamiltonians becomes prohibitive when the number of systems grows too large. Using the pix2pix
mapping, an efficient and accurate prediction of the interacting densities is achieved for new test systems. In
addition, we provide a proof-of-concept for the inverse problem, i.e. generating a potential from an input
density.

The paper is structured as follows. In section 2, the class of model systems is described. In the next
section, the numerical implementations of the ED and pix2pix methods are detailed and some measures
for quality assessment of generated images are indicated. The results obtained for different types of pix2pix
mappings, involving potentials, non-interacting and interacting densities, are discussed in section 4.
Subsequently, a discussion is provided in section 5, outlining the advantages and limitations of the current
approach. The accuracies of the predicted densities are analyzed for several cGAN configurations and
optimal configurations are identified. Moreover, the method is shown to produce accurate results for the
inverse problem as well.
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Figure 1. An interacting quantum system with random A-B type domains. The corresponding potential map in a typical
configuration, Vxy , obtained using the procedure described in the text, is shown below. The system is defined on a
two-dimensional square region of area L× L, with vanishing boundary conditions for the wavefunctions. Starting from a step
potential (yellow regions), Vs = 0.5 eV, a connected set of QWs (black regions), V0 = 0 eV, defines the confinement potential for
electrons.

2. Model systems

The quantum systems consist of N electrons confined in randomly generated potentials Vxy , defined on a
two-dimensional square region, as depicted in figure 1. The potentials Vxy correspond to connected groups
of circular quantum wells (QWs) with different radii. These potential configurations resemble systems of
interacting QDs such as two-dimensional self-assembled functionalized graphene QDs [44], randomly
distributed QDs for memristive elements [45] or random geometric graphs of QDs [46]. Monolayer
graphene—hexagonal boron nitride films can form arbitrary shaped A-B type domains [47, 48], where A
and B are conductive and insulating domains, respectively. Moreover, the choice of random potential maps
also ensures a thorough evaluation of the pix2pix method.

In order to get a balanced distribution of QWs in given potential map, the following scheme was
considered. Starting with a flat potential step of height Vs = 0.5 eV, a number of Nqw = 25 flat QWs are
placed inside the square region of linear size L= 30 nm, having the base potential V0 = 0 eV. The centers of
the QWs are randomly chosen, and their radii are uniformly distributed in the interval L/16< R< L/8.
When a new QW is added, it is allowed to partly overlap with the current QW, but no more than 3/4 of its
area. If the new QW is disconnected from the current QW, it is discarded and new values for the position and
radius are chosen. The process continues until all Nqw are placed. Finally, if more than 80% of the L2 area is
covered by the QWs (V0 = 0 eV), the potential map is discarded and the process is started from the
beginning. In this way, a connected ensemble of QWs is formed, with a high degree of variability. A total
number of NV = 5000 potential instances are generated.

3. Computational methods

3.1. The EDmethod
The non-interacting one-body Hamiltonian for an electron in a two-dimensional confinement potential
V(r) is:

H0 =− ℏ2

2m∗
∂2

∂r2
+V(r) , (1)

wherem∗ is the effective mass and r≡ (x,y) is the position vector in two-dimensions.
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The N-particle Hamiltonian is written as a sum of the single particle operators and the two-body
operator, which describes the Coulomb interaction:

H=
N∑
i=1

Hi +
1

2

∑
i

∑
j

Vi j, (2)

where

Hi =H0 (ri) , (3)

Vi j = VC

(
ri,rj

)
=

e2

4πϵ0ϵr

1∣∣ri − rj∣∣ . (4)

The Hamiltonian in the second quantization becomes:

H=
∑
a

ϵac
†
aca +

1

2

∑
abcd

Vabcdc
†
ac

†
bcdcc, (5)

where ϵa are the energies of the single-particle states and the Vabcd coefficients corresponding to the Coulomb
interaction are calculated based on the orbital components of the single-particle states, {ϕa,σz}:

Vabcd =

ˆ
dr

ˆ
dr ′

∑
σz,σ ′

z

ϕ∗
a,σz

(r)ϕ∗
b,σ ′

z
(r ′)× e2

4πϵ0ϵr

1

|r− r ′|
ϕc,σz(r)ϕd,σ ′

z
(r ′) . (6)

Solving the time independent Schröedinger equation

HΨn = EnΨn, (7)

one obtains the eigenvalues En and eigenvectorsΨn ≡Ψn (r1, s1, . . . ,rN, sN). Then, the particle density in the
ground state is:

n0(r) = N
∑
s1

· · ·
∑
sN

ˆ
dr2 · · · ×

ˆ
drN|Ψ0 (r, s1,r2, s2, . . . ,rN, sN) |2. (8)

The numerical implementation of the ED method is described in detail in [17]. Choosing an appropriate
single-particle basis, which fulfills the boundary conditions, we first solve the one-particle problem for a
given two-dimensional potential, using a basis size N2

b = 322, on a grid Nx ×Ny = 64× 64. Next, using the
single-particle eigenfunctions, {Φi(r)}, an N-particle basis of Slater determinants is assembled in the
occupation number representation. By diagonalizing the two-particle Hamiltonian one obtains the ground
state particle density:

n0(r) =
∑
k

|C0k|2
N∑

p=1

[
|ϕip(k),↑(r)|

2 + |ϕip(k),↓(r)|
2
]
, (9)

where C0k is the expansion coefficient corresponding to the k-th Slater determinant and ϕip(k),↑(r), ϕip(k),↓(r)
are the orbital components of the single-particle states Φip(k)(r), with spin up and spin down, respectively.

3.2. cGAN implementation with pix2pix
The method developed by Isola et al [49] makes use of a cGAN for general-purpose image-to-image
translation. Like in other cGAN approaches, the generator-discriminator architecture of pix2pix is set to
optimize a global goal, namely that the generated output is made indistinguishable from the reference
(ground truth). However, the main differences compared to other cGAN type approaches consists in the use
of a U-Net architecture for the generator and a PatchGAN for the discriminator, which is more sensitive to
local details. In figure 2, a diagram showing the training and testing phases of the cGAN is presented.

We employ this approach to create three mappings of type α 7→ β, as follows: (i) Vxy 7→ ñ0, (ii)
Vxy 7→ ñint, (iii) n0 7→ ñint, where Vxy = V(x,y) is the confinement potential, n0(x,y) and ñ0(x,y) are the
calculated and generated non-interacting particle densities, respectively, and ñint(x,y) is the generated
interacting particle density, which shall be compared to the calculated interacting particle density, nint(x,y).

4
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Figure 2. The workflow of the cGAN method, outlining the roles of the generator and discriminator networks, as a combined
model, trained on (potential, density) pairs. The learning procedure for the total generator loss is indicated, according to the
min-max problem described by equation (11). In the testing phase, the generator network provides the predicted densities from
the input potentials and these are compared with the reference densities obtained by ED method.

Following the standard pix2pix approach [49], the generator G performs a mapping from an input
quantity-image α∼ Vxy or n0 to an output quantity-image β ∼ ñ0 or ñint, except, of course, the trivial
n0 7→ ñ0 mapping. The generator is trained to produce better and better images. On the other hand, the
discriminator, D, is adversarially trained to classify the input it receives as real or fake. Previous cGAN
methods [50] employ a random (Gaussian) noise vector, denoted by γ, so we may describe the generator
mapping as G : {α,γ} 7→ β. However, as the generator typically learns to ignore the noise introduced by the
random vector γ, it is implemented in form of dropout in some layers of the generator and its overall
influence is rather small. Therefore, the stochasticity of the predicted images by pix2pix becomes negligible
and can be completely excluded if the dropout is removed.

In the original paper of Isola et al [49] the objective function of the cGAN is expressed using the binary
cross entropy as:

LcGAN(G,D) = Eα,β [logD(α,β)]+Eα,γ [log(1−D(α,G(α,γ))]. (10)

The objective G∗ is found as G tries to minimize LcGAN and D tries to maximize it and, in addition, an LL1

loss, representing the difference between generated and reference images, is included:

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G), (11)

where LL1(G) = Eα,β,γ [‖β−G(α,γ)‖1]. The parameter λ= 100 sets the relative importance between LcGAN

and LL1 .
In the min-max GAN problem, the generator loss would correspond to Eα,γ [log(1−D(α,G(α,γ)))],

which should be minimized. However, the generator loss tends to saturate due to the vanishing gradients.
This poses a challenge in training the generator at early stages, which causes the discriminator to outperform
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the generator and the model cannot optimally train. Instead, a non-saturating generator loss [51] can
provide a significant improvement:

LGAN
G =−Eα,γ [log(S(D(α,G(α,γ))))], (12)

where S(x) is the sigmoid function. Then, the total generator loss is LGAN
G +λLL1(G). The discriminator loss

is defined as usual [52]:

LGAN
D =−Eα,β [log(S(D(α,β)))] −Eα,γ [log(1−S(D(α,G(α,γ))))]. (13)

The architecture of the cGAN is specified by a number of parameters corresponding to the generator and
discriminator networks. We shall first assume a typical configuration, called reference configuration, which is
then modified for further optimizations. The cGAN translates grid-quantities set on Nx ×Ny = 64× 64
pixels, which are potentials and charge densities. The generator has an encoder-decoder configuration with 6
downsampling convolutional layers and 6 upsampling deconvolutional layers, all with strides SG = 2, which
keeps the size of the output equal to the size of the input. The discriminator receives two pairs of images,
(input image, reference image) and (input image, generated image), which should be classified as real and
fake, respectively. Its architecture includes 5 convolutional layers with the strides-sequence SD = (2,2,2,1,1),
which reduces the input to an output of 6× 6. This corresponds to a convoluted response of patch
classification in real or fake, the patch size being dependent on the discriminator’s architecture. The resulting
patch size is Npt ×Npt = 70× 70 is larger than the size of the image, in which case the cGAN is referred to as
ImageGAN [49]. Decreasing the number of layers in the discriminator, the patch size decreases in the
sequence Npt = 34,16,7,4,1, where the limiting case with Npt = 1 is termed PixelGAN. The kernel size for
both G and D is κ= 4. A comprehensive list of model parameters, training and testing procedures is
presented in table A1.

3.3. Error and accuracy measures for generated densities
In many applications of image-to-image translation like e.g. maps 7→ aerial photographs or the opposite, a
perceptual validation is often employed [49]. Assessing the quality of the generated images or comparing
them with target images is generally not an easy task.

A quantitative approach often employed is the structural similarity index measure (SSIM), which
combines luminance, contrast and structure components [53]. However, for the current aim of mapping the
charge densities in quantum systems, the stochasticity of the model is limited and a strict comparison based
on L1, L2 and L∞ norms also becomes a suitable assessment with a transparent interpretation. The L1 norm
reflects the amount of displaced charge in generated vs. reference systems, L2 is related to the root mean
squared error and L∞ corresponds to a local maximum error in the evaluation of the charge densities.

In order to evaluate the difference between the generated and reference grid-based quantities, denoted by
β and βref, we consider the L1, L2 and L∞ norms as possible measures, the first two being scaled by the
number of grid points (pixels):

L1 =
1

Nx ×Ny
‖β−βref‖1 (14)

L2 =
1√

Nx ×Ny
‖β−βref‖2 (15)

L∞ = ‖β−βref‖∞. (16)

On the other hand, SSIM can provide further assessment on the structural differences between the generated
and target densities. In addition, we calculate a mean SSIM (MSSIM) employing a uniformly weighted 8× 8
square window. In the subsequent analysis, for the calculation of SSIM and MSSIM we use the typical
parameters suggested in [53].

The prediction accuracy in an ensemble of Nsys generated and reference pairs, {(βi,βref,i)}, can be
described by the R2 coefficient of determination, calculated from the residual sum of squares, SSres, and the
total sums of squares, SStot :

R2 = 1− SSres
SStot

, (17)

with

SSres =

Nsys∑
i=1

‖βref,i −βi‖22, (18)
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SStot =

Nsys∑
i=1

‖βref,i − β̄ref,i‖22, (19)

where β̄ref =
1

Nsys

∑Nsys

i=1βref,i. In the vector space of the grid-based quantities {βi}, we define βi ±βj as

pixel-wise addition and subtraction, respectively.

4. Results

The quantum systems considered here consist of N particles confined in randomly generated potentials
{Vxy} following the scheme described in section 2. Starting with N = 2 and using the reference cGAN
configuration we perform the three mappings, as shown in figure 3 for a typical instance: (i) Vxy 7→ ñ0,
(ii) Vxy 7→ ñint, (iii) n0 7→ ñint, where the ‘∼’ symbol denotes generated quantities. The potentials {Vxy}
are readily available as input data, while the non-interacting densities, {n0}, can be determined by
one-particle calculations. The interacting densities, {nint}, are determined using the ED method, using the
non-interacting manyparticle states obtained in the previous step, which are used to set up the two-particle
basis. The first two mappings produce densities directly from the input potentials and, in particular, the
second one, Vxy 7→ ñint, is of the highest importance, as it yields the interacting density without any
diagonalization procedure after the model is trained. The third mapping starts from the non-interacting
density, rather than the confinement potential, and it is performed for comparison.

Evaluated by visual inspection, all three mappings depicted in figure 3 reproduce quite well the key
features of the reference (calculated) densities. In a typical non-interacting calculation, the ground state
charge density, n0, is mostly localized in the QW region where the confinement is weaker, i.e. the wider part
of the QW, so that the kinetic energy is minimized. In this case, the two electrons with opposite spins occupy
the same space. However, when the Coulomb interaction is considered, the charge density in the ground
state, nint, is more delocalized, being distributed in the QW of arbitrary shape, also in regions with stronger
confinement. Qualitatively, the distribution of nint is set by the tradeoff between the larger kinetic energy in
stronger confinement regions and the Coulomb interaction between the particles occupying the same space
in a region with weaker confinement. Figure 3 shows that the cGAN is able to learn the non-trivial features,
so that the target quantities are reproduced with a high degree of accuracy. Additional examples are indicated
in figures A1 and A2 in the SI, for mappings from potentials and non-interacting densities, respectively.

The training process of the cGAN was performed using Ntrain = 4800 image pairs, using a batch size of 1
(instance normalization), while a number of NVal = 100 and Ntest = 100 distinct samples were used for
validation and test. For the relatively large training set, the averages of the potentials, non-interacting and
interacting densities indicate a balanced distribution, as shown in figure A3 of the SI. These averages are later
used to calculate the R2 coefficient.

During the training process, we monitor the loss functions of the generator and discriminator, which are
depicted in figure 4 for a typical case. In contrast to the usual deep learning architectures, where the loss
functions are specified, in cGANs the discriminator loss is learned from the input data, which usually brings
large fluctuations. Therefore, instead of seeking the minima, the model becomes suitably trained when the
loss functions are stabilized. This also poses a problem for the train-stopping-criterion, which is often
optimized by visually checking a sequence of steps at the end of the training.

In order to assess the quality of the generated densities in the Vxy 7→ ñint mapping, we calculate SSIM and
MSSIM for a group of 30 samples from the test set and monitor their individual evolution as the model is
trained. The data shown in figure 5 tends to overlap, indicating that high values (up to∼ 0.9995) for both
SSIM and MSSIM can be obtained, when the generated density becomes very similar to the target density,
while at beginning of the training these values are below∼0.3, when the first generated densities resemble
the input potentials. However, a number of outliers are evidenced for which this procedure would produce
somewhat worse results. These instances are described in figure A4 of the SI. It is important to note that
SSIM and MSSIM are in close correlation with the error measures based on L1, L2 and L∞, which are also
represented in figure 5 for the same instances.

The overall accuracy of generated grid-based quantities on a set of examples is evaluated by the R2

coefficient of determination. The evolution of R2 for the test set vs. time step is depicted in figure 6 for several
cGAN architectures. We focus on the discriminator’s architecture and vary the number of convolutional
layers and the kernel size, which determines the patch sizes. The PixelGANs (Npt = 1) perform better
compared to an ImageGAN in the standard configuration, with 3+2 convolutional layers and a kernel k= 4.
However, overall, there are relatively small differences between all these configurations, with R2 values in the
interval 0.78–0.84.

7
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Figure 3. Non-interacting and interacting densities generated by the pix2pix cGAN, for a two-particle system confined in a
random potential Vxy : (i) Vxy 7→ ñ0, (ii) Vxy 7→ ñint, (iii) n0 7→ ñint mappings, indicated by red, green and blue arrows,
respectively. The left column shows the images of the calculated grid-based quantities: Vxy , n0, nint. In the right column the
generated images are depicted: ñ0 and ñint, the latter being determined from either Vxy or n0. The solid lines indicate the actual
mapping, while the dashed lines indicate an association between the calculated (reference) data and generated (predicted) images.

Although, in contrast to standard (dense or convolutional) artificial neural networks, the utility of
validation in GANs is questionable, we observe a systematic correlation between the training and a separate
validation set, as indicated in figure 7(a). This is particularly useful as one difficulty observed in the training
of the cGANs consists in the sharp variations of the loss functions with the time step. The correlation
between the training and validation sets enables us to optimize the training interval (Nsteps), i.e. it provides a
stopping criterion so that the model produces accurate results. Then, the model is frozen and new densities
are generated for the test set. Decreasing the number of input images the R2 parameter is reduced, as one can
see from figure 7(b), while the relatively high values reflect the overall resemblance between the potential and
the associated density.

8



Mach. Learn.: Sci. Technol. 4 (2023) 025023 C-A Pantis-Simut et al

Figure 4. Generator and discriminator loss functions vs. the number of steps in a typical training run, for the mapping Vxy 7→ ñint
(thin lines). A smoothing is applied to all four data sets using the Savitzky-Golay filter with 3rd degree polynomial and a window
of 40 points, to better illustrate the trends (thick lines). In spite of the relatively large fluctuations, typical for cGAN architectures,
the loss functions tend to stabilize.

We also investigated possible optimizations of the cGAN approach. First, we account the effect of random
jitter by resizing the images to Nresize ×Nresize and then randomly cropping back to the original size, 64× 64.
This procedure was employed in a number of image translation problems discussed in [49], like Map↔
aerial photograph, day→ night images. In other cases, like black/white→ color images no jittering was
applied. A systematic investigation with respect to Nresize taking values from 64 to 80 in steps of 2 pixels
shows that, for the nint 7→ Ṽxy mapping, no-resize (Nresize = 64) leads to the best results, R2 ∼ 0.9, and it
decreases for larger Nresize values, as it can be seen in figure 8. This is further confirmed by L1, L2 and L∞
norms, where the first two are well correlated, while, as expected, there are larger fluctuations for the L∞
norm. The quality of the generated images is also consistent with this trend, as the charge distribution
becomes less diffuse. Secondly, we tested several values of the λ parameter, which mixes LGAN

G and LL1 losses
and found a similar behavior as reported in [49]. Small values (λ< 50) tend to produce image artifacts,
e.g. misplaced peaks in the charge density, while large ones (λ> 100) introduce broadening effects in the
charge distribution. These trends are illustrated in figure A5 in the SI.

Further, we employed this method for larger numbers of particles, namely N = 3 and N = 4. Figure 9
shows the calculated and predicted ground densities for N= 1,2,3,4, using the same potential as in figure 3.
As the particle number increases, the number of many particle states also becomes considerably larger and
the ED calculations are even more computationally expensive. In the case of N = 3, the number of many
particle states is NMES = 560, while for N = 4 we have NMES = 1820. We did not impose any cut-off for the
basis dimension in order to maintain the highest accuracy for the charge density calculation. The
distribution of the training, validation and test data was maintained the same and the order of the randomly
generated potentials was not altered. Also, the training parameters and the architecture of the networks
remain unchanged. In this manner, we can compare the performance of the pix2pix method as the number
of electrons confined in the same potential configuration is varied. We focused only on the mapping
Vxy 7→ ñint, predicting the interacting charge density from the two-dimensional potential. As more electrons
are added to the two-dimensional system, we notice the number of maxima in the charge density profile
increases, while the charge becomes more extended in the connected QWs. In the ground state, the
expectation value of the Hamiltonian (the total energy) is minimized, so there is a competition in decreasing

9
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Figure 5. The evolution of SSIM and MSSIM during training for the mapping Vxy 7→ ñint, for a group of 30 test instances.
Histograms of all SSIM and MSSIM values collected during training are depicted on the right hand sides of each plot. It is worth
noting that the norms L1, L2 and, in part, L∞ are closely correlated with SSIM and MSSIM.

Figure 6. Prediction accuracies obtained with different cGAN architectures, based on tuning several key parameters, the number
of convolutional layers in the discriminator network and the kernel size, resulting in the different patch sizes, Npt. Depending on
Npt values with respect to the image size, three groups of networks can be identified: ImageGAN (Npt > 64), PatchGAN
(1< Npt < 64) and PixelGAN (Npt = 1).
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Figure 7. Accuracies measured by R2 during training: (a) R2 for training, validation and test sets, for the mapping Vxy 7→ ñint,
with the standard cGAN configuration; (b) R2 values for the test set, while varying the number of training examples, Ntrain. The
improvement of the final generated image for different sizes of the train sets is shown. For Ntrain < 100, the generated density
merely resembles the potential (input image), while for Ntrain > 800 two individualized maxima can be observed, while further
fine-tuning occurs for larger Ntrain.

Figure 8. Analysis of the random jitter by applying resizing to Nresize ×Nresize and then randomly cropping the images to the
initial size. (a) The generated densities shows that the best results are obtained for no-resize (Resize= 64 px). (b) The R2

coefficients and (c) the L1, L2, L∞ norms show consistently that the accuracy is reduced by increasing the resize parameter.

the Coulomb energy between the electrons and their kinetic energy, which is directly related to the effective
confinement length. The interpretability of the many particle states is less obvious as one adds more fermions
to the quantum system, particularly in the case of random potentials. However, the values of R2 coefficients
for three and four particles are 0.93 and 0.95, respectively. While the accuracy in identifying the charge
density maxima slightly decreases as the number of particle is increased, the determination coefficient has
higher values. This can be explained by the fact that the charge is more delocalized and it gradually takes the
shape of the confining potential, which facilitates the prediction process. Additional instances illustrated in
figure A6 further confirm these trends. For even larger number of particles one expects that the description
of the quantum system becomes closer to a mean field approximation.
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Figure 9.Mapping potentials to charge densities for different number of particles, N= 1,2,3 and 4, according to the mapping
Vxy 7→ ñint. Increasing N, the charge densities have a larger spread towards the extremities of the confinement potential due to the
Coulomb interaction, while several peaks develop.

The inverse problem, i.e. mapping an input density to a generated potential, is highly important from
both fundamental and technological perspectives. However, not every proposed ground state density can be
obtained from a potential, which is known as the V-representability problem [54]. Therefore, the inverse
mapping nint 7→ Ṽxy is here performed starting from computed densities, rather than arbitrary ones. This
provides a proof-of-concept for a solution to the inverse problem based on pix2pix approach, if the target
potential exists. As shown by Kohn in [55] small enough deviations from a V-representable density is still in
the same class, leading to a slightly different potential.

A typical nint 7→ Ṽxy, starting from an ED-computed density is shown in figure 10. We use the same pair
(Vxy,nint), but this time nint serves as input and the generated image contains the potential Ṽxy. Then, we

recalculate the density corresponding to the generated potential, Ṽxy, which is denoted by n(r)int . Comparing

Ṽxy with Vxy and n(r)int with nint, i.e. generated vs. input quantities, one observes a large degree of similarity. To
further support this, we plotted additional instances in figure A2(b) in the SI. There are still some small
differences visible in the generated potentials compared to the original ones. In most cases, these differences
occur for the regions with high confinement that are isolated from the main QW (e.g. as it is found in the
instances 5 and 6 from figure A2(b) in the SI), which contain a small amount of localized charge.
Consequently, as these QW regions are removed in the pix2pix-generated potential by the cGAN model,

the recalculated charge, n(r)int , will not differ much from the input density, nint. Note that even the small
islands present in some of the generated potentials are well represented compared to the originals. Then, as
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Figure 10. The inverse problem: generating potentials from interacting charge densities, according to the mapping nint 7→ Ṽxy.
Choosing an input potential, we calculate the interacting density by ED, which becomes the input image for the pix2pix
approach. The resulting potential, Ṽxy, is tested by computing its corresponding density, n

(r)
int , which is very similar to the initial

density nint, calculated from Vxy .

Figure 11. Evolution of the generated grid-based quantities ñint (first row) and Ṽxy (second row), according to the mappings
Vxy 7→ ñint and nint 7→ Ṽxy, respectively. In the two mappings, the initially generated images resemble the input potential and
input density. Then, the images are gradually transformed, becoming more and more similar to the target density and potential,
respectively.

expected, the largest deviations occur at the boundaries, in particular at the edges of the square region, where
the wavefunction vanishes.

Although, in general, the ML methods are not very transparent with respect to their inner workings, it is
interesting to observe the evolution of generated images representing densities and potentials. Figure 11
shows the sequential improvement of the generated images starting from the input images, as the model is
improved. In the first row, the initial assumption for the density resembles the potential, with larger values
outside the region corresponding to the QW. This is reversed in less than 10 steps and the charge is spread
rather evenly inside the QW region. Starting with 200-300 steps, the density begins to localize inside the QW,
while continuously changing its shape towards the target density, with two localized maxima. For the inverse
problem, the evolution is shown in the second row of snapshots in figure 11. This time, the input is the
interacting charge density and the first generated potential resembles it closely. However, in less than ten
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steps, two QWs are individualized, then extending and merging in the first 100 steps. Subsequently, the shape
of the generated potential becomes gradually closer to the target potential, which is depicted in figure 10. The
capacity of the method to reproduce the desired quantities is further confirmed by the SSIM values
calculated for the pairs generated—reference, as shown in figure A7 in the SI.

Overall, the pix2pix approach provides an accurate and efficient alternative to predict the ground state
density from the input potential or, conversely, to generate a potential from a given density, known to be
V-representable, once the cGAN is trained on a distinct set of calculated examples. Further investigations on
excited states, as well as on quantum systems with larger numbers of particles can be pursued in a similar way.

5. Discussion

The proposed cGAN based on the pix2pix method is an Ansatz-free approach, which makes no a priori
assumption about the many-body wavefunction, which is usually done by setting Slater determinants or
other trial functions. It directly provides a mapping between the random potentials and observable
quantities like the ground state charge densities. Similarly, it could yield spin density maps for Hamiltonians
which contain spin-orbit interaction and magnetic field contributions. The Ansatz-free approach may be
advantageous particularly for problems where a suitable basis set is not easy to obtain, e.g. mesoscopic
random structures.

The mappings are achieved by learning a loss function that makes the generated images as close as
possible to reality, which corresponds to the reference charge maps. This means that on a given class of
potentials, the algorithm learns rather subtle features concerning the charge localization effects in the
confinement potential, in the context of an interacting system. The generator loss combines the LGAN

G loss
with the LL1 loss. On one hand, the LGAN

G loss tends to produce rather sharp images resembling the reference
ones, since these are not identified as fakes, but artifacts may be generated, e.g. with respect to the
positioning of the charge density maxima. On the other hand, the LL1 minimizes the average error per pixel
with respect to the reference and typically results into more consistent and blurred images.

In its current form, the algorithm lacks stochasticity, which is an advantage for generating a deterministic
output. Even though in other applications a highly stochastic generated output is desired, here the ground
state charge density is uniquely determined by the confinement potential and particle number. In this
respect, by removing the dropout in the generator layers, the pix2pix method becomes fully deterministic.
With respect to efficiency, similar to other ML approaches, the formulated problem should assume a
relatively large set of many-body systems. A large variability in the class of potentials with respect to the total
number of instances will pose a limitation to the current approach. Also, as the number of particles grows
larger, the number of many particle states increases rapidly and the diagonalizations become feasible if an
energy cut-off is imposed on the many-body basis set.

Another important advantage of the current method is that the inverse problem, i.e. mapping the
confinement potential from a given density, can be approached in a similar way. The V-representability
problem of the charge density can be circumvented by testing the generated potential. If the calculated
density, using the ED technique, fits the input density well, then the generated potential can be adopted as a
solution to the inverse problem, otherwise it shall be dismissed. Given the importance and difficulty of
solving inverse quantum many-body problems the topic will certainly deserve future investigations.

6. Conclusions

We introduced an image-to-image translation approach based on the pix2pix method to predict N-particle
charge densities from the confinement potentials. The quantum systems are defined on two-dimensional
square region with randomly generated potentials and the corresponding ground state densities are
determined by ED method. A large number of pair images is generated, corresponding to the confinement
potentials and calculated interacting densities. Using the cGANs implemented in pix2pix we perform three
types of mappings: potential to non-interacting density, potential to interacting density and non-interacting
to interacting density. Although all three mappings result in accurate predictions, the focus is on generating
an interacting density from a given potential. Several cGAN architectures have been considered, by varying
the number of convolutional layers and kernel size in the discriminator network. This analysis shows that a
PixelGAN is most accurate, although other configurations yield comparable results.

The possibility to perform an inverse mapping, i.e. starting from a density and generating a potential, is
outlined. Here, we considered as input a calculated density, which ensures the V-representability. The
generated potential is then tested and confirmed by calculating the ground state density associated with it
and comparing this density with the original one.
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The cGAN based approach provides an efficient solution for predicting non-interacting and interacting
ground state densities when a large set of systems from a given class is required to be solved. Interestingly, the
inverse problem can also be approached using this technique, which is important for the design of
nanoelectronic devices. The pix2pix method is shown to be accurate for describing interacting quantum
systems and appears to be further well suited for a range of condensed matter problems.
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Appendix. Supplementary information

Figure A1.Mapping from potentials to (a) non-interacting and (b) interacting densities. The error maps correspond to
differences between the target and predicted distributions (in absolute value).
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Table A1. Architecture details and model parameters in the cGAN implementation (reference configuration) and prediction accuracy
measures:.

Model element / Method Description / Property / Value

1. Generator architecture

Network type Decoder-Encoder (U-Net)
Encoder Number of layers= 6

Activation function= LeakyReLU, slope= 0.3
Input size= 64× 64× 1 (one RGB channel)
Convolution: padding= same, strides= 2

Decoder Number of layers= 6
Activation function= ReLU (tanh for the last layer)
Transposed Convolution: padding= same, strides= 2
Dropout (optional): fraction= 0.5

Generator (GAN) loss LGAN
G =−Eα,γ [log(S(D(α,G(α,γ))))],

for a more robust minimization of
Eα,γ [log(1−S(D(α,G(α,γ))))] [51, 52]

Total generator loss LGAN
G +λLL1 ,

where LL1(G) = Eα,β,γ [∥β−G(α,γ)∥1] and λ= 100

2. Discriminator architecture

Network type PatchGAN classifier
Number of layers= 5
Input size= 64× 64× 2 (potential-density pairs)
Convolution: zero-padding, strides-sequence
SD = (2,2,2,1,1)
Patch size= 70× 70 (ImageGAN)

Discriminator (GAN) loss LGAN
D =−Eα,β [log(S(D(α,β)))]−Eα,γ [log(1−S(D(α,G(α,γ))))] [52]

3. Training

Optimizer Adam optimizer, with learning rate= 10−4

and momentum parameters β1 = 0.5, β2 = 0.999
Batch size Instance normalization (batch size= 1)
Initializer Gaussian distribution, with zero mean

and standard deviation 0.02

4. Prediction accuracy measures

R2 Coefficient of determination for image data sets
SSIM Structural Similarity Index Measure [53]
MSSIM mean-SSIM, using a window of 8× 8 pixels
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Figure A2.Mapping from charge densities: (a) non-interacting to interacting densities, n0 7→ ñint and (b) the inverse problem,
nint 7→ Ṽxy. The error maps correspond to differences between the target and predicted distributions (in absolute value).

Figure A3. Averages of confinement potential (V̄xy), non-interacting density (n̄0) and interacting density (n̄int) calculated using
the training set (Ntrain = 4800). These average maps are used in the calculation of R2. All three images indicate the balanced
distribution of potential shapes. The average non-interacting density is more concentrated in the center of the square compared
to the interacting density.
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Figure A4. Three examples of outliers, which exhibit the largest deviations from the reference, as identified by the SSIM analysis
in figure 5.

Figure A5. The effect of the LGAN
G and LL1 mixing on the total generator loss. We considered λ= 0,50,100,300 and 1000, which

includes the limiting cases of sole LGAN
G contribution (λ= 0) and sole LL1 contribution. The optimal values are identified around

λ≈ 100. Two different potential instances are presented. Smaller values tend to produce artifact-localizations of the charge
density, while large values introduce an artificial broadening of the charge distributions.
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Figure A6.Mapping potentials to interacting charge densities for different number of particles, N= 1,2,3 and 4, considering
four different potentials.

Figure A7. SSIM values for pairs of densities and potentials. One pair consists of the reference instance (index i0 = 3236) from the
test set, described in figures 3 and 10, and one other instance in the set of 5000 instances: (a) (nint,i0 ,nint,i) and (b) (Vxy,i0 ,Vxy,i),
depicted by black dots. For i = i0 we have SSIM= 1. The red dots indicate the comparisons between reference and generated
quantities, for (a) densities (nint,i0 , ñint,i0 ), SSIM= 0.993 and (b) potentials (Vxy,i0 , Ṽxy,i0 ), SSIM= 0.957, showing that the
generated density (ñint,i0 ) and potential (Ṽxy,i0 ) have higher similarity with their references compared to any other instance in the
set.
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