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Abstract
X-ray computed tomography (CT) is a nondestructive imaging technique to reconstruct
cross-sectional images of an object using x-ray measurements taken from different view angles for
medical diagnosis, therapeutic planning, security screening, and other applications. In clinical
practice, the x-ray tube emits polychromatic x-rays, and the x-ray detector array operates in the
energy-integrating mode to acquire energy intensity. This physical process of x-ray imaging is
accurately described by an energy-dependent non-linear integral equation on the basis of the
Beer–Lambert law. However, the non-linear model is not invertible using a computationally
efficient solution and is often approximated as a linear integral model in the form of the Radon
transform, which basically loses energy-dependent information. This approximate model produces
an inaccurate quantification of attenuation images, suffering from beam-hardening effects. In this
paper, a machine learning-based approach is proposed to correct the model mismatch to achieve
quantitative CT imaging. Specifically, a one-dimensional network model is proposed to learn a
non-linear transform from a training dataset to map a polychromatic CT image to its
monochromatic sinogram at a pre-specified energy level, realizing virtual monochromatic (VM)
imaging effectively and efficiently. Our results show that the proposed method recovers
high-quality monochromatic projections with an average relative error of less than 2%. The
resultant x-ray VM imaging can be applied for beam-hardening correction, material differentiation
and tissue characterization, and proton therapy treatment planning.

1. Introduction

Computed tomography (CT) is a three-dimensional nondestructive imaging modality, which allows
visualization and quantification of anatomical structures of human tissues with fine spatial resolution and
high contrast resolution for medical diagnosis, therapeutic planning, security screening, and other
applications. In clinical practice, the x-ray tube emits polychromatic x-rays, and the x-ray detector array
operates in the energy-integrating mode to acquire energy intensity [1]. This physical process of x-ray
imaging is accurately described by an energy-dependent non-linear integral model on the basis of the
Beer–Lambert law. However, the non-linear imaging model is not invertible using a computationally efficient
solution, and often approximated as a linear integral model in the form of the Radon transform, which
basically loses x-ray energy-dependent information [1, 2]. Because lower energy photons are more easily
attenuated in the tissues than higher energy photons, the x-ray spectral distribution at a specific location may
be inconsistent for different x-ray transmission paths. The attenuation of x-rays is path-dependent and the
attenuation characteristics are non-linear. Therefore, the attenuation coefficient reconstructed from the
linear integral model would generate inaccurate quantification of attenuation and induce beam-hardening
artifacts in the image reconstruction [3, 4].

In addition, conventional clinical CT only reveals the tissues morphology, and does not provide any
information about the chemical composition of the tissues. Biological tissues are mainly composed of
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hydrogen, oxygen, nitrogen, and carbon. Their absorption characteristics are significantly different from that
of elements with higher atomic weight, such as calcium and iodine. Iodinated contrast is often used in a
medical CT exam to amplify subtle differences between tissues and visualize vasculatures, improving
detectability and diagnosis of cardiac, cancer, and other diseases [5]. However, contrast-enhanced structures
may have similar density to bones or calcified plaques, making them difficult to be distinguished using
single-spectrum CT.

To enhance imaging performance, dual-energy computed tomography (DECT) is developed for several
clinical applications. Currently, state of the art DECT scanners include fast switching of the x-ray tube
voltage or kVp (General Electric’s CT750HD and Revolution CT), dual layer detectors (Philips’ IQon), and
operating two beamlines at different kVp (Siemens’ dual-source CT) [6, 7]. Physically, the photon
attenuation is material- and energy-dependent, and is a combined effect of photoelectric absorption and
Compton scattering in the diagnostic energy range [8]. DECT acquires two projection data sets at two
different energy spectra to reconstruct energy-dependent linear attenuation coefficients of the tissue, which
can be used for the determination of the electron density and effective atomic number of materials,
facilitating the characterization of materials and identification of tissue types [9, 10]. Using DECT
techniques, material decomposition methods are developed to provide quantitative information on tissue
composition to distinguish soft tissue, calcium, and iodine for important clinical applications [9, 11–13],
such as urinary stone characterization, automated bone removal in CT angiography, perfused blood volume
quantification. Another exemplary application of x-ray virtual monochromatic (VM) imaging is for proton
therapy treatment planning. Proton therapy delivers a highly focused radiation dose at the Bragg peak, which
is conformed tightly around a tumor to kill cancer cells. The stopping power ratio can be calculated from the
electron density and effective atomic number of matter for the determination of Bragg peak position [14–17].

However, DECT can increase system complexity and equipment cost relative to single-spectrum CT due
to the acquisitions of two spectrally different projection datasets. Emerging machine learning (ML)
techniques are capable of implementing non-linear mapping, feature extraction and representation, and are
widely applied for image classification, identification, super-resolution imaging, and image denoising
[18–24]. In 2017, ML-based monochromatic image reconstruction method was first proposed to map
polychromatic CT images to monochromatic sinogram at a pre-specified energy level based on a fully
connected neural network [25]. In 2018, a deep learning method was proposed to reconstruct the VM
attenuation images from multiple energy CT images using a fully connected neural network for reducing
image noise and suppressing artifacts in multiple energy CT images [26]. Furthermore, a Wasserstein
generative adversarial network with a hybrid loss was proposed to transform several polychromatic images
with different energy bins to VM images [27]. Based on a convolutional neural network, DECT data can be
also generated from single-spectrum CT data using the deep learning [28, 29]. These preliminary studies
show the feasibility of x-ray VM imaging. In this paper, we propose a ML-based method to learn a non-linear
transform from a training dataset to map the polychromatic CT image to a monochromatic sinogram at a
pre-specified energy level. In section 2, we give a detailed description for the x-ray imaging and physical
model. The one-dimensional deep network architecture is presented in detail. In section 3, based on a
clinical DECT dataset, we perform the network training and testing to evaluate the proposed ML-based VM
imaging. We conclude the paper in the last section.

2. Methodology

2.1. Optimizationmodel
In medical CT, the x-ray source generally emits polychromatic x-ray photons, and the x-ray detector array
operates in the energy-integrating mode to acquire energy intensity. The x-ray linear attenuation coefficient
depends on both material composition of the imaged object and the x-ray photon energy. If an x-ray beam
passes through an object, the x-ray transmitted beam intensity I(l) is accurately described by the non-linear
integral model based on Beer–Lambert law [1, 8]:

I(l) =

ˆ
S(E)D(E)exp

−
ˆ

l

µ(r,E)dr

dE, (1)

where S(E) is the energy spectrum of the x-ray source, D(E) is the detection efficiency, and µ(r,E) is the
energy-dependent linear attenuation coefficient at an energy E and a spatial position r along a linear path l
through the object. Using the integral mean value theorem, there is an energy level εl for the x-ray
transmission path such that the following formula holds:
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I(l) = I0 (l)exp

−
ˆ

l

µ(r,εl)dr


I0 (l) =

Emaxˆ

Emin

S(E)D(E)dE

. (2)

Equation (2) is equivalent to

ˆ

l

µ(r,εl)dr= log

[
I0 (l)

I(l)

]
, (3)

where I0 (l) is the x-ray intensity along the path l without any object in the field of view. Equation (3)
indicates that the line integral along a transmission path l relies on energy levels εl. Because lower energy
photons are more attenuated by tissues than higher energy photons, the x-ray spectral distribution on
different x-ray transmission paths may be different. Thus, the line integral along different transmission paths
may correspond to different energy levels in equation (3). Hence, the x-ray physical model described in
equation (3) is different from the Radon transform without energy dependence. The mismatch of the
physical model may induce beam-hardening artifacts in the image reconstruction [2].

The purpose of this research is to establish a transform relation between polychromatic CT images and
monochromatic sinograms at a pre-determined energy level ε in the detectable energy range, using a ML
technique. A polychromatic attenuation image µ(r) is reconstructed from log-transformed raw data
collected at all x-ray transmission paths and viewing angles. The image µ(r) contains abundant prior
information on the object structure and x-ray attenuation information. A practical method is to map
attenuation distribution on the x-ray transmission path l in the polychromatic image µ(r) to corresponding
monochromatic projection datum at the specific energy level ε, denoted by pmon (l,ε). This transform
relation can be described mathematically by an optimization model as follows [25]:

M = argmin
∑

l ∈ all path set

∥M (µ(r) , r ∈ l)− pmon (l,ε)∥, (4)

where M denotes a transformation relation, µ(r) is the polychromatic attenuation image reconstructed
from a single-spectrum CT, l is an x-ray transmission path indexed by the location variable r, and pmon (l,ε)
is the monochromatic projection data at a pre-specified energy level ε, which can be calculated from the
corresponding labeled monochromatic CT image at the energy level ε using the standard ray-tracing
method. Specifically, we assume that all x-ray transmission paths have the same length, equal to the diameter
of the field of view. The transmission path is divided into a fixed number of segments, which is denoted as n.
Typically, n is chosen larger than

√
2× the input image size for sufficient sampling. The attenuation

coefficient of each segment is calculated from an input polychromatic CT image using bi-linear
interpolation, as shown in figure 1. The involved computation is fairly straightforward, identical to the
ray-tracing process in a typical iterative reconstruction, such as algebraic reconstruction technique (ART) or
simultaneous algebraic reconstruction technique (SART). As input data, the attenuation distribution along
the x-ray transmission path is calculated by multiplying the attenuation coefficient of each segment by the
length of the segment.

2.2. Architecture of a one-dimensional fully connected network with a shortcut connection
A well-defined fully connected neural network is capable of learning any function [30]. To implement the
optimization model in equation (4), we establish a one-dimensional fully connected deep network, allowing
a much lower computational cost and much less memory requirement than higher dimensional networks.
The neural network consists of seven layers, including an input layer, five hidden layers, an output layer, and
a shortcut connection, as shown in figure 2. The first hidden layer contains 1024 neurons, the second hidden
layer contains 512 neurons, the third hidden layer has 256 neurons, the fourth hidden layer contains 128
neurons, and the fifth hidden layer has 64 neurons. For every hidden layer, neurons receive the weighted
combinations of neuron values on the previous layer and perform corresponding sigmoid activations.
Inspired by the idea of the two-dimensional ResNet [31], the shortcut connection technique is adapted to
stack the line integral of the input polychromatic image along the transmission path to the neuron on the
output layer to implement a residual mapping. For implementation of the shortcut connection, a summation
of the attenuation distribution along the transmission path on the input polychromatic CT image can
reproduce an approximate energy-integrating projection value {log [I0 (l)/ I(l)]}. The linear integral model is
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Figure 1. The attenuation distribution along an x-ray transmission path. Specifically, the x-ray path is first partitioned into
segments of equal length. Then, the image value at the mid-point of each segment is bi-linearly interpolated from four nearest
pixel values. Finally, the attenuation distribution along the x-ray transmission path is calculated by multiplying the value of each
segment and the length of the segment, and processed into the corresponding line integral.

approximate in CT imaging, and usually leads to inaccurate quantification of reconstructed images. The
proposed VM imaging approach is to correct the errors/mismatches of the line integral model, which can be
effectively implemented by the residual mapping scheme. Prior works show that modeling residual mapping
is easier than the original mapping [31]. The shortcut connection helps train neural networks efficiently. The
input of the network is attenuation distribution along an x-ray transmission path l on the polychromatic CT
image µ(r). The x-ray transmission path is divided into 1024 segments to describe the corresponding
attenuation coefficient distribution. The output layer only contains a single neuron yielding a weighted linear
combination of all neuron units on the last hidden layer, and outputs an x-ray monochromatic projection
along the corresponding x-ray transmission path. The loss function uses the l1 norm to evaluate the
difference between the predicted monochromatic projection value and the monochromatic projection value
along the same transmission path for the label image.

A well-trained fully connected deep network would be a non-linear transform M that maps the
polychromatic CT images to the monochromatic projection data at energy level ε. Once the monochromatic
projections are obtained through ML, a monochromatic image µ(r,ε) can be reconstructed using a standard
image reconstruction algorithm such as a filtered backprojection (FBP) or iterative algorithm (ART or
SART) based on following line integral model:

ˆ

l

µ(r,ε)dr= pmon (l,ε) . (5)

Equation (5) is an accurate x-ray imaging model at energy level ε. Therefore, the monochromatic CT
image can be reconstructed based on equation (5), achieving accurate quantification of attenuation images
and overcoming beam-hardening artifacts.

2.3. Ablation study
We performed an ablation study on the number of neurons per layer, the number of layers in the network,
activation functions, and so on. The proposed network architecture has five hidden layers, where the number
of neurons in each layer is half the number of neurons in the previous layer. This network was selected based
on our extensive simulation and experimental results, some of which are described below. To demonstrate
the performance of the proposed network, we also trained a multilayer perceptron (MLP) with the same
number of neurons in each of the five hidden layers, and evaluated its convergence and accuracy. We found
that our proposed network showed an excellent convergence and accuracy, comparable to that of the MLP,
while the proposed network only requires a half the memory and half the computational cost. Especially,
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Figure 2. One-dimensional fully connected deep neural network with a shortcut connection.

compared with the network architecture without a shortcut connection, the convergence speed of the
network architecture with a shortcut connection was increased by more than three times. Moreover, we
applied different activation functions for our neural network. The experiments show that the sigmoid is an
appropriate activation function for this application. For example, if we use the ReLU activation function for
all the hidden layers, the average relative error of the reconstructed monochromatic projection would exceed
20%, which is ten times higher than that of the proposed network architecture. The proposed network
represents an excellent balance between accuracy, efficiency, and robustness.

3. Experiments and results

In clinical practice, medical x-ray imaging systems use polychromatic x-ray tubes, and the x-ray detector
array operates in the energy-integrating mode to acquire energy intensity. An ideal monochromatic imaging
device is not available using current x-ray sources and detectors. DECT can be used to generate VM images.
In this context, VM images and polychromatic images from DECT are applied for the training and testing of
the proposed neural network. In our study, the parallel-beam geometry was used for the ray-tracing process,
and an image matrix of 512× 512 pixels. Over a 360◦ range, 720 projections are uniformly acquired, and 729
detector elements are equidistantly distributed for each projection view.

3.1. Clinical dataset obtained with first CT scanner
A dataset of VM CT images produced from a GE Discovery CT750HD dual-energy scanner at Ruijin Hospital
in Shanghai was used for the network training, validation, and testing. The scanning was performed with fast
kVp switching between 80 kVp and 140 kVp with tube current of 260 mAs. The gantry rotation time was
0.5 s. The dataset includes 274 VM CT images at 50 keV, 60 keV, 65 keV, 70 keV, 80 keV, 90 keV, 100 keV, and
110 keV, respectively. Based on Beer–Lambert law, we first synthesized polychromatic projection data from
these multi-energy images using an x-ray source spectral distribution at 120 kVp/30 mA generated by public
software [32]. Then, 274 polychromatic CT images were reconstructed from polychromatic projection data
using the FBP algorithm. The 274 polychromatic CT images and corresponding 274 VM images at 80 keV
formed the training dataset I, while 274 polychromatic CT images and corresponding 274 VM images at
110 keV formed the training dataset II. The dataset was divided into training dataset of 200 images,
validation data of 50 images, and testing data of 24 images. A total of 105 million (200 images× 720
views× 729 rays) data pairs as training data were extracted along x-ray line integral paths from 200
polychromatic CT images and corresponding 200 VM images. For the one-dimensional model, 105 million
data pairs were sufficient for the network training with supervised learning.

The training procedure was programmed in Python and Tensorflow on a PC with a NVIDIA Titan XP
GPU with 12 GB memory. The network training was conducted using the ADAM optimization algorithm
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Figure 3. L1 norm loss versus the number of epochs. (a) and (b) are the loss function during network training I and II, respectively.

with β1 = 0.9, β2 = 0.999, epsilon= 1.0× 10−7, and weight decay= 0.0. The learning rate was set to 10−3.
Weight and bias parameters of the network were initialized randomly. Data were randomly sampled in the
training dataset, maximizing the probability of finding the global minimum. Based on dataset I, the network
is trained to generate monochromatic sinogram at 80 keV, while the network is trained using dataset II to
generate monochromatic sinogram at 110 keV. The networks were trained in 1000 epochs within 12 h.
Figure 3(a) shows the loss function during the network training using dataset I. Figure 3(b) shows the loss
function during the network training using dataset II. The training of the fully connected deep network
showed an excellent convergence behavior.

For the testing of the trained network, 24 polychromatic images at 120 kVp were input to the trained
neural network models I and II to generate monochromatic sinogram at 80 keV and 110 keV, respectively.
CT image were randomly selected in testing dataset as examples to present the quality of monochromatic
imaging. The labeled monochromatic sinogram data were obtained from the labeled monochromatic CT
image using the ray-tracing method. Figure 4 presents the comparison between the estimated
monochromatic sinograms and the corresponding (ground-truth) labeled monochromatic sinograms at
80 keV and 110 keV respectively. Figure 5 presents the comparison between the polychromatic x-ray
projection at 120 kVp, the estimated monochromatic projection, and the corresponding labeled
monochromatic projection at the horizontal views. The trained neural network delivered high-quality
monochromatic projection data in the testing phase, with an average relative error of less than 2%. With VM
images reconstructed from DECT as the reference, we used the popular signal-to-noise ratio (PSNR) and
structural similarity (SSIM) indices to evaluate the estimated monochromatic sinogram against the labeled
monochromatic sinogram. The average PSNR measures are 37.54 dB and 36.89 dB for monochromatic
sinograms at 80 keV and 110 keV respectively, and the average SSIM values are 0.9941 and 0.9902 for
monochromatic sinograms at 80 keV and 110 keV respectively.

Furthermore, the VM CT images at 80 keV and 110 keV were reconstructed from the estimated
monochromatic sinogram at 80 keV and 110 keV using the FBP algorithm. Figure 6 presents the comparison
between the estimated VM image and the label VM image at 80 keV and 110 keV. We calculated PSNR and
SSIM indices to evaluate the estimated VM images at 80 keV and 110 keV. The average PSNR was 69.79 dB
and 63.34 dB for the VM images at 80 keV and 110 keV, respectively, while the average SSIM was 0.9999 and
0.997 for the VM images at 80 keV and 110 keV, respectively. The proposed ML-based method well preserved
structural information especially texture features and gave superior image quality.

3.2. Clinical dataset obtained with second CT scanner
We obtained a second series of clinical DECT dataset to further evaluate the performance of the deep
learning-based VM imaging method. We now used the originally reconstructed kVp images as the input to
the network, instead of the synthesized kVp images used in the previous section. DECT data of eight patients
(3182 slices in total) were collected on a SOMATOM Definition Flash DECT scanner (Siemens Healthineers,
Forchheim, Germany) at Ruijin Hospital in Shanghai, China. The DECT scanner worked in the dual-source
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Figure 4.Monochromatic sinogram comparison: the estimated monochromatic sinograms at 80 keV (a) and 110 keV (c) and the
label monochromatic sinograms at 80 keV (b) and 110 keV (d).

Figure 5. Comparison between the polychromatic x-ray projection at 120 kVp, the estimated monochromatic projection,
and the corresponding label monochromatic projection: (a) the horizontal view at 80 keV; (b) a zoomed portion of the 80 keV
profile; (c) the horizontal view at 110 keV; and (d) a zoomed portion of the 110 keV profile.
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Figure 6.Monochromatic image reconstruction, trained based on VM CT image data. (a) VM image at 80 keV reconstructed by
the deep learning-based estimation and (b) the label VM image at 80 keV reconstructed from DECT VM data. (c) VM image at
110 keV reconstructed by the deep learning-based estimation and (d) the label VM image at 110 keV reconstructed from DECT
VM data. The images are displayed with a window width of 436 HU and a level of 416 HU.

scanning mode, which operated at 100 kVp/210 mAs and 140 kVp/162 mAs with a wedge filter and a flat
filter respectively. The scanning was set for exposure time 0.5 s. CT images were reconstructed using the FBP
algorithm. The dataset includes 3182 polychromatic CT images at 140 kVp, being associated with 3182 VM
CT images at 80 keV and 3182 VM CT images at 110 keV. The dataset was split into training, validation and
testing sets, which respectively came from five, two and one patients. In other words, 2195 polychromatic CT
images at 140 kVp and the corresponding 2195 monochromatic images at 80 keV formed training dataset I,
while 2195 polychromatic CT images at 140 kVp and the corresponding 2195 monochromatic images at
110 keV formed training dataset II. In total, 1152 million (2195 images× 720 views× 729 rays) data pairs
were extracted along x-ray line integral paths from the 2195 polychromatic CT images at 140 kVp and
corresponding 2195 monochromatic images in the datasets I and II for training the network models I and II
respectively.

Polychromatic CT images at 140 kVp for the test datasets were input to the trained neural network
models I and II to generate monochromatic sinograms at 80 keV and 110 keV, respectively. Figure 7
presents the comparison between the estimated monochromatic sinograms and the corresponding label
monochromatic sinograms at 80 keV and 110 keV respectively. Figure 8 presents the comparison between the
polychromatic x-ray projection at 140 kVp, the estimated monochromatic projection, and corresponding
label monochromatic projection in the horizontal views. We calculated PSNR and SSIM to evaluate the
estimated monochromatic sinograms with label monochromatic sinograms as reference. The average PSNR
was 33.40 dB and 33.27 dB for the estimated monochromatic sinograms at 80 keV and 110 keV, respectively,
while average SSIM was 0.9995 and 0.9978 for the estimated monochromatic sinograms at 80 keV and
110 keV, respectively.

Again, VM images at 80 keV and 110 keV were reconstructed from the estimated monochromatic
sinogram data at 80 keV and 110 keV respectively using the FBP algorithm. Figure 9 shows the comparison
between the estimated VM image and the label VM images at 80 keV and 110 keV, respectively. The proposed
estimation method well preserved structural information, in particular texture features, yielding a superior
image quality. We calculated the PSNR and SSIM measures to evaluate the reconstructed VM images against
the label VM images. The average PSNR was 48.92 dB and 48.73 dB for the reconstructed VM images at
80 keV and 110 keV respectively, while the average SSIM was 0.9940 and 0.9933 for the reconstructed VM
images at 80 keV and 110 keV, respectively. Comparing image quality in terms of SSIM and PSNR in
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Figure 7.Monochromatic sinogram estimation based on kVp images. The estimated monochromatic sinograms at 80 keV (a) and
110 keV (c). The label monochromatic sinograms at 80 keV (b) and 110 keV (d).

Figure 8. Comparison between the polychromatic x-ray projection at 140 kVp, the estimated monochromatic projection, and
corresponding label monochromatic projection. (a) The horizontal view at 80 keV and (b) a zoomed portion of the 80 keV
profile. (c) The horizontal view at 110 keV and (d) a zoomed portion of the 110 keV profile.
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Figure 9. VM image reconstruction trained based on DECT data. (a) VM image at 80 keV reconstructed by the deep
learning-based estimation and (b) the label VM image at 80 keV reconstructed from DECT. (c) VM image at 110 keV
reconstructed by the deep learning-based estimation and (d) the label VM image at 110 keV reconstructed from DECT. The
images are displayed with a window width of 981 HU and a level of 143 HU.

sections 3.1 and 3.2, the quality of the VM image reconstructed from real kVp images is slightly
compromised relative to the quality of the VM image reconstructed from synthesized kVp images, due to
non-ideal noise and spectral distortion in clinical data.

4. Discussions and conclusion

DECT acquires two spectrally different projection datasets for VM imaging, and can perform the
characterization of materials and identification of tissue types. However, DECT suffers from increased
system complexity and higher cost compared to a conventional single-spectrum CT scanner. This proposed
ML-based method learns a non-linear transform from the training dataset to map polychromatic CT images
to monochromatic sinogram through a powerful neural network. Unlike DECT image reconstruction from
two spectrally different projection datasets, the ML-based monochromatic imaging method only utilizes a
single-spectrum energy-integrating projection dataset. Our experimental results show that the neural
network model has an excellent convergent behavior in the training process, and recovers high-quality
monochromatic sinogram with an average relative error of less than 2%, realizing VM imaging and
overcoming beam-hardening effectively and efficiently. The proposed one-dimensional network model has a
much lower computational cost and a much lower memory requirement than higher dimensional
counterparts.

As an x-ray beam passes through biological tissue, interactions mainly involve the photoelectric effect
and Compton scattering. Photoelectric absorption occurs when an incident x-ray photon collides with an
inner-shell electron in an atom, while Compton scattering is the result of the interaction between an x-ray
photon and an outer orbital electron. As a result, photoelectric absorption is related to the atomic number of
the attenuating medium (Z), and Compton Effect is dependent on the electron density in the absorbing
material. With our proposed ML-based VM imaging, VM CT images at two energy levels can be
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reconstructed, and the electron density and effective atomic number of matter composition can be extracted
from energy-dependent linear attenuation coefficients for material decomposition, tissue characterization,
beam-hardening correction, and proton therapy planning [33].

Moreover, the proposed method is able to reconstruct energy-dependent attenuation images. So, the
trained neural network model relies on the spectral distribution of x-ray source in CT scanner. The trained
network model should be used to process CT images obtained from a CT scanner whose x-ray tube energy
spectral distribution is similar to that of the x-ray tube generating input CT images in the training dataset.

The proposed method can be interpreted as a learning-based, advanced beam-hardening correction,
since a beam-hardening correction also maps a polychromatic dataset onto a VM dataset at a given energy. It
is possible that the proposed learning-based method learns to generate monochromatic datasets more
accurately than conventional single-material beam-hardening correction methods, and more robustly than
multi-material beam-hardening correction methods. The proposed approach is able to take into account
contextual information to perform the best possible estimation. A comparison of the proposed approach
relative to traditional single-material and multi-material beam-hardening correction approaches is out of
scope for this paper but will be a critical focus of future work.
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