Convolutional neural network based non-iterative reconstruction for accelerating neutron tomography *

Venkatakrishnan, Singanallur and Ziabari, Amirkoushyar and Hinkle, Jacob and Needham, Andrew W and Warren, Jeffrey M and Bilheux, Hassina Z (2021) Convolutional neural network based non-iterative reconstruction for accelerating neutron tomography *. Machine Learning: Science and Technology, 2 (2). 025031. ISSN 2632-2153

[thumbnail of Venkatakrishnan_2021_Mach._Learn.__Sci._Technol._2_025031.pdf] Text
Venkatakrishnan_2021_Mach._Learn.__Sci._Technol._2_025031.pdf - Published Version

Download (8MB)

Abstract

Neutron computed tomography (NCT), a 3D non-destructive characterization technique, is carried out at nuclear reactor or spallation neutron source-based user facilities. Because neutrons are not severely attenuated by heavy elements and are sensitive to light elements like hydrogen, neutron radiography and computed tomography offer a complementary contrast to x-ray CT conducted at a synchrotron user facility. However, compared to synchrotron x-ray CT, the acquisition time for an NCT scan can be orders of magnitude higher due to lower source flux, low detector efficiency and the need to collect a large number of projection images for a high-quality reconstruction when using conventional algorithms. As a result of the long scan times for NCT, the number and type of experiments that can be conducted at a user facility is severely restricted. Recently, several deep convolutional neural network (DCNN) based algorithms have been introduced in the context of accelerating CT scans that can enable high quality reconstructions from sparse-view data. In this paper, we introduce DCNN algorithms to obtain high-quality reconstructions from sparse-view and low signal-to-noise ratio NCT data-sets thereby enabling accelerated scans. Our method is based on the supervised learning strategy of training a DCNN to map a low-quality reconstruction from sparse-view data to a higher quality reconstruction. Specifically, we evaluate the performance of two popular DCNN architectures—one based on using patches for training and the other on using the full images for training. We observe that both the DCNN architectures offer improvements in performance over classical multi-layer perceptron as well as conventional CT reconstruction algorithms. Our results illustrate that the DCNN can be a powerful tool to obtain high-quality NCT reconstructions from sparse-view data thereby enabling accelerated NCT scans for increasing user-facility throughput or enabling high-resolution time-resolved NCT scans.

Item Type: Article
Subjects: ScienceOpen Library > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 05 Jul 2023 04:06
Last Modified: 16 Nov 2024 07:37
URI: http://scholar.researcherseuropeans.com/id/eprint/1717

Actions (login required)

View Item
View Item