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Mônica De Rezendea,b, Beatriz S. L. P De Limaa, and Solange Guimarãesa

aCivil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil;
bBrazilian Navy Research Institute, Rio de Janeiro, Brazil

ABSTRACT
The weapon-target assignment (WTA) problem is crucial for stra-
tegic planning in military decision-making operations. It defines
the best way to assign defensive resources against threats in
combat scenarios. This is a NP-complete problem where no exact
solution is available to deal with all possible scenarios. A critical
issue inmodeling theWTA problem is the time performance of the
developed algorithms, subject only recently contemplated in
related publications. This paper presents a hybrid approach
which combines an ant colony optimization with a greedy algo-
rithm, called the Greedy Ant Colony System (GACS), in which a
multi colony parallel strategy was also implemented to improve
the results. Aiming at large scale air combat scenarios, simulations
controlling the algorithm time performance were executed achiev-
ing good quality results.

Introduction

Several barriers that existed in the past were not enough to guarantee the
access control over a wide range of technological advances in the military
field, as hardware devices, weapons, and military vehicles, making it difficult
to prevent its misuse. Reducing risks in this scenario of uncertainties is not
easy, what increases the interest in decision support systems capable of
improving the results of defensive operations. Nevertheless, defense resources
must be applied with rigorous criterions, in order to minimize losses on the
defensive side, preferably at low cost. This is the picture depicted by the
weapon-target assignment (WTA) problem, a well-known military issue in
the operations research (OR) area (Luss e Roseinwein 1997).

Tactical planning is a difficult task even for computer-based systems due
to the great amount of possible scenarios. Air defense operations are the
most challenging ones since aerial targets have a high degree of maneuver-
ability and can move exceedingly fast, demanding decisions in a very short
time. Therefore, special heuristics have been developed to deal with WTA
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problems, which, although sometimes not providing the global optimum,
generate a high quality distribution of the available resources that minimizes
the targets threat level in real time.

In this paper, we propose the hybridization of an improved ant colony
optimization with a greedy algorithm for modeling an offensive strategy of
the WTA problem, described in detail in the next section. Good quality
solutions were obtained in tests within a controlled response time of the
algorithm, even for large scenarios.

The assignment problem

The weapon-target assignment (WTA) problem is an example of combi-
natorial optimization. Given two sets, one being resources and the other
being targets, the WTA problem consists of assigning each resource to a
target minimizing target survival from the engagements or maximizing the
assets survival after the enemy attack, therefore, finding the best way to
allocate the existing resources against targets in tactical scenarios of
defense operations. Hossein (1990) described two different defense mod-
els, target-based model (offensive strategy), and asset-based model (defen-
sive strategy). The asset-based model involves strategic ballistic defense,
demanding knowledge about which targets are headed to which assets,
while the target-based model applies to offensive strategies types of com-
bat, assuming that targets are known (Murphey 2000). We focused on the
latter.

In target-based model, each incoming target receives a value that aggre-
gates its threat level. When a resource engages a target, they form a pair with
an associated damage probability, a statistical measure of the likelihood that
the resource nullify the target. After an engagement, the target threat level
decrease into an expected survival value, reflecting the resource damage
probability effect over the target threat level. The WTA objective for this
model is to minimize the total expected value of the targets that survive all
engagements.

Another aspect of WTAmodel concerns the evolution of operations with time.
The static model, called static weapon-target assignment (SWTA) problem con-
siders that defense operations evolve in one single stage. Dynamic weapon-target
assignment (DWTA) problem considers several defense cycles in an ongoing
defense operation. Each cycle may be viewed as a SWTA, using a smaller amount
of the total available resources, what characterizes the nondeterministic aspect of
the model.

This article aims the target-based SWTA model, assigning each resource to a
target so as to minimize the target survival values f(S) presented in Equations (1)
and (2):
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Minimize f Sð Þ ¼
XT
i¼1

Vi

YW
j¼1

1� Pij
� �xij Sð Þ

 !
(1)

xij Sð Þ ¼ 1 if Sj ¼ i
0 otherwise

�
(2)

In Equations (1) and (2), the vector S is a feasible solution representation
for the WTA problem, where each element Sj, " j ¼ 1; . . . ;W, represents
the assignment of the jth resource, the element position j, to the ith target,
i.e. Sj = i, " i ¼ 1; . . . ;T . T denotes the total number of targets and W
the total number of available resources. Note that the representation S has
the advantage of always producing a feasible solution, automatically satis-

fying the constraint
PT
i¼1

xij ¼ 1; " j ¼ 1; . . . ;W. Therefore, any resource

can engage any target and more than one resource can engage the same
target, but each resource engages only one target. Vector V represents the
initial target values, a known threat level for each target of the current
scenario. P is a given matrix of kill probabilities, where each element Pij is
an independent event probability of resource j to nullify target i in an
engagement, also a known matrix. Therefore, the term 1� Pij

� �
is the

probability of target i to survive if engaged by resource j. The number of
feasible solutions for a problem involving T targets and W resources is
TW .

It is important to notice that when a resource j is assigned to the target i, its
target value is updated to Vi 1� Pij

� �
, diminishing the current threat level Vi of

the target. Considering the target-resources ensemble, if k resources have already

been assigned to the same target, the target value decreases of
PW
j¼1

ViPijδisj , where

δisj is the Kronecker delta and
PW
j¼1

δisj ¼ k. If no resource has been assigned to the

target yet, the target value is equal to its initial threat value Vi.

Algorithms for WTA optimization

The explicit enumeration method would ensure a global solution for this
problem if we could verify all possible weapon-target pair combinations
for a specific scenario in a reasonable time. However, the SWTA problem
is NP-complete, meaning that exhaustive search is not a viable method for
this problem. Heuristic approaches are necessary as they can provide near
optimal solutions in a shorter time.

First studies about the WTA problem appeared within the operations
research field in the middle of the past century (Manne 1958). Analytical
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approaches at that time include classic optimization methods, like implicit
enumeration, branch and bound algorithm, integer linear programming and
dynamic programming (Karasakal 2008), (Eckler e Burr 1972). Den Broeder et
al. (1959) proposed the Maximal Marginal Return (MMR) approach to solve
WTA. This greedy algorithm reaches the optimum only for a special type of
WTA problem, since it considers the damage probability independent of
resources: Pij ¼ Pi . Kolitz (1988) enhanced the MMR with results that out-
performed the first one, fact vastly shown in other works (Johansson and
Falkman 2011).

Heuristic methods inspired by nature have led to a new wave of
proposals improving the modeling of the WTA problems. Based on
genetic algorithms (GA), the work of Lee et al. (2002a) included a domain
specific knowledge in the crossover operator and a local search mechan-
ism. They proposed a greedy eugenics contribution to achieve better
results. Other works focused on hybridization of different bio-inspired
methods, combining them to improve the results by unifying the advan-
tages offered by each one. Lee et al. (2002) hybridized ant colony optimi-
zation (ACO) and artificial immune system. In Wang and Chen (2012), a
particle swarm optimization (PSO) algorithm and a cultural algorithm
were combined, improving the local and global search scheme of PSO.
Zeng et al. (2006), associated PSO and GA methods to solve WTA
problems. In Lee and Lee (2005) and in Zhang, Xiaojing, and
Chuanqing (2012), the combination of ACO and GA methods was
considered.

Although all these algorithms results considerably minimize the initial
threat level in combat scenarios, the computational time can be prohibitive
high when the problem size increase. Decision making to an air threat
defense scenario requires a reaction time in the range of 1 to 2 seconds
(Johansson e Falkman 2010). Many works show results obtained after run-
ning algorithms for hours, compromising its practical applications (Lee, Lee
and Su 2002a), (Lee, Su and Lee 2002b), (Lee, Su, and Lee 2003), (Lee and Lee
2005). Johansson and Falkman (2011) considered explicitly time limitation
adopting it as a termination criterion in their work.

Julstrom (2009) showed the results obtained with two different types of
GA, the string-coded and permutation-coded GA. In the string-coded GA
the chromosome representation is the same as S, defined in Eq. (1). In the
permutation-coded GA, the chromosome represents the order of resources to
be followed by a MMR algorithm procedure. Julstrom (2009) reported
improvements achieved by both GA algorithms when the solution obtained
by the MMR algorithm of Kolitz (1988) is used to introduce a seed in the
initial population. Seeded and unseeded versions of each GA algorithm were
run 30 independent times using 15 randomly generated scenarios. Seeded
versions of both GA algorithms performed better than unseeded versions
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but, in large scenarios, the string coded GA performed better being suitable
for air scenarios involving up to 40 resources and 80 targets. Nevertheless,
the tests were limited to only one instance of each scenario size.

Johansson and Falkman ((2009), (2010), (2011)) reviewed deterministic
and nondeterministic heuristic approaches for solving WTA problems:
exhaustive search algorithm, two different MMR algorithms, naïve random
search algorithm, greedy local search algorithm, ACO algorithm, GA and
PSO algorithms. They reported better performance in their seeded versions
of the GA and PSO algorithms, seeded by the MMR result of Kolitz (1988).
The PSO implemented was the classical (Kennedy e Eberhart 1995). All
algorithms computed the best fitness values obtained during the loop search
of 1 second, but the tests were limited to small scenarios, involving up to 30
resources and 30 targets.

Ahuja et al. (2007) proposed an algorithm based on a partition WTA
problem formulation where a very-large-scale neighborhood search algo-
rithm (VLSN) were used to deal with integer non-linear optimization
problems as the WTA. According to their results, the algorithm showed
to be very efficient within a few seconds run, even though the compar-
ison gaps were calculated between the VLSN solution and an estimated
lower bound objective function value, considered as the optimal
solution.

Our work hybridizes two approaches: the deterministic MMR method of
Kolitz (1988) and the stochastic ACO. The study adapted to the WTA
problem a new variant of an Ant Colony System (ACS) (Dorigo and
Gambardella 1997) and adopted a multi colony parallel strategy to improve
the performance. Our algorithm, GACS, achieved good results in a reason-
able run time, including large scenarios of up to 80 resources and 80
targets.

Heuristic approaches adopted

Deterministic approach

Greedy algorithms solve optimization problems by selecting at each iteration
the choice that best fits the objective function at that instant, choosing a local
optimal solution. We used the greedy approach of MMR algorithm (Kolitz
1988), denoted here as MMR2, for comparison purposes since it is well known
that this MMR algorithm provide better results (Johansson and Falkman 2011)
than the MMR of Den Broeder et al. (1959), named here MMR1. Both
algorithms have as input parameters vector V of target values and matrix P
of kill probabilities, and, as output, vector S. Differently from MMR1, the
MMR2 solution is independent to list sequences, since it scans all target values
and all resources, searching for the pair that currently maximizes reduction of
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threat values. Also, as in all such an algorithm, after the assignment of a
resource to a target, the target value diminishes for the next iteration, reducing
the threat level associated with this target. Both MMR algorithms provide
solutions very quickly, even for large-scale scenarios. For non-complex input
scenarios, MMR2 reaches the global optimum more frequently, being very
effective. However, for complex situations, MMR1 and MMR2 solutions are
frequently reduced to poor quality local optima.

Nondeterministic approach

Ant colony optimization (ACO) is a swarm intelligence population-based
metaheuristic inspired by the cooperative behavior performed by real ants
when they leave their nest in search for food (Dorigo and Stützle 2004). One
of the most famous ACO applications is the traveling salesman problem
(TSP). Initially, the ants start their search for food randomly. Since ants have
low visual capacity they leave pheromones on the ground as a way to mark
visited paths, helping them coming back to their nest, and also, sharing
information with other ants since they all detect pheromone trails.
Directions with intense levels of pheromone are highly attractive to them,
probabilistic increasing the amount of ants passing by. Ants spend less time
to go back and forth on shorter paths accumulating more pheromone on
these trails, privileging shorter paths. Pheromone trail also evaporates over
time, but at a lower rate than the pheromone deposit if ants continually use
the trail, keeping its power of attraction.

The ACO metaheuristic uses directed graphs to model optimization pro-
blems. A population ofm artificial ants is put to transverse the graph in order to
find the shortest path. The full path crossed by an artificial ant represents a
feasible solution for a problem to be evaluated and compared to other paths. In
optimization problems, the evaporation process is a way to avoid premature
convergence to local optima forgetting poor results.

Therefore, ACO is a probabilistic metaheuristic that generates nondeter-
ministic solutions. Its great advantage lies on how well its internal mechan-
isms perform in the exploration and exploitation of the solution space,
expanding the search scope if compared to problem-specific greedy methods.
ACO is a constructive metaheuristic, that maintains an indirect memory of
crossed paths by the use of pheromone deposits. Ant System (AS) was the
first ACO algorithm proposed in literature (Dorigo and Gambardella 1997),
where the pheromone was updated only after all ants had finished their
routes being the amount of pheromone deposited by each ant a function of
the route quality.

The management of an ant activity in Dorigo’s work is centered in the
probability, Pkij tð Þ, of an ant k, positioned at node i of the directed graph, to go
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to the node j at a time t. The probability Pkij tð Þ is given by Equation (3) (Dorigo

and Stützle 2004).

Pk
ij tð Þ ¼

ταij tð Þ η
β
ij tð ÞP

l
ταil tð Þ η

β
il tð Þ

; j ^ l � allowed l tð Þ
0; otherwise

8<
: (3)

The pheromone deposit at a time t in each trail is τij tð Þ and the correspond-
ing heuristic information is ηij tð Þ, indicating the likelihood of an ant k

displacement from the vertex i of the graph to another, j. The heuristic
information variation throughout the evolution is specific to each applica-
tion, modeling the key characteristics of the problem. Power parameters α
and β are weights for setting the influence of pheromone deposit and
heuristic information, respectively. Element, allowed l(t), is the set of neigh-
bor nodes of i allowed to be selected as j to form a path ij at time t. The
pheromone is updated from one interaction to another by the expression
shown in Equation (4).

τij tþ 1ð Þ ¼ 1� ρð Þ τij tð Þ þ Δτij tð Þ (4)

Δτij tð Þ ¼
Pm
k¼1

Δτkij tð Þ indicates total amount of pheromone deposited in ij path

by all m ants that crossed ij path, being Δτkij tð Þ the amount deposited by the

ant k; 1� ρð Þ τij tð Þ indicates the evaporation process, where 0 < ρ ≤ 1, is a
constant rate which stand for the amount of pheromone evaporated between
time t and t + 1, mimicking the natural process.

Ant Colony System (ACS) (Dorigo and Gambardella 1997) is a known
improvement of Ant System (AS). ACS improves the original AS algo-
rithm by the addition of three new features. The modified heuristic
considers deposits and evaporation of pheromone occurring just on
arcs of the “best-so-far” path and increases exploration by reducing
pheromone deposits each time an ant crosses an arc. Furthermore, the
elitism is indirectly contemplated by including an additional clause to
the random probabilistic choice, with path probabilities distribution
given by Equation (3). The ACS pseudo-random proportional rule that
govern the movement of ant k, positioned on node i, towards node j, is
shown in Equation (5):

j ¼ argmaxl τil ηil
� �βn o

; if q � q0;"l � allowed l tð Þ
Eq: 3ð Þ distribution; otherwise

(
(5)

q is a random real number uniformly distributed, ranging from 0 to 1,
and q0 is a pre-established constant value, 0≤ q0 ≤ 1. This extra rule in
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Equation (5) specifies that ants move to the best possible path with
probability q0.

In ACS, pheromone is updated twice, locally and globally. Ants perform the
local update immediately after crossing an arc. The idea is to reduce attrac-
tiveness exerted by the most visited arcs on subsequent ants, increasing the
exploration; the rule is in Equation (6),

τij tð Þ ¼ 1� �ð Þτij tð Þ þ �τ0 (6)

where 0 < ξ ≤ 1, is a constant, and τ0 is the pheromone initial value. According
to Dorigo and Stützle (2004), good values for these parameters are ξ = 0.1 and
τ0 =1/(m fnn), wherem is the total number of ants in the population and fnn is a
value produced by a heuristic known as nearest-neighbor, which is specific for
the problem.

Only one ant, “the best so far”, add pheromone at the end of each iteration.
The ACS rule for the global pheromone update is shown in Equation (7):

τij t þ 1ð Þ ¼ 1� ρð Þτij tð Þ þ ρΔτbestij tð Þ if i; jð Þ 2 Rbest

τij tð Þ otherwise

�
(7)

where, Δτbestij = 1/Lbest, and Lbest is the evaluation of the best-so-far route, in
our application, f Sð ÞBest . We implemented two different versions of the ACS
algorithm as detailed below.

ACS strategy for WTA

The ACS directed graph representation for the SWTA problem is simple: the
nodes represent the resources, totalizing W + 1 nodes, posed in any desired
consecutive order, W1 to Wwþ1, the last being the End node. The edges,
linking consecutive nodes, represent the targets. Two consecutive nodes have
always T linking edges, since one may assign two different resources to the
same target. From the first resource W1, the starting node, one of the m ants,
an ant k, chooses probabilistically one of the T edges departing from W1

node to W2 to compose the assigned pair W1Ti . The ant k moves from one
node to another choosing probabilistically edges i in accordance to the rule
defined in Equation (5), until it reaches the End node. Each pair WjTi of the
graph is associated to an updated target value Vi and to a heuristic informa-
tion value ηij, defined as ViPij . The target value Vi is updated after each edge
choice, Ti . Each edge has also an actual pheromone value τij, actualized at
each choice, being its initial value τij ¼ 1= mf Sð ÞMMR1

� �
, " i ¼ 1; ::T, where

f Sð ÞMMR1 is the target survival value for the solution found by the MMR1
algorithm (Equation (1)).

APPLIED ARTIFICIAL INTELLIGENCE 145



The traditional ACS algorithm implementation was adapted to the WTA
problem to be compared with our proposed GACS algorithm. The imple-
mentation, based on the procedure of Johansson and Falkman (2010), follows
the pseudo-code of Figure 1, a list of 11 self-explanatory steps. Step 1 shows
all initialization details used in this adaptation to WTA problems.

The heuristic information is also updated during the current iteration, as
seen in Step 7 of Figure 1, and reset to the original values each time ant k
crosses the ij path. The update follows the rule,
ηil tð Þ ¼ Vi 1� Pij

� �
Pil;"l ¼ jþ 1;W, where Vi 1� Pij

� �
is the updated tar-

get value of target i once the resource j is assigned to it. This value will
influence the next ant k path choice, the next resource (j + 1) assignment to a
target.

Greedy ACS (GACS) strategy for WTA

The general heuristics of GACS is the same as the one given in Figure 1 with few
modifications. Although ACO metaheuristic is well suited for parallel imple-
mentations, since each ant of the colony could construct a solution concurrently
in an independent and asynchronous way, it is difficult to find papers discussing
ACO parallel strategies for WTA problems (Lee, Lee e Su 2002b), (Gao et al.
2010). Our algorithm denoted GACS, employs a parallel technique improving

Figure 1. ACS algorithm for SWTA problem.

146 M. DE REZENDE ET AL.



the search and optimizing CPU time. In GACS, 10 threads of our sequential ACS
algorithm run concurrently, using the same initialization parameters. This
model considers a distributed and non-cooperative population organization,
where 10 colonies search in parallel for the best solution. A master procedure
controls threads initialization parameters and evaluates solutions. Each colony
has its local pheromone matrix, and they do not exchange data. Each colony
keeps the master procedure informed about its “best so far” solution and they
follow an asynchronous communication model.

MMR2 procedure searches for the best pair ij at each interaction obtaining a
solution in which the pairs are not ordered according to the initialized
sequence of resources, from j = 1 to W. Sorting the solution for j = 1 to W is
needed to obtain S. Therefore, we tested if changing the order of the search in
step 4 of ACS algorithm (Figure 1) would fasten the search. Instead of follow-
ing the given order j = 1 to W, we used in the GACS directed graph the same
construction order of the sequence of resources obtained by the MMR2
algorithm. The results showed the overall reduction of target survival values
with this arrangement, even though modest. Initializations in GACS are the
same as in the ACS implementation, explained in Step 1 of Figure 1, except for
the number of ants in each thread, m ¼ 15, and for the initial pheromone
matrix, set to τij ¼ 1= mf Sð ÞMMR2

� �
. Therefore, we used a fixed amount of 150

ants no matter the scenario.
The proposed solution adds an extra strategy for controlling repetitions of the

best values inside the sequential algorithm of each population, avoiding pre-
mature convergence. Paths most visited receive a penalty strategy, reducing its
attractiveness by interrupting accumulation of pheromone after a certain
amount of CPU time. Therefore, the pheromone global update, step 10 of
Figure 1, was modified by the introduction of a multiplier φ in the term
responsible for the deposit process control of Equation (7), at first accelerating
the convergence to exploit a local optimum, as shown in Equation (8).

τij t þ 1ð Þ ¼ 1� ρð Þτij tð Þ þ φρΔτbestij tð Þ; " i; jð Þ 2 Tbest (8)

φ is an integer value ranging from 1 to 3. We have chosen to control the
increase of φ value at each 200 ms of CPU time. When the maximum CPU
time is over 600ms, the pheromone levels are restarted to its initial value to
stimulate exploration, τij = 1/(m f(S)MMR2), as well as the factor, φ =1. The
best solutions are kept in a memory list to avoid losing it during evolution.

Simulation and analysis of results

The comparison with other works has inherent difficulties beyond the formula-
tion of the problem itself, since the confidential nature of the matter inhibits the
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rise of public databases. Therefore, in our tests, we follow the same standard
guidelines present in other publications (Ahuja et al. 2007), (Johansson 2010).
We implemented and ran the algorithms in C++ language in a PC computer
with processor Intel® Core™ i7, 2.2GHz and 6GB RAM.

Evaluating the performance of a SWTA algorithm demands the scenario
representation in a specific instant of time, i.e., the number T of targets and W
of resources, and the respective instance values of V and P.W and T define the
scenario size,WxT, the search/space for current scenario problem. The values of
V and P, generated randomly, define the instance of each scenario size.
Following the proposal of Ahuja et al. (2007), the initial target values (V) were
obtained randomly from a uniform distribution of integers, ranging from 25 to
100, and damage probabilities (P) are obtained from a uniform distribution,
ranging from 0.6 to 0.9. We simulated 10 different problem instances for each
scenario size to test the algorithm performance in different levels of complexity.
CPU termination criterion was set to 1s. We executed two groups of tests: the
first group contains less complex small scenarios with sizes up to 9 × 9; the
second group includes examples with sizes varying from 5 × 10 to 100 × 100,
comprising more complex scenarios.

Table 1 shows the minimized target survival values, averaged over 10
instances (Johansson and Falkman 2011) achieved by an exhaustive search
algorithm (ES), MMR2, ACS, and GACS algorithms. In small-scale scenarios,
the exhaustive search algorithm easily finds the global optimal among all
possible solutions, an important certainty for the comparison. Table 1 omits
CPU times, because, while MMR2 spent less than one millisecond in its search
procedure, the time spent by exhaustive search algorithm were considerably
higher (Johansson and Falkman 2009), but the results represent the global
optimum. We performed 10 runs of 1s each, for both evolutionary algorithms,
ACS and GACS, to compare the quality and robustness of the solutions. The
results compare the ES search (Johansson and Falkman 2009) and MMR2 with
the average of the best results in 10 runs for each instance (average over 10 best
results of each scenario) and the average of the mean results in 10 runs for each
instance, meaning an average over 100 results in each scenario.

GACS delivered the closer to the exact solution results, given by ES, in both
mean and best results computations. ACS presented also a good minimization
of the initial target survival values but the results are not as steady as in GACS
with high standard deviation. The results in Table 1 shows the quality and
robustness of the GACS algorithm, delivering the Best and Mean results very
close to each other, with low deviation values, especially noticed if compared to
ACS results, considering that ACS had a chance of 10 runs to search for a better
solution. The good result achieved from GACS shows also that the steadiness
of the algorithm is due to the heuristic implemented rather than only to the
parallel evolution of populations since the ACS didn’t have the same
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performance in 10 separate runs. Obviously, results obtained in small-scale
scenarios are easier and faster to obtain than in larger scenarios, but it is useful
to show clearly the relative performance of the heuristic approaches.

The ACS and GACS results in the second group of tests for each given
scenario size were also averaged over 10 different instances. Approaching the
experiment to a real environment combat, only one run were performed to
obtain the ACS and the GACS results in each instance, observing that GACS
strategy comprises 10 parallel runs and only the best solution were taken into
consideration. Notice that the termination criterion for both algorithms was
the CPU time of 1 second, although the best result was achieved before 1s in
most of the cases. Table 2 comprises the mean results and the corresponding
mean CPU time in seconds for which the best result, f Sð ÞBest, was registered
during the algorithm search of 1s. The majority of the scenarios sizes for this
experiment are higher than the ones previously shown in Table 1. We also
introduced scenarios with resource-targets relations not favorable for defense
purposes (T > W). The algorithms parameters settings, chosen from preli-
minary tests, were, for basic ACS algorithm, β = 1, ρ = 0.1, £ = 0.1, and
q0 = 0.5. The parameters adopted for GACS were β = 12, ρ = 0.1, £ = 0.1,
q0 = 0.75, φ =1 and m = 15, except for the last three scenarios sizes
where β = 17.

The best overall performance (Table 2) is of the GACS algorithm for
11 over 12 scenarios, losing only to MMR2 in the last scenario, the
biggest scenario size. The ACS algorithm showed the second best results,
but its running times are the worst of all four tested algorithms. The
algorithms achieved high reduction levels of initial target values (varying
from 77% to 98%) for the cases where W > T, what is in line with the
strongest defense conditions represented by this type of scenario. In the
cases where W < T, typifying weak defense conditions, all algorithms
achieved a considerably lower reduction of initial target values (varying
from 51% to 57%) if compared to the strong defense condition, but still
a very good result.

Table 1. f(S) results comparing ES and MMR2 with ACS and GACS in 10 runs.

Scenario ACS GACS ACS GACS

WxT <Vi> ES MMR2 Best σ Best σ Mean σ Mean σ

5 × 5 342.5 52.64 54.38 57.04 7.42 53.32 1.19 62.08 15.14 53.71 1.97
6 × 6 351.7 55.20 61.40 64.02 13.19 59.42 6.44 72.97 23.86 60.51 8.21
7 × 7 445.6 67.99 70.87 80.30 14.49 70.74 3.60 85.78 20.43 70.89 3.77
8 × 8 503.1 73.07 80.18 86.50 15.61 76.35 3.87 94.83 22.89 78.96 7.05
9 × 9 537.7 80.88 86.78 94.62 14.20 84.58 4.41 101.92 26.01 86.30 6.32

<Vi>, average of initial target values sum in each instance; Best, best f(S) in 10 runs averaged over 10
instances of each size (mean of 10 solutions); Mean, f(S) mean in 10 runs averaged over 10 instances of
each size (mean of 100 solutions); σ, standard deviation.
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Conclusions

In this paper, we proposed a new variant for the traditional ACS algorithm,
named GACS, to solve a SWTA problem. GACS hybridizes ACS with MMR,
a classical deterministic heuristic, in an implementation that adopts problem
specific initialization of pheromone and heuristic information as well as
specific selection strategy.

Nowadays, military defense operations simulations focus on the assign-
ment of resources in complex scenarios. We tested GACS in large-scale
problems and compare its performance with two greedy heuristics and an
ACS algorithm. In critical scenarios simulations, even small improvements
can make the difference justifying the usage of time-consuming algorithms
with limited time criterion condition.

The usage of a multi colony parallel technique in the GACS implementation
improved the quality of the solution if compared to the sequential implementation
versions seen in other evolutionary algorithms, including the ACS here imple-
mented, increasing the number of searches executed in a limited time period.
Furthermore, allowing a master procedure to choose the best result among all the
colonies fasten the process in an essential step to validate the algorithm application
to real defense air operation in large scenarios. Also, the usage of MMR2 to
initialize the pheromone paths as well as the order of search given in MMR2,
together with the strategy for controlling repetitions of the best values to avoid
premature convergence, seemed to provide a robust repetition of local minimum
results throughout the runs, finding a consistently stable result with lower local
optimum. The GACS algorithm achieved high reduction levels of initial target
values for the cases whereW >T, the strongest defense conditions type of scenario,
but more importantly, achieved a competitive reduction of initial target values in
weak defense conditions, where W < T.

Table 2. Results for MMR2, ACS, and GACS.

Scenario MMR2 ACS GACS

W × T <Vi> Mean T(s) Mean T(s) Mean T(s)

5 × 10 536 260.2 <0.001 237.0 <.001 235.8 <0.001
10 × 10 660 147.4 <0.001 114.4 <.001 92.7 <0.001
20 × 10 636 12.2 <0.001 17.3 0.151 11.9 <0.001
10 × 20 1213 569.7 <0.001 526.8 0.204 526.6 <0.001
20 × 20 1225 158.9 <0.001 202.6 0.271 157.6 <0.001
40 × 20 1238 19.0 <0.001 31.2 0.293 18.7 <0.001
20 × 40 2244 1057.8 <0.001 1100.7 0.209 1057.3 <0.001
40 × 40 2497 290.7 <0.001 395.2 0.507 290.3 0.020
80 × 40 2420 31.1 <0.001 63.4 0.555 30.9 0.154
40 × 80 5018 2140.6 <0.001 2247.1 0.518 2140.4 0.174
80 × 80 4983 548.6 <0.001 688.6 0.621 547.8 0.265
100 × 100 6246 667.5 <0.001 849.5 0.540 676.6 0.181

<Vi> average of initial target values sum in each instance. Mean: f(S) averaged over 10 instances of each
size; and run time, T(s).
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