Asian Journal of Research in Computer Science

8(1): 21-45, 2021; Article no.AJRCOS.67438
I ISSN: 2581-8260

Conventional and Improved Inclusion-Exclusion
Derivations of Symbolic Expressions for the
Reliability of a Multi-State Network

Ali Muhammad Ali Rushdi'” and Motaz Hussain Amashah’

7Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz
University, P.O.Box 80200, Jeddah, 21589, Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration between the two authors. Author AMAR wrote the entire
draft of the manuscript, conducted the mathematical and conceptual analyses and managed the basic
literature survey. Author MHA participated in the literature search, performed the computational work,
and constructed the table of results. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v8i130191

Editor(s):

(1) Dr. Jong-Wuu Wu, National Chiayi University, Taiwan.

Reviewers:

(1) M. Shyamala Devi, Dr. Sagunthala R&D Institute of Science and Technology Avadi, India.
(2) Ramjeet Singh Yadav, Ashoka Institute of Technology and Management, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/67438

Received 16 February 2021
Accepted 22 April 2021
Published 27 April 2021

Original Research Article

ABSTRACT

This paper deals with an emergent variant of the classical problem of computing the probability of
the union of n events, or equivalently the expectation of the disjunction (ORing) of n indicator
variables for these events, i.e., the probability of this disjunction being equal to one. The variant
considered herein deals with multi-valued variables, in which the required probability stands for the
reliability of a multi-state delivery network (MSDN), whose binary system success is a two-valued
function expressed in terms of multi-valued component successes. The paper discusses a simple
method for handling the afore-mentioned problem in terms of a standard example MSDN, whose
success is known in minimal form as the disjunction of prime implicants or minimal paths of the
pertinent network. This method utilizes the multi-state inclusion-exclusion (MS-IE) principle
associated with a multi-state generalization of the idempotency property of the ANDing operation.
The method discussed is illustrated with a detailed symbolic example of a real-case study, and it
produces a more precise version of the same numerical value that was obtained earlier. The
example demonstrates the notorious shortcomings and the extreme inefficiency that the MS-IE
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method suffers, but, on the positive side, it reveals the way to alternative methods, in which such a
shortcoming is (partially) mitigated. A prominent and well known example of these methods is the
construction of a multi-state probability-ready expression (MS-PRE). Another candidate method
would be to apply the MS-IE principle to the union of fewer (factored or composite) paths that is
converted (at minimal cost) to PRE form. A third candidate method, employed herein, is a novel
method for combining the MS-PRE and MS-IE concepts together. It confines the use of MS-PRE to
‘shellable’ disjointing of ORed terms, and then applies MS-IE to the resulting partially
orthogonalized disjunctive form. This new method makes the most of both MS-PRE and MS-IE,
and bypasses the troubles caused by either of them. The method is illustrated successfully in terms
of the same real-case problem used with the conventional MS-IE.

Keywords: Network reliability; inclusion-exclusion; probability-ready expression; multi-state system;
symbolic expression; multi-state delivery network.

1. INTRODUCTION

The Inclusion-Exclusion Principle is a very useful
principle of enumeration in combinatorics and
discrete probability [1-20]. This principle
computes the cardinality of the union of n sets,
through a finite repetition of alternation between
a usually over-generous inclusion and a usually
over-compensating exclusion. This principle
remains valid when set cardinalities are replaced
by probabilities. In the probability context, the IE
Principle is used for computing the probability of
the union of n events. The IE principle proceeds
to achieve this computation by first including
(adding) the probabilities of the n events
(corresponding to a number of terms that equals
n choose 1 =n). This is followed by excluding
(subtracting) the probabilities of the (n choose 2)
pairwise intersections of these events. Next, the
probabilities of the (n choose 3) triple-wise
intersections of the n events are included
(added), the probabilities of the (n choose 4)
quadruple-wise intersections of the n events are
excluded (subtracted), the probabilities of the (n
choose 5) quintuple-wise intersections of the n
events are included (added). This alternation of
addition (inclusion) and subtraction (exclusion) is
continued until the sole intersection of all the n
events (corresponding to n choose n=1) is
included (added) (if n is odd) or excluded
(subtracted) (if n is even).

This paper deals with a fundamental application
of the IE principle to the computation of multi-
state reliability, specifically the computation of
the expectation of the logical expression of a
multi-state  disjunctive normal form (DNF).
Currently, the most computationally efficient
method for handling this problem is an
automated implementation of the method of the
recursive sum of disjoint products (RSDP)
[21,22]. We present a tutorial discussion and
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exposition of the conventional IE method and an
improved |E approach for solving this problem.
This paper is a part of an on-going activity [23-
31] that strives to provide a pedagogical
treatment and exposition of multi-state reliability
problems. We aspire to establish a clear and
insightful interrelationship between the two-state
modeling and the multi-state one by stressing
that multi-valued concepts are natural and simple
extensions of two-valued ones. Moreover, we
hope to mitigate the notorious shortcomings of
the conventional MS-IE procedure by combining
it with a ‘shellable’ version of the concept of the
sum of disjoint products (SDP), or the more
encompassing concept of a probability-ready
expression (PRE) ) in the multi-state domain.

The organization of the remainder of this paper is
as follows. Section 2 introduces the running
example used herein of a multi-state delivery
network (MSDN) with multiple suppliers,
borrowed from Lin et al. [22]. Section 3
introduces the multi-state inclusion-exclusion
(MS-IE) principle, and hints at its special cases
and improved variants. Section 4 symbolically
applies MS-IE, in its standard or conventional
form, to the running example. Section 5
introduces a ‘shellable’ version of the concept of
a multi-state probability-ready expression (MS-
PRE), uses it in conjunction with the MS-IE
principle, and demonstrates its applicability in
terms of the running example. Section 6 reports
and discusses numerical results for the two
solutions given in Sections 4 and 5. Section 7
concludes the paper. Appendix A presents the
python listing of a program that obtains the
conventional IE solution of the running example.

1.1 Specifications for a Running Example

Lin et al. [22] studied a specific multi-state
delivery network (MSDN) with multiple suppliers,
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one market, multiple transfer centers and eight
branches. They derived an expression of system
success for specific data of delivery costs,
probability distributions of all branches, available
capacities, suppliers’ production capacities,
deterioration rate vector for the minimal paths
obtained, demand, and budget. They presented
the final multi-state success in their Table 2,
which is expressed in our following formula with
an appropriate translation of notation.

S = X3{= 3} Xs{= 3} Xg{= 3}

Vv X3{= 3} X, {= 3}

V X,{= 3} Xs{= 3} Xg{= 3}

V Xp{= 2} X3 {2 2} X, (= 2} X, {= 3} Xe{= 2}

V Xp{= 3} X,{= 3}

V X {= 2} X3{= 2} Xu{= 2} Xe{= 2} X7 {= 2} Xg{= 2}
V X {= 2} Xo{= 2} Xu{= 2}Xe{= 2} X, {= 2} Xg{= 2}

V X1 {= 2} X, {= 2} X {= 2} Xe{= 2} X, {=3}. (1)

Note that the expression of system success S in
(1) reveals clearly that it pertains to a coherent
system that enjoys causality, monotonicity and
component relevancy [23-29]. The expression
comprises eight distinct prime implicants, none of
which subsumes (can be absorbed) in another.
Each prime implicant is a product of solely upper
values X {= j} of various variables. The numerical
values for the expectations of various variable
instances, computed from the data given in Lin et
al.[22] and used in [30,31] are listed in Table 1.

1.2 Inclusion-Exclusion Principle for Multi-
State Probabilities

We note that computing the probability of the
union of n events is equivalent to calculating the
expectation of the disjunction (ORing) of the n
indicator variables of such events. Usually these
indicator variables are products of instances of
the underlying variables. These products usually
stand for the minimal paths of the system, which
are the prime implicants P, of system success, or
for the minimal cutsets of the system, which are
the prime implicants C; of system failure. Note
that the expectations of system success and
failure are the reliability and unreliability of the
system. With this interpretation, an application of
the IE principle results in the following expression
of reliability [32-36].

R =E{V|? B} = %" E(P} — £ T 1cicjen, E(B A B} +
n,

LY Sisicjcrsn, BB AR ARG — o+ (D™ BN B} (2)
A formal proof of the IE formula is available in
Hall [37], Feller [38] and Trivedi [39]. Cerasoli
and Fedullo [9] discuss and compare the various
available proofs for the IE principle. The number
of terms in (2) is given by

(++ D +-+(p)=2%-1. @
i.e., it is exponential in the number of minimal
paths. To apply the IE principle to (1), which has
n, = 8, we need 255 terms as we will see in the
sequel.

Table 1. Numerical values for the expectations of various variable instances, computed from
data given in [22], and used in [30,31]

X, {= 2} 0.897
X, {> 3} 0.892
X,{< 3} 0.108
X, (> 2} 0.965

X,{2} 0.073
X,{< 2} 0.137
Xs{< 3} 0.097
X,{= 2} 0.945

X,{2} 0.061
Xg{= 3} 0.906

X4{2} 0.059

X5 {= 3} 0.905
X5{> 2} 0.953

X5{2} 0.048
Xs{< 3} 0.095
X, {= 2} 0.863
Xs{> 3} 0.903
Xe{= 2} 0.943
X,{= 3} 0.884
X,{< 3} 0.116
Xg{= 2} 0.965
Xq{< 3} 0.094
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The IE principle is valid and applicable whether
the implicants P; and their constituting variables
are two-valued or multi-valued. However, the
implementation of the IE formula (2) in the multi-
state case needs to be aided by simplification
rules for various products of the underlying
variables. The IE simplicity is manifested in the
fact that the simplification rules it requires (when
handling coherent success) is just a single rule,
namely, the following domination rule (which
generalizes the idempotency rule of AND for an
uncomplemented literal (X A X = Xy) in the two-
valued case).

X (Zj1) Xk(Z j2) = Xk(Z j2)

A similar simplification required by IE (when
handling coherent failure) is the following
domination rule (which is another generalization
of the idempotency rule of AND for a
complemented literal (X A X, = Xy) in the two-
valued case).

Xk(S j1) Xk(S jz) = Xk(S jz)

Despite the great importance of the IE principle
in combinatorics and probability theory, and
despite its genuine unrivalled conceptual
simplicity, it does not seem to be the method of
choice for evaluation of system reliability. It
produces an exponential number of terms that
have to be reduced subsequently via addition
and cancellation. Moreover, it involves so many
subtractions that make it highly sensitive to
round-off errors in the ultra-reliable regime
[36,40-42]. For the problem of the running
example, the symbolic computations are tedious,
indeed.

for j, 2j;, (4a)

for j, <j:, (4b)

In passing, we note that if the paths P; in
equation (2) are mutually disjoint (P, AP = 0 for
1<i<j<n,), then the complexity of this
equation reduces from exponential to linear, viz.

®)

When many of the products P, are mutually
disjoint, then many of the pair-wise and k-tuple-
wise intersections in (2) vanish, and the number
of non-zero terms in (2) might decrease
dramatically, thereby allowing one of the most
effective IE improvements.

R=E{V|? B} = 3° E{P}.

On the other hand, if the paths P; in equation (2)
are statistically independent, then (2) reduces to

n

R= E(V{" R} = 2", E(R} — ¥ Ticicjen, E(RIE{R} +
%% Tisicjcken, EYE(RJERS — .. + (D)™ [[7 E(R} =
1- [I,%,(1 - E{R}), (6)
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which might be obtained through an application
of De Morgan law to the complement of the union
of products P, so as to obtain the intersection of
complemented products P, , which is a
probability-ready-expression since the
complemented products P are statistically
independent. Kessler [10] points out that when
the products P, are, in some sense, close to
being independent, then there are many useful
results bounding E{Vin:”1 Pi}, so that one might
hope to obtain good estimates for it.

In short, we note that the IE complexity
decreases dramatically for the two extreme
cases of the products P, being either statistically
independent or mutually exclusive. There is also
some appreciable improvements if these
products P; are, in some sense, close to either
being statistically independent or mutually
exclusive. To understand why these two cases
are opposite extremes, and how to effectively
utilize one of them, the interested reader might
consult some of the References [43-47].

1.3 Application of the Conventional
Inclusion-Exclusion Principle to the
Running Example

Equation (1) might be rewritten as a disjunction
of eight paths, namely

S=P1VP2VP3VP4VP5\/P6VP7VP8, (7)
where
P, = X3{2 3} XS{Z 3} Xg{= 3}

P, = Xz{Z 3} X; {= 3}

Py = X,{= 3} Xs{= 3} Xg{= 3}

P, = Xp{= 2} X3{= 2} X,{= 2} X,{= 3} Xg{= 2}

Ps = X,{=3}X,{= 3}

Py = X;{= 2} X5{= 2} Xo{= 2} Xe{= 2} X,{= 2} X{= 2}
Py = X;{= 2} X,{= 2} Xo{> 2}Xe{> 2} X, {= 2} Xa{> 2}
Py = Xi{= 2} X,{= 2} X5{= 2} Xe{= 2} X, {= 3}

The symbolic application of the IE formula (2) to
the disjunction in (7) is very tedious, indeed.
Hopefully, the reader would bear with this
cumbersome computation, in  which the
derivation of 255 terms is involved, and through
which repeated use is made of the domination
rule (4a).
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PP, = (X3{= 3} Xs{= 3} Xg{= 3}) (X3{= 3} X,{= 3}) = X3{= 3} Xs{= 3} X,{= 3}Xs{= 3}
PiP; = (X3{= 3} Xs{= 3} Xs{= 3}) (Xo{= 3} Xs{= 3} Xs{= 3= X,{= 3} X5{= 3}Xs{= 3} X {= 3}

PP, = (Xs{Z 3} XS{Z 3} Xg{=3}) (XZ{Z 2} X3{2 2} X4{2 2} X7{2 3} Xg{= 2})= XZ{Z 2} X3{2
3 X422 X523 X7>3 X8{=3)

PPs = (X3{= 3} X5{= 3} Xa{= 3}) (Xo{= 3} X7{= 3D)=X,{= 3} X3{= 3}Xs{= 3}X,{= 3} Xs{= 3}

P Pg = (X3{= 3} Xs{= 3} Xg{= 3}) (X1{= 2} X3{= 2} X, {= 2} X {= 2} X, {= 2} Xs{= 2})= X {= 2} X3{=
3X4>2 X533 X622 X752 X6{>3)

PPy = (X5(2 3} X5 (2 3} Xo(= 3)) (Xa(= 2 Xo(= 2 Xa(= X612 2%, {2 2 X (= 2D= Xy (= 2} X (=
2X323 X422 X5>3 X622 X7>2 X8{=>3)

PPy = (X3{= 3} Xs{= 3} Xg{= 3}) (X1{= 2} Xo{= 2} X3{= 2}Xc{= 2} X7 {= 3})= X1 {= 2} Xo{= 2}X5{=
3X5=23 X622 X7>3 X8{=3)

PPy = (X3{2 3} X7{2 3}) (XZ{Z 3} XS{Z 3} Xg{=3})= XZ{Z 3}X3{2 3}X5{2 3}X7{2 3} Xg{= 3}

PPy = (X3{= 3} X,{= 3}) (Xo{= 2} X3{= 2} X, {= 2} X7 {= 3} Xp{= 21)= X, {= 2}X3{= 3} X, {=
2X7=3 X8{=2}

PP = (X3{2 3} X7{2 3}) (XZ{Z 3} X{=3})= XZ{Z 3}X3{2 3}X7{2 2}

P,Ps = (X3{= 3} X,{= 3}) (X1{= 2} X3{= 2} X, {= 2} Xs{= 2} X7{= 2} Xg{= 2})= X, {= 2} X3{= 3} X, {=
2X632 X723 X8(22)

PP, = (X3{= 3} X;{= 3}) (X1{= 2} Xo{= 2} Xu{= 2}Xs{= 2} X7 {= 2} Xo{= 2}) = X {= 2} X,{=
2X33 X422 X622 X7=>3 X8{=2)

PPy = (X3{2 3} X7{2 3}) (X1{2 2} XZ{Z 2} X3{2 Z}XG{Z 2} X7{2 3}) = Xl{Z 2} XZ{Z 2} X3{2 3}X6{2
2X7{=3}

P3P, = (XZ{Z 3} XS{Z 3} XS{Z 3})(X2{2 2} Xs{Z 2} X4{2 2} X7{2 3} Xg{z 2})= XZ{Z 3}X3{2 2} X4{2
2X523 X7>3 X8{=3)

P3Py = (XZ{Z 3} XS{Z 3} Xg{=3}) (XZ{Z 3} X{=3}= XZ{Z 3}X5{2 3}X7{2 3}X8{2 3}

P3Py = (X,{= 3} Xs{= 3} Xg{= 3}) (Xi{= 2} X3{= 2} X, {= 2} X({= 2} X, {= 2} Xg{= 2})= X, {= 2} X,{=
3X322 X422 X5>3 X622 X7>2 X8{=3)

P3P; = (XZ{Z 3} XS{Z 3} XS{Z 3}) (X1{2 2} XZ{Z 2} X4{2 2}X5{2 2} X7{2 2} XS{E 2}) = X1{2 2} XZ{Z
3X422 X5>3 X622 X722 X8{=3)

P3Py = (Xp{= 3} Xs{= 3} Xg{= 3}) (X1{= 2} X,{= 2} X3{= 2}X{= 2} X,{= 3}) = X;{= 2} X,{= 3} X:{=
2X523 X632 X723 ) X823

PP = (X,{= 2} X3{= 2} Xu{= 2} X, {= 3} Xa{= 2}) (Xo{= 3} X,{= 3D=X,{= 3} X3{= 2} X,{= 2} X, {=
I X8>

PPs = (Xp{= 2} X3{= 2} Xo{= 2} X7{= 3} Xg{= 2}) (X1{= 2} X5{= 2} Xu{= 2} Xe{= 2} X, {= 2} Xe{=
2h= X, {= 2} X, (= 2}X3(= 2} X, {= 2} Xe{= 2} X, {= 3} Xg{= 2}

PPy = (Xp{= 2} X3{= 2} Xu{= 2} X, {= 3} Xg{= 2}) (X1 {= 2} Xo{= 2} X, {= 2}Xe{= 2} X7 {= 2} Xa{=
2)) = Xi{= 2} Xo{= 2}X3{= 2} Xu{= 2}X6{= 2} X, {= 3} Xg{= 2}

25



Rushdi and Amashah; AJRCOS, 8(1): 21-45, 2021, Article no.AJRCOS.67438

PPy = (Xp{z 2} X3{= 2} Xu {2 2} X7{= 3} Xp{= 2}) (X1 {2 2} X, {= 2} X3 {= 2}Xs{= 2} X,{= 3})
= X, {> 2} Xo{> 2} X5{> 2} X, {= 2}Xc{> 2} X,{= 3} Xa{=> 2}

PP = (XZ{Z 3} X,{= 3}) (X1{2 2} Xa{Z 2} X4{2 2} Xe{Z 2} X,{= 2} Xeg{= 2})= Xl{Z 2} XZ{Z 3}X3{2
2X4>2 X622 X7=>3 X8{>2}

PsP; = (X,{= 3} X7{= 3}) (Xu{= 2} Xo{= 2} Xu{= 2}Xe{= 2} X/ {= 2} Xo{= 2}) = X1 {= 2} Xo{= 3} Xu{=
2X622 X7>3 X8{>2}

PsPg = (X,{= 3} X,{= 3}) (X1{= 2} X,{= 2} X3{= 2}Xc{= 2} X,{= 3)) = Xi{= 2} X,{= 3} X5{= 2}Xs{=
2X7{=3)

PPy = (Xy{= 2} X3{= 2} X, {= 2} X{> 2} Xo{= 2} Xa{> 2}) (X1{= 2} Xo{=> 2} X, {= 2}Xe{> 2} X7 {>
2X8(22) )= X122 X222 X322 X422 X622 X7>2 X8{>2)

PePg = (X1{= 2} X3{= 2} X, {= 2} Xo{= 2} X/{= 2} Xg{= 2}) (X1{= 2} X,{= 2} X3{= 2}X,{= 2} X, {=
3D = Xi{= 2} Xo{= 2} X5{= 2} Xo{= 2}X{= 2} X, {= 3} Xg{= 2}

PrPy = (X1{= 2} Xp{= 2} Xu{= 2}X6{= 2} X7{= 2} X, {= 2}) (X1 (= 2} Xp{= 2} X3{= 2}X,{= 2} X7 (=
3]) = X1z 2} Xo (= 2} X3{= 2} X, {= 2}Xs{= 2} X7 (= 3} X,{= 2}

P, PPy = (X3{2 3} XS{Z 3} X7{2 3}X8{2 3})(X2{2 3} XS{Z 3} Xg{=3}) = XZ{Z 3}X3{2 3} XS{Z
3X7>3 X8{=3}

P, PP, = (X3{2 3} XS{Z 3} X7{2 3}X8{2 3}) (XZ{Z 2} Xg{Z 2} X4{2 2} X7{2 3} XS{Z 2})= XZ{Z 2}X3{2
3X4>2 X523 X7>3 X8{=3)

PP, Ps = (X3{= 3} X5{= 3} X;{= 3}Xg{= 3})(X,{= 3} X;{= 3}) = X,{= 3} X3{= 3} Xs{= 3} X, {= 3}Xs{=
3}

PP, P = (X3{= 3} Xs{= 3} X, {= 3}X8{2 3})(X1{2 2} X3{= 2} X, {= 2} X{= 2} X,{= 2} Xg{=2}) =
X1{= 2} X3{= 3} X, {= 2}Xs{= 3} Xe{= 2} X;{= 3}Xs{= 3}

P P,P; = (X3{= 3} Xs{= 3} X;{= 3}Xs{= 3}) (X1{= 2} X,{= 2} X, {= 2}X{= 2} X, {= 2} Xz{= 2}) =
Xi{= 2} X,{= 2}X3{= 3} Xu{= 2} Xs{= 3} Xs{= 2}X,{= 3}X3{= 3}

P P,Pg = (X3{= 3} X5{= 3} X;{= 3}Xs{= 3} )(X1{= 2} X,{= 2} X3{= 2}X{= 2} X;,{= 3}) = X;{= 2} X, {=
2X3>3 X5=>3 X6=2 X7=>3 X¥8=>3

P, PP, = (XZ{Z 3} Xs{Z 3}X5{2 3} XS{E 3})(X2{2 2} X3{2 2} X4{2 2} X7{2 3} XS{Z 2})= Xz{z 3} Xs{Z
3 X422 X5>3 X7=>3 X8(=3)

PP Ps = (X,{= 3} X5{= 3}X5{= 3} Xg{= 3D (X.{= 3} X, {= 3})= X,{= 3} X3{= 3}X:{= 3} X, {= 3}Xs{=
3}

PPy Py = (Xo{= 3} X3{= 3}Xs{= 3} Xa{= 3DN(X1{= 2} X3{= 2} Xu{= 2} Xs{= 2} X7{= 2} Xp{= 2})=
Xi1{= 2} X,{= 3} X3{= 3} X, {= 2}X:s{= 3} Xs{= 2} X;{= 2} Xz{= 3}

P, PP, = (Xz{2 3} Xs{Z 3}X5{2 3} Xg{= 3})(X1{2 2} XZ{Z 2} X4{2 Z}XG{Z 2} X7{2 2} Xg{= 2=
X {= 2} X,{= 3} X5{= 3} X, {= 2}Xs{= 3}Xe{= 2} X, {= 2} Xz {= 3}

PiP3Py = (X,{= 3} X3{= 3}Xs{= 3} Xa{= 3D (X1 {= 2} X, {= 2} X3{= 2}X{= 2} X,{= 3}) = X, {= 2} X,{=
3X3=3XE=3 X622 XT7{=3) XE8{=3)

P PPy = (XZ{Z 2} X3{2 3} X4{2 Z}XS{Z 3}X7{2 3} Xg{= 3})(X2{2 3} XA{=3) = XZ{Z 3} X3{2
3 X422 X5>3 X7=>3 X8(=>3)
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PiPyPs = Xp{= 2} X3{= 3} Xu{= 2}Xs{= 3}X;{= 3} X5 {= 3D (X1 {= 2} X3{= 2} Xu{= 2} Xe{= 2} X7 {=
2X8{22) )=X1>2 X222 X3>3 X422 X523 X622 X7>3 X8{=3)

P1PyP; = Xo{= 2} X3{= 3} X, {= 2}Xs{= 3}X,{= 3} Xa(= 3D (X1 {= 2} Xo{= 2} Xo{= 23X {= 2} X, (=
2X8(22) )=X122 X222 X323 X422 X523 X622 X723 X8(>3)

PPy Py = X,{= 2} X3{= 3} X, {= 2}X5{= 3}X,{= 3} Xg{= 3N (X1 {= 2} X,{= 2} X3{= 2}X,{= 2} X,{= 3}) =
Xi{= 2} Xo{= 2} X3{= 3} Xu{= 2}X:{= 3}Xs{= 2}X,{= 3} Xp{= 3}

PiPsPs = (Xp{= 3} X3{= 3}Xs{= 3}X,{= 3} X {= 3D (X1 {= 2} X3{= 2} Xu{= 2} Xe{= 2} X7 {= 2} Xy{=
2}) = Xi{= 2}X,{= 3} X3{= 3} Xo{= 2}Xs{= 3} X {= 2}X;{= 3} X{= 3}

PiPsP; = (X{= 3} X3{= 3}Xs{= 3}X,{= 3} Xg{= 3D (X1{= 2} Xo{= 2} X4 {2 2}X6{= 2} X7 {= 2} Xa{=
2 = Xi{z 23X, (= 3} X3{= 3} Xo{= 2}X5{= 3}X,{= 2} X,{= 3} X{= 3}

P, PP = (XZ{Z 3} X3{2 3}X5{2 3}X7{2 3} Xg{= 3})(X1{2 2} X,{= 2} X3{2 Z}Xe{Z 2} X;{= 3} =
Xi{= 2}X,{= 3} X3{= 3}Xs{= 3}Xc{= 2}X7{= 3} Xg{= 3}

PPsP; = (X1{= 2} X3{= 3} X4 {= 2}X5{= 3} X (= 2}X,{= 2} X (= 3)) (X1 {z 2} X {= 2} Xu{=z 2}Xs{2
2X722 X8(>2) )=X1>2 X222 X323 X422 X523 X622 X7>2 XE>3

P PsPy = (X1{= 2} X3{= 3} X, {= 2}Xs{= 3} Xs{= 2}X;{= 2} Xa{= 3N(X1{= 2} X,{= 2} X3{= 2}X{=
2XT7(23)) =122 X222 X353 X422 X553 X62.X7>3 X8(>3)

PiP;Py = (X1{= 2} X, {= 2}X3{= 3} Xo{= 2}Xs{= 3} Xe{= 2}X,{= 2} Xa{= 3D (X1{= 2} X, {= 2} X3{=
2X622 X7(23))=X122 X222 X353 X422 X523 X622 X753 X8(23)

PP3P, = (X,{= 3}X3{= 3}Xs{= 3}X,{= 3} Xg{= 3DN(X,{= 2} X3{= 2} Xu{= 2} X, {= 3} X5{= 2})=
X, {= 31X3{= 3} X, {= 2}X:{= 3}X,{= 3} Xg{= 3}

PyPsPs = (Xp{= 3}X5{= 3}Xs{= 3}X;{= 3} Xg{= 3D(X2{= 3} X7{= 3})= Xo{= 3}X:{= 3}X:{=
3X7=3 X8(=3)

P,P3Pg = (Xp{= 3}X3{= 3}Xs{= 3}X,{= 3} X {= 3D (X1 {= 2} X3{= 2} Xu{= 2} Xs{= 2} X, {= 2} X {=
2} = Xi{= 2} X,{= 3}X:3{= 3} X, {= 2}X:{= 3} Xs{= 2}X;{= 3} Xg{= 3}

P,PsP; = (Xp{= 3}X3{= 3}Xs{= 3}X;{= 3} Xo{= 3D (X1 {= 2} X, (= 2} Xu{Z 2}Xs{= 2} X;{= 2} Xp{=
2}) = X, {= 21X, {= 3}X3{= 3} Xy{= 2}X:{= 3}Xs{= 2}X,{= 3} Xs{= 3}

P,P3Pg = (X,{= 3}X3{= 3}Xs{= 3}X,{= 3} Xg{= 3D(X1{= 2} X, {= 2} X3{= 2}X,{= 2} X, {= 3})=
X2 2 K= 3> 31Kel> 31Kef> 2} X0 (> 3) Xal= 3)

P,PyPs = (X,{= 2}X3{= 3} X4{= 2}X;{= 3} Xg{= 2D (X {= 3} X,{= 3}) = X, {= 3}Xa3{= 3} Xu{=
2X7=3 X622

P,PyPs = (Xo{= 2}X3{= 3} Xu{= 2}X;{= 3} Xag{= 2D (X1 {= 2} X5{= 2} Xu{= 2} Xs{= 2} X7{= 2} Xp{=
2}) = X1{= 2} X, {= 2}X3{= 3} Xo{= 2} X, {= 2}X,{= 3} Xg{= 2}

PyPyP; = (Xp{= 2}X3{= 3} X (= 23X, (= 3} Xa{= 2D (X1{= 2} X,{= 2} Xu{= 2}Xe{= 2} X7 {= 2} Xe{=
2D = Xi{z 2} X,{= 2}X3{= 3} Xo{= 2}Xs{= 2}X,{= 3] Xg{= 2}

PP P = (XZ{Z 2}X3{2 3} X4{2 2}X7{2 3} Xs{Z 2})(X1{2 2} XZ{Z 2} Xs{Z Z}XG{Z 2} X{=3}) =
Xi{= 2}X,{= 2}X5{= 3} Xu{= 2}Xe{= 2}X7{= 3} Xa{= 2}

P,PsPg = (XZ{Z 3}X3{2 3}X7{2 3} )(X1{2 2} X3{2 2} X4{2 2} XG{Z 2} X7{2 2} XB{Z 2}) = XI{Z 2} XZ{Z
3X3=3 X4>2 X622 X7=>3 X8{=2}

P,PsP; = (XZ{Z 3}X3{2 3}X7{2 3} )(X1{2 2} XZ{Z 2} X4{2 Z}Xe{Z 2} X7{2 2} XS{Z 2}) = Xl{Z 2} XZ{Z
3}X3{2 3} X, {= 23X {= 2} X, {= 3} Xz {= 2}
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P,PsPg = (Xz{2 3}X3{2 3}X7{2 3})(X1{2 2} Xz{Z 2} Xs{Z Z}Xs{z 2} X{= 3} = Xl{Z Z}XZ{Z 3}X3{2
3X6=2X7=3

P,PsP; = (X1{= 2} X3{= 3} X4 {= 2} Xs{= 2} X, {= 3} Xg{= 2}) (X1 {= 2} X (= 2} X, (= 2}Xs{= 2} X7 (=
2X8(22))=X1>2 X222 X3>3 X422 X622 X7>3 X8>

P,PePg = (X1{= 2} X5{= 3} Xu{= 2} X {= 2} X, {= 3} Xp{= 2})(X1{= 2} X, {= 2} X3 {= 2}Xs{= 2} X, {=
3= Xi{= 2} Xo{= 2}X3{= 3} Xu{= 2} Xe{= 2} X;{= 3} Xs{= 2}

PP, Py = (X1{= 2} Xp{= 2} X3{= 3}Xo{= 2}Xs{= 2} X;{= 3} Xs{= 2D (X1 {= 2} Xo{= 2} X3{= 2}Xc{=
2X7(23) )=X1>2 X222 X323 X422 X622 X723 X8(>2)

PsPyPs = (X,{= 31X (2 2} Xal= 20X5(= 31X, (2 3} X (= 3D (Kol 3) X, {2 3)) = X, (= 31X (= 2} XK=
2X5=>23 X7>3 X8=>3

P3Py Py = (Xp{= 3}X3{= 2} X, {= 2}X:{= 3}X,{= 3} Xp{= 3D (X1 {= 2} X3{= 2} X, {= 2} X, {= 2} X, {=
2 X8[22) )= X122 X233 X322 X422 X553 X622 X7>3 X683

PyPyP; = (Xo{= 3}X3{= 2} Xu{= 2}Xs{= 3}X7{= 3} Xa{= 3D (X1 {= 2} X, {= 2} X, {= 2}Xs{= 2} X, {=
2X8(22) )= X122 X223 X322 X422 X523 X622 X7>3 X83

P3Py Py = (X,{= 3}X3{= 2} Xo{= 2}X{= 3}X,{= 3} Xg{= 3D (X, {= 2} X, {= 2} X3{= 2}Xc{= 2} X, {=
3D = Xi{= 2} X2 {= 3}X5{= 2} Xo{= 2}Xs{= 3}X,{= 2}X,{= 3} Xs{= 3}

P3PsPy = ( X,{= 3}Xs{= 3}X;{= 3}Xg{= 3D (X1 {= 2} X3{= 2} X, {= 2} Xs{= 2} X, {= 2} Xg{= 2}) =
Xi{= 2}X,{= 3}X3{= 2} Xo{= 2}Xs{= 3} Xs{= 2}X,{= 3}X{= 3}

P3PsP; = ( X,{= 3}Xs{= 3}X,{= 3}Xs{= 3D (X1 {= 2} X,{= 2} Xu{= 2}Xc{= 2} X, {= 2} Xe(= 2)) =
X, (= 23X, (= 3} X, (= 2)X: (= 3}X,{= 21X, {= 3}Xe{= 3}

P3PsPg = (Xz{2 3}X5{2 3}X7{2 3}X8{2 3})(X1{2 2} XZ{Z 2} Xs{Z Z}XG{Z 2} X7{2 3}) = X1{2 Z}XZ{Z
X322 X523 X622 X7{=3) X8{=3)

P3PePy = (Xi{= 2} X,{= 3}X:{= 2} X,{= 2}Xs{= 3} X {= 2} X, {= 2} Xp{= 3)(X1{= 2} X, {= 2} X, {=
2X622 X722 X8[>2))=X122 V253 X322 X422 X523 X622 X722 X8[>3)

P3PePy = (X:1{= 2} Xo{= 3}X3{= 2} Xu{= 2}Xs{= 3} Xe{= 2} X, {= 2} Xg{= 3N(X1{= 2} Xo{= 2} X3{=
2X622 X7{=3))=X122 X223 X322 X422X523 X622 X7>3 X8{=>3)

P3P;Pg = (X1{Z 2} X, (= 3} X4 {= 2}Xs{= 3}Xe{= 2} X {= 2} Xe{= 3D (X1 {= 2} X, (= 2} X3{= 2}Xe{=
2X7{Z3))=X122 X2>3 X322 X422 X523 X622 X7>3 XE{>3)

PyPsPy = (X2{= 3} X3{= 2} X, {= 2} X;{= 3} Xa{= 2D (X1 {= 2} X5{= 2} Xo{= 2} X({= 2} X/ {= 2} Xg{=
2}) = X,1{= 2} X{= 3} X3{= 2} X\ {= 2} X {= 2} X7 {= 3} Xe{= 2}

PyPsP; = (Xp{= 3} X3{= 2} Xo{= 2} X, {= 3} Xa{= 2D (X1 {2 2} X {= 2} Xu{Z 2}Xe{= 2} X7 {= 2} Xs{=
2}) = X, {= 21X, (= 3} X3{= 2} Xo{= 2} Xe{= 2}X,{= 3} Xg{= 2}

PyPsPg = (Xp{= 3} X3{= 2} Xo{= 2} X;{= 3} Xo{= 2}) (X1 {= 2} X, {= 2} X3{= 2}Xe{= 2} X;{= 3}) =
Xi{Z 2}X,(= 3} X3{= 2} Xu{= 2} Xe{= 2}X7{= 3} Xp{= 2}

PyPsPy = (Xi{= 2} Xp{= 2}X5(= 2} X4 {= 2} Xo{= 2} X7 (= 3} Xa{2 2) (X1 {2 2} X {2 2} Xu{= 2}X,{2
2X722 X8(22) )=X122 X222 X322 X422 X622 X7>3 X822

PyPsPy = (Xi{= 2} Xp{= 2}X3{= 2} X4 {= 2} Xe{= 2} X, {= 3} X{= 2) (X1 {= 2} Xp (= 2} X3{= 2}X, (=
2X723=X122 X222 X322 X4>2 X622 X7>3 X8>2

PyP;Py = (X1{= 2} Xp{= 2}X3{= 2} X, {= 2}Xe{= 2} X7{= 3} Xe{= 2} (X1 {= 2} X,{= 2} X3{= 2}Xc{=
2} X;{= 3} = Xl{Z 2} XZ{Z 2}X3{2 2} X4{2 Z}XG{Z 2} X7{2 3} Xg{= 2}
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PsPsP; = (X:{2 2} X,{= 3}X3{= 2} Xu{= 2} Xe{= 2} X;{= 3] Xe{= 2D (M1 {2 2} Xp{= 2} Xu{= 2}Xe{=
2X7>2 X8(22) )=X1>2 X223 X322 X422 X622 X7>3 X8{>2)

PsPsPy = (X1{= 2} X,{= 3}X3{= 2} Xo{= 2} Xs{= 2} X;{= 3} Xs{= 2D (X1{= 2} X, {= 2} X3{= 2}Xc{=
2X7(23) )=X1>2 X223 X322 X422 X622 X7>3 X8{>2)

PsP, Py = (X1{= 2} X,{= 3} X4 {= 2}Xe{= 2} X,{= 3} Xo{= 2D (X1 {= 2} X, {= 2} X3{= 2}Xs{= 2} X, {=
) = K2 2 K (2 3) Kol2 2) Ky 2Kl= 2) Kol 3) Xo(2 2)

PePsPy = (X1{2 2} X,{= 23X5{> 2} Xo{2 21X{> 2} X, (= 2} Xo{2 2D (Xa {> 2} Xo{> 2} X, (> 2}X,(>
2X7{=23) )=X1>2 X222 X322 X4>2 X622 X7=>3 X8(=2)

PiPyP3Py = (Xp{= 3}X5{= 3} X5{= 3} X7{= 3}Xs{= 3D (X {= 2} X3{= 2} X4{= 2} X7{= 3} Xs{= 2])
= X,{= 3}X3{= 3} X,{= 2} Xs{= 3} X, {= 3}Xs(= 3}

PP, P3Ps = (Xo{= 3}X3{= 3} Xs{= 3} X;{= 3}Xs{= 3D)(X,{= 3} X,{= 3})= X,{= 3}X:{= 3} X;{=
3 X723 X8{=3)

PiP,P3Ps = (Xo{= 3}X3{= 3} Xs{= 3} X, {= 3}Xs{= 3D (X1 {= 2} X5{= 2} X, {= 2} X {= 2} X, {= 2} Xy
> 2}) = X1{= 2}X,{= 3}X:{= 3} X, {= 2} Xs{= 3} Xs{= 2}X,{= 3}Xs{= 3}

PiPyPsP; = (X, {= 3}X3{= 3} Xs{= 3} X, {= 3)X5{= 31)(X1{= 2} Xo{= 2} Xu{= 2}Xe{= 2} X7 {= 2} Xe{=
2h= X {= 2}X,{= 3}X3{= 3} X,{= 2}Xs{= 33X {= 2} X, {= 3}X{= 3}

PP,P;Py = (X,{= 3}X3{= 3} X5{= 3} X,{= 3}Xs{= 3} (X1 {= 2} Xo{= 2} X3{= 2}X,{= 2} X, {
>3} = X {= 2}X,{= 3}X5{= 3} Xs{= 3}X{= 2} X, {= 3}X{= 3}

P, P,P,Ps = (XZ{Z Z}Xs{Z 3} X4{2 2} XS{Z 3} X7{2 3} XB{Z 3})(X2{2 3} X7{2 3}) = XZ{Z 3}X3{2
3X4>2 X523 X7>3 X8{=3)

PP,P Py = (Xp{= 2}X3{= 3} X, {= 2} Xs{= 3} X;{= 3} Xa{= 3D (X1 {= 2} X5{= 2} X, {= 2} Xs{= 2} X, {=
2 X8[22) )= X122 X232 X323 X422 X523 X622 X753 X8(>3)

PiP,PyP; = (Xp{= 2}X3{= 3} Xu{= 2} Xs{= 3} X7{= 3} X{= 3D (X1 {= 2} Xo{= 2} X, {= 2}X,{= 2} X, {=
2X8[22) )= X122 X232 X323 X422 X533 X632 X7>3 X&[>3)

PP, PPy = (Xp{= 2}X3{= 3} Xu{= 2} Xs{= 3} X;{= 3} Xa{= 3D (X1 {= 2} Xp{= 2} X3 {= 2}X,{= 2} X7 {=
3D = X1{= 2} Xo{= 2}X3{= 3} Xo{= 2} X5{= 3}Xe{= 2} X7 {= 3} Xp{= 3}

Py P, PsPg =( Xo{= 3} X3{= 3} X5{= 3} X;{= 3}Xs{= 3D (X1 {= 2} X5{= 2} Xo{= 2} Xe{= 2} X, {= 2} X3(=
2}) = Xi{= 2} X,{= 3} X5{= 3} X, {= 2} X5{= 3} Xs{= 2} X;{= 3}Xs{= 3}

P, P,PsP; =( X,{= 3} X5{= 3} Xs{= 3} X, {= 3}Xs{= 3D (X1 {= 2} X, {= 2} Xu{= 2}Xe{= 2} X, {= 2} X3{=
2}) = X1{= 2}X,{= 3} X3{= 3} Xu{= 2}X:{= 3}Xc{= 2} X, {= 3}Xs{= 3}

PyP,PsPg =( X, {= 3} X3{= 3} Xs{= 3} X;{= 3}Xg{= 3D (X1 {= 2} Xp{= 2} X3{= 2}Xe{= 2} X,{= 3}) =
Xi{= 2}X,{= 3} X3{= 3} Xs{= 3}Xe{= 2} X7{= 3}Xs{= 3}

P, P,PsP
= (2 2 X2 3} K> X0 3} Xe(= 2 10 (2 300> 3D) (N (2 2} Ko (> 2} Ky (2 2Xe(> 23 X0 (> 2 Ko
> 2}) = Xl{Z 2} XZ{Z 2}X3{2 3} X4{2 Z}XS{Z 3} X6{2 2} X7{2 3}X8{2 3}

P, P,FgPg
= (X1{= 2} X3{= 3} Xu{= 2}X5{= 3} Xe{= 2} X7{= 3}Xp{= 3D (X1 {= 2} Xo{= 2} X3{= 2}Xs{= 2} X7{
= 3}) = X, {= 2}X,{= 2} X3{= 3} Xu{= 2}Xs{= 3} Xe{= 2} X7 {= 3}Xg{= 3}

P P,P;Pg = (X,{= 2} X,{= 2}X5{= 3} X,{= 2} Xs{= 3} Xe{= 2}X,{= 3}Xs{= 3DN(X1{= 2} X,{= 2} X;5{=
2X622 X7{23))=X122 X222 X323 X422 X523 X622 X7>3 X8{=>3}
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P P3P, Ps = (Xp{= 3} X5{= 3} Xo{= 2}Xs{= 3}X;{= 3} Xa{= 3D (Xo{= 3} X {
=3} = XZ{Z 3} X3{2 3} X4{2 Z}XS{Z 3}X7{2 3} Xg{= 3}

P, P3P, Pg = (XZ{Z 3} X3{2 3} X4{2 Z}XS{Z 3}X7{2 3} Xs{
= 3D {= 2} X5{= 2} Xu{= 2} Xe{= 2} X, {= 2} X
>2) = X {= 2}X,{= 3} X5{= 3} X.{= 2}X:{= 3} X, {= 2}X,{= 3} Xg{= 3}

P PP P; = (X,{= 3} X3{= 3} Xy {= 2}X5{= 3}X,{= 3} Xs
= 3N (X1 {= 2} X, {= 2} Xu{= 23X {= 2} X7 {= 2} Xg{
> 2}) = X1{= 2}X,{= 3} X3{= 3} X, {= 2}X:s{= 3}Xs{= 2}X,{= 3} X3{= 3}

PyP3PyPy = (X{= 3} X3{= 3} Xo{= 2}X5{= 3}X,{= 3} Xa{= 3D (X1 {2 2} X5 (= 2} X3{= 2}Xs{= 2} X, {
> 3}) = X, {= 23X, {= 3} X3{= 3} Xo{= 2}Xs{= 33X {= 2}X,{= 3} Xe{= 3}

PiP;PsPg = (Xo{= 3} X3{= 3}Xs{= 3} X;{= 3}Xs{= 3))(X1{= 2} X3{= 2} X, {= 2} Xc{= 2} X, {= 2} Xg{
>2) = X {= 2} X,{= 3} X5{= 3} X, {= 2}X:{= 3} X, {= 2} X,{= 3}Xs{= 3}

PiP3PsP; = (X,{= 3} X3{= 3}Xs{= 3} X, {= 3}Xs{= 3D (X1 {= 2} X,{= 2} Xo{= 2}Xe{= 2} X, {= 2} Xg{
= 2}) = X1 {= 2}X,{= 3} X3{= 3} Xu{= 2}X:{= 3}Xe{= 2} X7 {= 3}Xs{= 3}

PP3PsPy = (X3{= 3} X3{= 3}Xs{= 3} X;{= 3}Xs{= 3D (X1 {= 2} Xo{= 2} X5 {= 2}Xe{= 2} X7 {
> 3}) = X, {= 23X, {= 3} Xa{= 3}Xs{> 3}Xe{= 2} X, {= 3}Xs{= 3}

PPy PeP; = (X1{= 2} X, {= 3} X3{= 3} X4 {= 2}Xs{= 3} Xs{= 2} X;{= 2} Xof
= 3N (= 2} Xo (= 2} Xo{= 2} Xe{= 2} X7 {= 2} Xy{
> 2}) = X, {= 2} X, (= 3} X3{= 3} X, (= 2}Xs{= 3} Xs{= 2} X, {= 2} Xu(= 3}

PiP3PgPy = (X1{= 2} X,{= 3} X3{= 3} X,{= 2}Xs{= 3} X {= 2} X, {= 2} Xy
= 3D X {= 2} Xo{= 2} X5{= 2}Xs{= 2} X,{= 3})
= X1{= 2} X,{= 3} X3{= 3} X, {= 2}X:s{= 3} Xs{= 2} X;{= 3} Xg{= 3}

PiPsP; Py = (X1 {2 2} X,{= 3} X5{= 3} Xu{= 2}Xs{= 3}Xe{= 2} X, {= 2} Xg{= 3DX1{= 2} Xo{= 2} X5{=
2X622 X7{=3))=X122 X223 X323 X422 X523 X622 X7>3 X8{=>3)

PP, PsPs = (Xp{= 3} X5{= 3} Xy {= 2}X5{= 3}X,{= 3} Xu
= 3N (X1{= 2} X3{= 2} X, {= 2} X {= 2} X, {= 2} X,
>2) = X {= 2}X,{= 3} X3{= 3} X,{= 2}X{= 3} X, {= 2}X,{= 3} Xg{= 3}

P, P,PsP; = (XZ{Z 3} X3{2 3} X4{2 Z}XS{Z 3}X7{2 3} Xs{
= 3D X1 {= 2} Xo{= 2} Xof= 23X {= 2} X7 {= 2} Xo{
> 2D = X1 {= 2}X,{= 3} X3{= 3} X,{= 2}X:{= 3}X,{= 2}X,{= 3} Xg{= 3}

PP, PPy = (X,{= 3} X5{= 3} X, {= 2}X5{= 3}X;{= 3} Xg{= 3} (X1 {= 2} X,{= 2} X5{= 2}Xs{= 2} X,{
>3}) = X {= 2}X,{= 3} X5{= 3} X, {= 2}X:{= 3}X,{= 2}X,{= 3} Xg{= 3}

PP, PP; = (X1{2 2} XZ{Z 2} Xs{Z 3} X4{2 Z}XS{Z 3}X7{2 3} Xs{
= 3D X1 {= 2} Xo{= 2} Xo{= 23X {= 2} X7 {= 2} Xo{
> 2}) = X1{= 2} X,{= 2} X3{= 3} X, {= 2}X:{= 3}X{= 2}X,{= 3} Xs{= 3}

PiPyPePg = (X1{= 2} X,{= 2} X3{= 3} X,{= 2}Xs{= 3}X,{= 3} Xg{
> 3D (X1 {= 2} Xp{= 2} X5{= 2}Xs{= 2} X,{
> 3}) = X1{= 2} X,{= 2} X3{= 3} X, {= 2}X:{= 3}X{= 2}X,{= 3} Xs{= 3}

PP, P; Py = (X;1{= 2} X,{= 2} X5{= 3} X,{= 2}X5{= 3}Xc{= 2}X,{= 3} Xa{= 3}(X1{= 2} X, {= 2} X3 {=
2632 X7{>3)) =122 X252 ¥3>3 X452 X553 X632 X7>3 X8{>3)
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PiPsPoP; = (X1{= 2}X,{= 3} X3{= 3} X,{= 2}Xs{= 3} Xs{= 2}X;{= 3} Xp{= 3D (X1 {= 2} X {= 2} Xu{=
2X622 X752 X8(>2) )=X122 X223 X323 X432 X553 X632 X7>3 X8(>3)

PPsPsPy = (X1{= 2}X,{= 3} X3{= 3} Xu{= 2}Xs{= 3} Xe{= 2}X,{= 3} Xe{= 3D (X1 {= 2} X2 {= 2} X5{=
2X622 X7{23))=X12 ¥2>3 X323 X422 X523 X622 X723 X8{>3)

Py PsP; Py = (X1{= 2}X,{= 3} X3{= 3} X,{= 2}Xs{= 3}X{= 2} X, {= 3} Xg{
23D (X{= 2} X {= 2} X3{= 2} X {= 2} X, {
> 3}) = X1 {= 2}X,{= 3} X3{= 3} X, {= 2}X:{= 3}X{= 2} X;{= 3} Xz{= 3}

P, PsP; Py
= (X1{= 2} X,{= 2} X3{= 3} Xo{= 2}Xs{= 3} Xe{= 23X, {= 2} Xp{= 3D (X1 {= 2} Xo{= 2} X3 {= 2}X{= 2} X7 {
=3} = Xi{2 2} X,{= 2} X3{= 3} X\ {= 2}X5{= 3} Xs{= 2}X{= 3} Xp{= 3}

PyP3PyPs = (Xo{= 3}X3{= 3} X, {= 2}X:{= 3}X,{= 3} Xe{= 3D (X2{= 3} X7{= 3})= X,{= 3}X:{= 3} X, {=
2X523 X7>3 X8=3

P,P3P,Ps = (Xp{= 3}X3{= 3} X4{= 2}Xs{= 3}, {= 3} Xp{= 3D (X1 {= 2} X5{= 2} X, {= 2} Xs{= 2} X, {=
2X8(22) )=X122 X223 X323 X422 X523 X622 X7>3 X83

PyP3PyPy = (Xp{= 3}X3{= 3} Xa{= 2}Xs5{= 3}X; (= 3] Xg{= 3D (X1 {= 2} Xo{= 2} Xu{z 2}Xe{= 2} X, {=
2XE{22) )=X122 X223 X323 X422 X523 X622 X7>3 X8>3

PP3PyPg = (X,{= 3}X3{= 3} Xy {= 2}Xs{= 3}X,{= 3} Xo{= 3}) (X1 {= 2} X, {= 2} X3{= 2}X,{= 2} X7 {=
3D = Xi{= 21X, {= 3}X5{= 3} X4{= 2}X:{= 3}Xs{= 2}X;{= 3} Xg{= 3}

PyP3PsPg = (Xp{= 3}X3{= 3}X5{= 33X, (= 3} X{= 3D (X1 {= 2} X5 (= 2} Xy {= 2} Xo{= 2} X7 {= 2} Xef
> 2}) = X, {= 2}X,{= 3}X;(= 3} X, {= 2}Xs(= 3} X {= 2}X, (= 3} X {= 3}

P,P;3PsP; = (Xo{= 3}X3{= 3}Xs{= 3}X,{= 3} X5 {= 3D (X1 {= 2} Xo{= 2} Xo{= 2}Xe{= 2} X;{= 2} X5{
> 2}) = X1{= 2}X,{= 3}X3{= 3} X, {= 2}X:{= 3}X{= 2}X,{= 3} X{= 3}

PPsPsPy = (Xp{= 3}X3{= 3)X5{= 3}X7{= 3} Xp{= 3D (X1 {= 2} X3 (= 2} X3{= 2} Xs{= 2} X{
> 3}) = X, {= 23X, {= 3}X3{= 3}X:{= 33X {= 2}X,{= 3} Xe{= 3}

P,P3PeP; = (X1{= 2} X,{= 3}X3{= 3} X,{= 2}Xs{= 3} X¢{= 2}X,{= 3} Xs{= 3D (X1 {= 2} X,{= 2} X,{=
2X622 X722 X8f>2))=X1>2 X2>3 X323 X42 X533 X622 X7>3 XE6(=>3)

P,P3PsPg = (X1 {= 2} Xp{= 3}X3{= 3} Xo{= 2}Xs{= 3} Xo{= 2}X,{= 3} X (= 3N (X1 {= 2} X, {= 2} X5{=
2X622 X7{>3))=X122 X223 X323 X422 X523 X6=>2X7>3 X8{=>3)

P,P3P;Pg
= (X1 {= 2}X,{= 3}X3{= 3} Xu{= 2}X:{= 3}Xs{= 23X, {= 2} Xe{= 3D (X1 {= 2} Xo{= 2} X3{= 2}Xs{= 2} X, {
>3}) = X {= 2}X,{= 3}X;{= 3} X, {= 2}X:{= 3}X.{= 2}X,{= 3} Xg{= 3}

P,PyPsPg = (Xp{= 3}X3{= 3} Xo{= 2}X;{= 3} Xg{= 2D (X1 {= 2} X3{= 2} X4{= 2} Xe{= 2} X/ {= 2} Xg{=
2}) = X1{= 2}X,{= 3}X3{= 3} Xu{= 2} X {= 2}X7{= 3} Xp{= 2}

PPyPsP; = (X, (2 3)X5(2 3} Xo{= 21X, (= 3} Xo{= 2D (X1{2 2} X (= 2} Xo{> 2}Xe (> 2} X, (> 2} Xo{>
2)) = X, {2 2)X, (= 3)X,(2 3} X4{= 2)X(2> 2}X, (> 3} X5(> 2}

P,PyPsPg = (X,{= 3}X3{= 3} X,{= 2}X,{= 3} Xpg{= 2} ) (X1 {= 2} X,{= 2} X3{= 2}Xc{= 2} X,{= 3}) =
X2 21, (> 31,2 3} X {2 23X (> 20X, (> 3} X (> 2}

P, P4 PPy

= (X1{= 2} Xo{= 2}X5(= 3} Xy {= 2} X (= 2307 (= 3] Xg{= 2D (K1 {= 2} Xp{= 2} XolZ 2}X6{= 2} X7 {= 2} Xp{
> 2}) = X, {= 2} Xo{= 2}X3{= 3} X, {= 2} X {= 23X, {= 3} Xa{= 2}
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P3P, PgPg
= (N {= 2} Xo{= 2}X05{= 3} Xo{= 2} Xe{= 2}X7{= 3} Xe{= 2D (X1 {= 2} Xo{= 2} X5 {= 2}X,{= 2} X,{= 3})

= Xi{= 2} Xo{= 2}X5{= 3} X4 {= 2} Xe{= 2}X7{= 3} Xp{= 2}

P,P,P;P,
= (0> 2 Xl 2002 3) X2 206> 25 (= 3) el 2D (= 2} K> 2) Ko (> 2)Xe(> 2) Ko
> 3}) = Xl{Z 2} XZ{Z 2}X3{2 3} X4_{2 Z}XG{Z 2}X7{2 3} XB{Z 2}

P,PsPsP; = (X{Z 2} X, (= 3}X3{= 3} Xu{= 2} Xe{= 2} X;{= 3} Xp{= 2D (X1 {= 2} X, (= 2} X, {= 2}Xe{=
2X722 X822 =X122 X223 X323 X422 X622 X723 K82

PyPsPsPy = (X1{= 2} X, {= 3}X3{= 3} X4{= 2} Xe{= 2} X;{= 3] Xp{= 2D (X1 {2 2} Xo{= 2} X3{= 2}Xc (=
2X7(23])=X1>2 X2>3 X3>3 K42 X6>2 X7>3 X6>2

P,PsP; Py = (X1{Z 2} X, (= 3}X3(= 3} X4{= 2}Xs{= 2} X, (= 2} Xg{= 2D (X1 {2 2} X, {= 2} X3 {= 2}Xe{2
2X7{Z3))=X122 X223 X3>3 X422 X622 X7>3 X822

P,PePy Py = (X1{= 2} Xo{= 2}X3{= 3} Xu{= 2} X {= 2} X, {= 3} Xp{= 2D (X1 {= 2} X,{= 2} X3{= 2}X{=
2X7{23) )=X1>2 X222 ¥3=>3 X422 X622 X7>3 X822

P3P, P,P,
= (X;{Z 31X3{= 2} Xu{= 2}X:s{= 3}X,{= 3} Xo{= 3D (X1 {= 2} X3{= 2} X4 {= 2} Xe{= 2} X7 {= 2} Xa(= 2})
= Xi{= 2}X,{= 3}X3{= 2} X, {= 2}X5{= 3} Xs{= 2}X,{= 3} Xs{= 3}

P,P,PsP
= (0612 3142 2) Xy (2 DXs(2 316 (2 3) X (= 3D (> 23 X002 2) (> 20X (> 23 X0 (> 2) X (> 2)
— X 255 K> 2) X[ 20X [> 3WXs[> 20> 3) o> 3)

P3PyPsPy = (X, (= 3]X3{= 2} X4{= 2}X5{= 3}X;{= 3} Xp{= 3D (X{= 2} X, (= 2} X3{= 2}X,{= 2} X, {
> 3}) = X, {= 2} X, {= 3}Xa{= 2} X, {= 2}X:{= 33X {= 2}X,{= 3} Xs{=> 3}

PsPyPsPy = (X1{= 2} X, (= 3}X3{= 2} X4{= 2}Xs{= 3} Xo (= 2}X7 (= 3} Xg (= 3D (X1 {2 2} Xo{= 2} Xu{2
2X622 X7>2 X8(>2))=X1>2 X2>3 X322 X422 X523 X622.X7>3 X6>3

P3Py PsPy = (X1{2 2} X,{= 3}X3{= 2} Xo{= 2}X5{= 3} Xe{= 2}X,{= 3} Xa{= 3D (X1 {= 2} X2 (= 2} X3{=
2X622 X723} )=X1>2 ¥2>3 X322 X422 X523 X622 X7>3 X8>3

P;P,P,P
= (00> 200,02 3X(2 2 Xy (2 DX:(2 3Xe(> 28, (> 3} K= 3NN 2) 10> 2) X (= 20X (> 2) o
>3 = Xl{Z Z}XZ{Z 3}X3{2 2} X4{Z Z}XS{Z 3}X6{2 2}X7{2 3} XS{Z 3}

P3PsPsP,
= (;’(1{2 23X{= 3}X3{= 2} Xy{= 2}X5{= 3} Xe{= 23X, {= 3}Xa(= 3D (X1 {2 2} X {= 2} Xy {2 2}Xs{= 2} X7 (= 2} X
> 2} = X, {= 23X, {= 3}X:{= 2} X, {= 2}Xs{= 3} Xe{= 2}X,{= 3}Xy{= 3}

PyP;P,Ps
= (5(1{2 23X, {= 3}X3{= 2} X,{= 2}Xs{= 3} Xe{= 2}X,{= 3}Xa{= 3D (X1 {= 2} X,{= 2} X3{= 2}Xc{= 2} X, {
> 3)) = X, {= 23X, (= 31X {= 2} X, (= 2)Xs{= 3} X (= 2}X, (= 3} X (= 3}

PP;P, P
= (X0 (2 5> 31 X, (2 DXs(2 3K (> 20X, (2 312 3D (K02 2 K02 2) X2 2Xe(= 2 X, {2 3))
= Xl{Z Z}XZ{Z 3}X3{2 2} X4{Z Z}XS{Z 3}X6{2 2}X7{2 3}X3{2 3}

P3PePy Py = (X1{= 2} X,{= 3}X5{= 2} Xu{= 2}Xs{= 3} X {= 2} X, {= 2} X {= 3D(X1{= 2} X, {= 2} X:{=
2632 X7{>3))=K12 X253 X352 X432 K53 X632 X7>3 X8(=3)
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PyPsPsP; = (X;{= 2} X, (= 3} X3{= 2} X,4{= 2} Xe{= 2} X, (= 3} Xp{= 2)( X1 {2 2} X2 (= 2} Xu {2 2K, (=
2X722 X8{22))=X1>2 X2>3 X322 X4>2 X6>2 X7>3 X682

PyPsPsPy = (X1{= 2} Xp{= 3} X5{= 2} X4{= 2} Xe{= 2} X7{= 3} Xs{= 2H(X1{= 2} Xo{= 2} X5{= 2}Xc{=
2X7(23))=X122 X223 X322 X422 X622 X723 X822

PyP5P; Py = (X,{Z 2}X,{= 3} X3{= 2} Xy {= 2} Xe{2 2}X;{= 3} Xp{= 2))( X1 {= 2} Xo{= 2} X3{= 2}Xe{=
2X7(23])=X122 X2>3 X322 X4>2 X622 X7>3 ¥8>2

PyPsP; Py = (X1{= 2} Xo{= 2}X3{= 2} X,{= 2} Xs{= 2} X,{= 3} Xs{= 2 (X1 {= 2} Xp{= 2} X3{= 2}Xe{>
2X7(23) )=X122 X222 X322 X422 X622 X723 X822

PsPsP; Py = (X1{= 2} X,{= 3}X3{= 2} Xo{= 2} X6 {= 2} X7{= 3} Xs{= 2)) (X1 {= 2} X, {= 2} X3{= 2}Xc{=
2X7(23) )=X1>2 X223 X322 X422 X622 X7>3 X8{=>2)

PP,P3P,Ps = (X,{= 3}X3{= 3} Xu{= 2} Xs{= 3} X7{= 3}X3{= 3D(X,{= 3} X, {= 3D)= X,{= 3}1X:{=
3 X422 X523 X7=>3 X8{=3)

P P,P3PyPs = (Xo{= 3}X3{= 3} Xu{= 2} X5{= 3} X7{= 3}Xs{= 3D(X1{= 2} X3{= 2} Xu{= 2} Xe{= 2} X, {=
2XE(=2))=X122 X223 ¥3>3 X422 X5>3 X632 X7>3 X6(>3)

PP,P;P, P, = (X,{= 3}X3{= 3} X,{= 2} Xs{= 3} X, {= 3}X3{= 3})(X1{= 2} X, {= 2} X, {= 2}X,{= 2} X, {=
2XE{Z2N=X12 X223 X323 X422 X523 X622 XT7>3 XE8(=3)

PP, P3P, Py = (X,{= 3}X5{= 3} Xo{= 2} Xs{= 3} X;{= 3}Xs{= 3D (X1 {= 2} X, {= 2} X3{= 2}Xc{= 2} X7 {=
3h= X, {= 2}X, (= 3}X5{= 3} X4{= 2} Xs{= 3} Xs{= 2}X,{= 3}X{= 3}

PyP,PsPsPs = (X,{= 31X (2 3) Xs{= 3} X, {= 3)Xs(= 3D(Xy (2 2) X5 (> 2) Xy {= 2} X2 2 X, (= 2) K[>
2D= X, (2 2} X, (= 3105 (> 3} Xa{= 2 X2 3) K= 2%, (= 3} (> 3)

PP,P3PsP; = (X,{= 3}X3{= 3} Xs{= 3} X7 {= 3}X3{= 3D(X1{= 2} X, {= 2} X, {= 2}X({= 2} X, {= 2} Xg{=
2h= X {= 2}X,{= 3}X3{= 3} X, {= 2} X {= 3}X{= 2} X, {= 3} X {= 3}

PyP,PsPsPg = (X,{= 3}X3{= 3} X5{= 3} X;{= 3}Xe{= 3})(X1{= 2} X, {= 2} X3{= 2}X,{= 2} X7 {=
3= X1 {= 2}X,{= 3}X3{= 3} Xs{= 3} Xe{= 2}X;{= 3}Xp{= 3}

P, P,P3PgP; = (X1{= 2}X,{= 3}X3{= 3} X4{= 2} Xs{= 3} Xs{= 2}X7{= 3}Xa{= 3H( X1 {= 2} X, {= 2} X, {=
2X6>2 X7>2 X8[>2))=X122 ¥2>3 X323 X4>2 X523 X632.X7>3X¥8>3

Py P,P3PgPy = (X1{= 2}X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} Xs{= 2}X7{= 3}Xe{= 3H( X, {= 2} X, {= 2} X5 {=
2X622 X7{23))=X122 X223 X323 X422 X523 X622 X7>3.X8>3

PiP,PsP; Py = (X, {= 2}X,{= 3}X3{= 3} Xu{= 2}X5{= 3}X6{= 2} X, {= 3}Xa (= 3D (X1 {= 2} X2 {= 2} X5{=
2X622 X7{23))=X122 X223 X323 X422 X523 X622 X723 X8(>3)

Py P,P,PsPs = (X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} X;{= 3} Xg{
= 3D X {= 2} X3{= 2} Xu{= 2} Xe{= 2} X, {= 2} Xof
> 2D = X, {= 2}X,{= 3}X:{= 3} X,{= 2} X {= 3} Xc {= 2} X, {= 3} Xz {= 3}

P, P, P,PsP,
= (X{= 3}X3{= 3} Xo{= 2} X5{= 3} X, {= 3] X (3N (X1 {= 2} Xo(= 2} Xo{= 2}Xe{= 2} X7 {= 2] Xe{
= 2}) = X {= 2}X,{= 3}X3{= 3} Xo{= 2} X5 {= 3}Xe{= 2} X7 {= 3} Xg{= 3}

PP,PyPsPg = ( X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} X;{= 3} Xe{= 3D (X1 {= 2} X,{= 2} X3{= 2}Xs{= 2} X, {
>3} = Xl{Z 2} XZ{Z 3}X3{2 3} X4{Z 2} XS{Z 3}X6{2 2} X7{2 3} Xg{= 3}
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PP, PyPeP; = (X1{= 2}X,{= 2}X3{= 3} X,{= 2} Xs{= 3} Xc{= 2} X,{= 3} Xg{
= 3D X1 {= 2} Xo{= 2} Xu{= 2}Xs{= 2} X, {= 2} X
> 2}) = X1{= 2}X,{= 2}X3{= 3} X, {= 2} Xs{= 3} X {= 2} X,{= 3} X5{= 3}

PyP, PPy = (X, {2 23X, (= 21X, (= 3} Xu{= 2} X5{2 3) Xe(2 2} X, (= 3} X (31 (X 2 2} X (= 2} X3 (= 20X, 2} X1
>3} = X {= 2}X,{= 2}X;{= 3} X,{= 2} X:{= 3} X, {= 2} X,{= 3} Xg{= 3}

PyP,PyP; Py
= (X1 {= 2}X,{= 2}X3{= 3} Xu{= 2} Xs{= 3}Xe{= 2} X7 {= 3} X (3D (X1 {= 2} X, {= 2} X3{= 2}X({= 2} X,{
> 3}) = X1 {= 2}X,{= 2}X3{= 3} X, {= 2} Xs{= 3}X,{= 2} X,{= 3} Xs{= 3}

PiP,PsPsP; = (X1{= 2} Xp{= 3} X3{= 3} Xu{= 2} Xs{= 3} Xe{= 2} X, {= 3}Xs{= 3D)(X1{= 2} Xo{= 2} Xu{=
2X622 X722 X8f22))=X122 X223 X323 X422 X523 X622 X7>3 X6(>3)

Py P,PsPsPg = (X1{= 2} X,{= 3} X3{= 3} X, {= 2} Xs{= 3} Xs{= 2} X,{= 3}Xs{= 3D(X1{= 2} X,{= 2} X3{>
2632 X7{23))=K122 X253 X333 ¥4>2 K53 X622 K73 X8{>3)

P,P,P,P, P,
= (Xls{z 23X,{= 3} X3(= 3} X4{= 2}Xs{= 33X {= 2} X, {= 33X {= 3N (X1 {= 2} X, {= 2} X3{= 2}Xs{= 2} X, {
> 3)) = X, {= 2}X,(= 3} X5 {= 3} X, {= 2}X:s{= 3}X (= 2} X, {= 3}X (= 3)

P, P, PgP; Py
= (X1{= 2} X,{= 2}X3{= 3} Xo{= 2}Xs{= 3} Xe{= 2} X7{= 3}Xa{= 3D (X1 {= 2} X, {= 2} X3 {= 2}X{= 2} X7{
= 3}) = X1{= 2} X,{= 2}X3{= 3} Xu{= 2}X:{= 3} Xe{= 2} X7 {= 3}Xa{= 3}

P1P3PyPsPg = (Xp{2 3} X3{= 3] Xy {2 2}X5{= 3}X,{= 3} X (3D (X1 {= 2} X3{= 2} Xo{= 2} X (= 2} X7 {= 2} Xof
> 2} = X, {= 2}X,{= 3} X3(= 3} X, {= 2}Xs{= 3} X {= 2}X, (= 3} X {= 3}

PiP3PyPsP; = (X,{= 3} X3{= 3} Xu{= 2}X:s{= 3}X7{= 3} Xg (BN (X1 {= 2} X, {= 2} X, {= 2}X{= 2} X, {= 2} Xg{
> 2}) = X1 {= 2}X,{= 3} X3{= 3} X4{= 2}X:s{= 3}Xs{= 2}X,{= 3} X3{= 3}

PyP3PyPsPy = (X,{= 3} X3{= 3} Xy {2 2}X5{= 3}X,{= 3} Xa{= 3D (X1{= 2} X, (= 2} X3{= 2}X,s{= 2} X7{
> 3}) = X, {= 23X, {= 3} X3{= 3} X, {= 23X {= 3}Xe{= 2}X,{= 3} X,{= 3}

P, P;P,PyP.
= (612 260> 3) K (2 3 X2 21X (> 3} Xe (= 20X, (2 3) X (2 3N 0L 2) X (> 2) Xa2 2)Xe (> 2) 1o (= 2) Ko
>2) = Xl{Z Z}XZ{Z 3} X3{2 3} X4{2 Z}XS{Z 3} XG{Z 2}X7{2 3} Xg{Z 3}

Py P3P, PsPg
= (X {= 2)X5(= 3} X5 (= 3] Xy {= 2}X5{= 3} X (= 2}X7{= 3} Xg{= 3D (X1 (= 2} Xp{= 2} X3{= 2}X6{= 2} X, {
> 3}) = X, {= 23X, {= 3} X3{= 3} X, {= 2}Xs{= 3} X {= 2}X,{= 3} X {= 3}

P, P3P, P; Py = (X1{2 Z}XZ{Z 3} X3{2 3} X4{2 Z}XS{Z 3}X6{2 2}X7{2 3} Xs{
= 3D (X1 {= 2} Xo{= 2} Xa{= 2}Xe{= 2} X7 {
>3} = X, {= 2}X,{= 3} X5{= 3} X, {= 2}X:{= 3}X,{= 2}X,{= 3} Xg{= 3}

P, P;P;P,P.
= (612 2) o= 3) X2 3} Xa (> 2Xs (2 3} X2 2 1, (= 31K (= 3D (2 23,02 2) Xa (= 23Xe(> 23 X, (= 2) Ko
> 2}) = Xl{Z 2} XZ{Z 3} Xg{Z 3} X4{2 Z}XS{Z 3} XG{Z 2} X7{2 3}X8{2 3}

P, P; PPy Pg
= (Xls{Z 2} Xo{= 3} X3(= 3} Xy {= 2}Xs{= 3} X {= 2} X;{= 3}X{= 3D (X1 {= 2} Xo{= 2} X3{= 2}Xe{= 2} X/ {
23} = Xi{= 2} X, {= 3} X3{= 3} X, {= 2}X5{= 3} Xs{= 2} X;{= 3}X4{= 3}

Py P;PsP; Py = (X1{= 2}X,{= 3} X3{= 3} Xo{= 2}Xs{= 3}Xs{= 2} X7 {= 3}Xs{= 3D(X1{= 2} X, {= 2} X5{=
2X622 X7{23))=X122X2>3 X323 X422 X523 X622 X7{23) X8{=3)
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Py P3PgP; Py = (X1{= 2} X,{= 3} X3{= 3} Xo{= 2}Xs{= 3} Xs{= 2} X7{= 2} Xg{= 3D(X1{= 2} X, {= 2} X3{=
2X622 X7{23))=X122 X223 X323 X422 X523 X622 X7>3 X8{=>3)

P, P,PsPcP; = (X1{2 Z}XZ{Z 3} Xs{Z 3} X4{2 Z}XS{Z 3} XG{Z 2}X7{2 3} Xs{
= 3D X1 {= 2} Xo{= 2} Xu{= 2}Xe{= 2} X, {= 2} Xs{= 2})
= X, {= 2}X,{= 3} X;{= 3} X, {= 2}X.{= 3} X, {= 2}X,{= 3} Xg{= 3}

PP, PsPsPy = (X1{= 2}X,{= 3} X3{= 3} X, {= 2}Xs{= 3} Xs{= 2}X;{= 3} Xg{
> 3D X1 {= 2} Xo{= 2} X3{= 2}Xe{= 2} X7 {
> 3}) = X1{= 2}X,{= 3} X3{= 3} X {= 2}X:{= 3} X {= 2}X,{= 3} Xs{= 3}

P1P4PsP; Py = (X1{= 2}X,{= 3} X5{= 3} X4{= 2}Xs{= 3}Xe{= 2}X,{= 3} Xa{= 3D(X1{= 2} Xo{= 2} X3{=
2X622 X7{23))=X122 X223 X323 X422 X523 X622 X7>3 X8{=3)

P P,PsP; Py = (X1{= 2} X,{= 2} X5{= 3} X, {= 2}Xs{= 3}Xs{= 2}X;{= 3} Xg{
2 3D (X1 {= 2} X {= 2} X3{= 2} X {= 2} X, {
>3} = X1 {= 2} X, {= 2} X5{= 3} X, {= 2}X:{= 3}Xc{= 2} X, {= 3} X5{= 3}

Py PsPgP; Py = (X1{= 2}X,{= 3} X3{= 3} Xu{= 2}Xs{= 3} Xs{= 2}X;{= 3} Xa{= 3D (X1 {= 2} X, {= 2} X;{=
2X622 X7{23))=X122 X2>3 X323 X422 X523 X622 X7>3 X8{=3)

P,P3PPsPs = (X,{= 3}X3{= 3} Xu{= 2}Xs{= 3}X,{= 3} Xp{= 3N (X1{= 2} X3{= 2} X, {= 2} X, {= 2} X, {=
2X8{22) )=X1>2 X223 X3>3 X422 X523 X622 X7=>3 X8>3

P,P3P,PsP; = (X,{= 3}X3{= 3} X,{= 2}X5{= 3}X,{= 3} Xg{= 3 (X1{= 2} X,{= 2} X, {= 2}X.{= 2} X, {>
2 X8[22) )= X122 X223 X323 X422 X523 X622 X7>3 X8>3

P,P3P,PsPg = (X,{= 3}X3{= 3} X, {= 2}X5{= 3}X,{= 3} Xp{= 3N (X1 {= 2} X,{= 2} X3{= 2}Xc{= 2} X, {=
3D = Xi{= 23X, {= 3}X:{= 3} Xuf= 2}X:{= 3}Xs{= 2}X;{= 3} Xs{= 3}

P,P3PyPsP; = (X, {2 2}X,(= 3}X3{= 3} Xo{= 2}X5{= 3} Xs{= 2}X; (= 3} Xg{= 3D (X1 {2 2} X»{= 2} Xu{z
2X622 X7>2 X8(>2) )=X1>2 X223 X323 X422 X523 X622X7>3 X6=3

P,P3PyPsPy = (X1{= 2}X,{= 3}X5{= 3} X,{= 2}Xs{= 3} Xe{= 2}X7{= 3} Xs{= 3D (X1 {= 2} X, {= 2} X3{=
2X622 X7{23) )=X122 X223 X323 X422 X523 X622 X723 X823

P,P3P,P; Py = (X;{= 2}X,{= 3}X3{= 3} X, {= 2}Xs{= 3}Xc{= 2}X;{= 3} Xg{= 3D (X1 {= 2} X, {= 2} X3{=
2X622 X7(23) )=X122 X233 X323 X422 X553 X632 X723 X823

P,P3PsPeP; = (X1{2 2}X2{2 3}X3{2 3} X4{2 Z}XS{Z 3} Xa{Z 2}X7{2 3} Xs{
= 3D (X1{= 2} Xo{= 2} Xu{= 2}X6{= 2} X/ {= 2} X
> 2}) = X1{= 2}X,{= 3}X3{= 3} X, {= 2}X:{= 3} Xs{= 2}X,{= 3} X3{= 3}

P,P3Ps PPy = (X1{= 2}X,{= 3}X3{= 3} X, {= 2}Xs{= 3} X {= 2}X,{= 3} Xg{
=2 3NX1{= 2} Xo{= 2} X5{= 2}Xe{= 2} X, {
>3} = Xl{Z Z}XZ{Z 3}X3{2 3} X4{2 Z}XS{Z 3} X6{2 2}X7{2 3} Xg{= 3}

P,P3Ps PPy = (X1{= 2}X,{= 3}X3{= 3} X, {= 2}X:{= 3}X{= 2}X,{= 3} Xs{= 3DN(X1{= 2} X, {= 2} X53{=
2632 X7{23))=(K122 X233 X3>3 X42 X523 X632 X7>3 X8(=3)

PyP3PoP; Py = (X1{= 2} Xo{= 3}X3{= 3} Xo{= 2}Xs{= 3} Xe{= 2}X7{= 2} Xo{= 3D (X1 {= 2} X2 {= 2} Xs{=
2X622 X7{>3) )=X122 X223 X323 X422 X523 X622 X7>3 X8{=>3)

P,PyPsPsP; = (X1{= 2}X,{= 3}X3{= 3} X4{= 2} Xe{= 2}X,{= 3} Xg{= 2D (X1 {= 2} X, {= 2} X, {= 2}Xe{=
2X722 X8(22) )=X122 X223 X323 X422 X622 X7>3 X822

P,PyPsPePy = (X;{= 2}X,{= 3}X3{= 3} Xo{= 2} Xe{= 2}X,{= 3} Xa{= 2D (X1 {= 2} X, {= 2} X3{= 2}X({=
2} X {= 3}) = X, {= 2}X,{= 3}X5{= 3} X, {= 2} X {= 2}X,{= 3} Xg{= 2}
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P3Py P5P; Py
= (X, {= 21X, (= 3}X3{= 3} Xo{= 23X, {= 2}X;{= 3} Xe{= 2D (X1 {= 2} X, (= 2} X3{= 2}Xe{= 2} X,{= 3})
= X1{= 2}6{= 3}X3{= 3} Xu{= 2}X{= 2}X,{= 3} Xe{= 2}

P, P4PsP; Py
= (N {= 2} Xo{= 21{= 3} X\ {= 2} Xe{= 2}X,{= 3} Xp{= 2) (X1 {= 2} Xo{= 2} X5 {= 2}X,{= 2} X, {
= 3}) = X1 {= 2} Xo{= 2}X3{= 3} X\ {= 2} X {= 2}X;{= 3} Xs{= 2}

P,PsPsP;Pg = (X1{= 2} X,{= 3}X3{= 3} Xu{= 2} Xs{= 2} X7 {= 2} Xa{= 2D( X1 {= 2} X, {= 2} X3{= 2}Xe{=
2X7{Z3))=X122 ¥2>3 X3>3 X422 X622 X7>3 X8>2

PyP,PsPyP.
= (0> D002 3K 2} K> 2Xs(> 3} K> 205> 3) X (= 3D (> 2) 1o (> 2) K> 2Xe (> 2) X (= 23 X
> 2] = (> 2K (o 3K (5 2) Xa (o 23Xs (> 3} Xe (> 23X, (> 3) X (> 3)

P3P, PsPsPg
= (X1 (= 206 {= 3)X3{= 2} Xy {2 2}X5{= 3} Xe{= 2}X,{= 3} Xp{= 3D (X1 (= 2} X2 (= 2} X3{= 2}Xs (= 2} X7{
> 3}) = X, {= 23X, {= 3}X:{= 2} X, {= 2}Xs{= 3} X, {= 2}X,{= 3} Xs{= 3}

P;P,P;P,P,
= (2 B> 35,2 2) X2 20X (2 3K (2 200,12 3 X (2 3D (K2 2 X1 2) X3 (2 20X 23 X
> 3}) = Xl{Z Z}XZ{Z 3}X3{2 2} X4{Z Z}XS{Z 3}X6{2 2}X7{Z 3} Xg{Z 3}

P3P,PeP, Py = (X, {= 2} X,{= 3}X3{= 2} X,{= 2}Xs{= 3} X¢{= 2}X7{= 3} Xp{= 3D (X1 {= 2} X {= 2} X3{=
2X622 X723))=X122 X223 X322 X422 X523 X622 X723 K83

P3PsPsP; Py
= (;’(1{2 23X,{= 3}X5{= 2} Xo{= 2}X5{= 3} X{= 2}X7{= 3}Xg{= 3D (X1 {= 2} Xp{= 2} X5{= 2}X6{= 2} X7{
>3} = X, {= 23X, {= 3}X:{= 2} X, {= 2}Xs{= 3} X {= 2}X,{= 3}X,s{= 3}

PyPsPeP; Py = (X1{= 2} X,{= 3} X3{= 2} X, {= 2} Xe{= 2} X,{= 3} Xe{= 2)( X1 {= 2} X, {= 2} X3{=
2X622 XT{=23))=X1>2 X2=3 X322 X4>2 X622 X7=>3 X822

P,P,P;P,P;Pg
= (X, {= 35})(3{2 3} X4{= 2} Xs{= 3} X/{= 31X {= 3D (X1{= 2} X3{= 2} X4 {= 2} Xo{= 2} X, {= 2} X
> 2} = X1 {= 2} X, {= 3}X5{= 3} Xu{= 2} X {= 3} X {= 2} X, {= 3}Xs{= 3}

P,P,PsP,P:P,
= (X {= 35}X3{2 3} X4{= 2} Xs{= 3} X,{= 3}X:{= 3N (X1 {= 2} X, {= 2} Xu{= 23X {= 2} X, {= 2} X5{= 2))
= X,{= 2} X, (= 3}X:{= 3} X, (= 2} Xs{= 3} X {= 2}, {= 31X, (= 3}

PPy P3Py PsPy = (X, (= 3}X3{= 3} X4{= 2} Xs{= 3} X7 {= 3}Xg{= 3)) (X1 {2 2} Xp(= 2} X3{= 2}Xe{= 2} X{
> 3}) = X, {= 2} X, (= 3)X3{= 3} X, {= 2} X5{= 3}X,{= 2} X, {= 3}Xs{= 3}

PP, P3Py PP,
= (X1 {= 2}X,(= 3}X3{= 3} Xu{= 2} Xs{= 3} Xo{= 2} X, {= 3}Xa{= 3D (X1 {= 2} X, {= 2} Xu{= 23X {2 2} X, {= 2} Xg{
>2}) = X, (= 23X, (= 3)X,{= 3} X, (= 2} X5 {= 3} X, (= 2} X, (= 3} X (= 3}

P, P, P3Py Pg Py
= (X {= 21X, {= 3}X3{= 3} Xo{= 2} Xs{= 3} Xo{= 2} X, {= 3}Xa{= 3D (X1 {= 2} X, {= 2} X5{= 2}Xe{= 2} X, {
= 3}) = X, {= 2}X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} Xe{= 2} X7{= 3}Xs{= 3}

P, P, P3Py P7 Py

= (X1 {= 205 {= 3}X:{= 3} Xu{= 2} Xs{= 3}Xe{= 2} X7{= 3}Xp{2 3D (X1 (= 2} Xo (= 2} X5{= 2} (= 2} X7 {
>3} = X, {= 23X, {= 31X, (= 3} X, {= 2} Xs{= 3}X,{= 2} X, (= 3}X,{= 3}
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P, P, P3PsPs P,
= (X2{= 3}X3{= 3} X, {= 2} Xs{= 3} Xo{= 2} X, {= 3}Xs{= 3 (X1 {= 2} X, {= 2} Xu{= 2}Xe{= 2} X7 {= 2} Xy
= 2}) = X,1{= 2}X,{= 3}X3{= 3} X, {= 2} Xs{= 3} Xe{= 2}X;{= 3}Xs{= 3}

P, P, P3PsPg Py
= (X,{= 3}X3{= 3} X, {= 2} Xs{= 3} X¢{= 2}X,{= 31X {= 3D (X1 {= 2} X, {= 2} X3{= 2}X,{= 2} X,{= 3})
= X:{= 2} X,{= 3}X3{= 3} Xo{= 2} X5{= 3} Xe{= 2}X;{= 3}Xs{= 3}

Py P, P3P5P; Py
= (X1 {= 2}X6{= 3}X:{= 3} Xu{= 2} Xs{= 3}Xe{= 2} X7{= 3}Xp{2 3D (X1 (= 2} Xo (= 2} X5{= 2}, (= 2} X7 {
>3} = X, {= 23X, {= 31X, (= 3} X, {= 2} Xs{= 3}X,{= 2} X, (= 3}X,{= 3}

Py P P3P P7 Py
= (X, {= 21X, {= 3}X3{= 3} Xo{= 2} Xs{= 3} Xe{= 2}X,{= 3}Xa{= 3D (X1 {= 2} X, {= 2} X5{= 2}Xe{= 2} X, {
= 3}) = X, {= 2}X,{= 3}X5{= 3} Xo{= 2} Xs{= 3} Xe{= 2}X7{= 3}Xs{= 3}

P, P,P,PsPP; = (X1{= 2}X,{= 3}X3{= 3} X, {= 2} X5{= 3} Xs{= 2} X;{= 3} Xg{
= 3D (X1 {= 2} X, {= 2} Xu{= 23X {= 2} X7 {= 2} Xg{
>2}) = X1{2 Z}XZ{Z 3}X3{2 3} X4_{2 2} XS{Z 3} XG{Z 2} X7{2 3} Xg{= 3}

PP, PyP5PsPy = (X,{= 2}X,{= 3}X3{= 3} X\{= 2} X5{= 3} X{= 2} X;{= 3} X,{
2 3D (M1 {= 2} X, (= 2} X3{= 2)X{= 2} X,{
> 3}) = X, {= 2}X,{= 3}X5{= 3} Xo{= 2} Xs{= 3} Xe{= 2} X, {= 3} X, {= 3}

P, P,P,PsP; Py = (X1{2 2}X2{2 3}X3{2 3} X4{2 2} XS{Z 3}X6{2 2} X7{2 3} XB{
= 3D (X1 {= 2} Xo{= 2} X3{= 21X {= 2} X, {
> 3}) = Xi{= 2}X,{= 3}X3{= 3} X, {= 2} Xs{= 3}X{= 2} X,{= 3} Xg{= 3}

P,P,P,PsP; Py = (X1{= 2}X,{= 2}X3{= 3} X,{= 2} Xs{= 3} Xc{= 2} X, {= 3} Xg{
2 3D (X1 {= 2} X {= 2} X3{= 2} X {= 2} X, {
>3} = X.{= 2}X,{= 2}X;{= 3} X,{= 2} X:{= 3} X, {= 2} X,{= 3} Xg{= 3}

P,P,P;PgP,Pg
= (2 2 K,(2 3} X (2 3) Xyl 2) Ko 3 Xel2 2) o= 30X 3D (K2 2) K (= 2) K= 21K6(2 2) X,
> 3}) = X, (= 2} X, (= 3} X5{= 3} X, {= 2} Xs{= 3} X (= 2} X, (= 3)Xs (= 3}

P, P3P, PsPsP; = (X1{= 2}X,{= 3} X3{= 3} X, {= 2}X5{= 3} Xs{= 2}X,{= 3} Xa{= 3})( X, {= 2} X, {=
2 X4S2 X632 X7>2 X8(=2))=X122.X2>3 X333 X4>2 X533 X6>2.X7>3 X8(>3)

PyP3PyPsPsPg = (X1{= 2}X,{= 3} X3{= 3} Xu{= 2}Xs{= 3} Xe{= 2}X,{= 3} Xa{= 3)(X1{= 2} X, {=
2 X322 X632 X7{>3))=X122 X223 X323 X422 X533 X632 X723 X823}

PiP3P,PsP; Py = (X,{= 2}X,{= 3} X3{= 3} X, {= 2}Xs{= 3}Xe{= 2}X;{= 3} X,
= 3D X1 {= 2} Xo{= 2} X5{= 2}Xe{= 2} X, {
> 3}) = X1{= 2}X,{= 3} X3{= 3} X, {= 2}X:{= 3}Xs{= 2}X,{= 3} Xs{= 3}

Py P3P, PsP7 Py
= (Xi{2 2}X5(= 3} X3{= 3} Xo{= 2}X5{= 3} Xs{= 2}X7{= 3} Xg{= 3D (X1 {= 2} Xp{= 2} X3{= 2}Xe{= 2} X/{
> 3}) = X, {= 2}X,{= 3} X3(= 3} X, {= 2}Xs(= 3} X {= 2}X, (= 3} X {= 3}

P, P3P5PgP; Py
= (X1{= 2} X,{= 3} X3{= 3} Xo{= 2}Xs{= 3} Xe{= 2} X7 {= 3}Xp{= 3D (X1 {= 2} X>{= 2} X3{= 2}Xs{= 2} X7{
= 3}) = X, {= 2} X,{= 3} X3{= 3} Xu{= 2}X:{= 3} Xe{= 2} X7 {= 3}Xs{= 3}

PyPyPsPsP; Py = (X:1{Z 2}X,{= 3} X3{= 3} Xo{= 2}X5{= 3} Xs{= 2}X;{= 3} Xg{= 3} (X1 {= 2} X, {2
2X322X622 X7{>3))=X1>2X2>3 X323 X422 X523 X622 X7>3 X8{>3)
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P, P3Py PsPs P,
= (X {= 21X, (= 3}X3{= 3} Xo{= 2}X:{= 3}X;{= 3} X5 {= 3D (X1 {= 2} X, {= 2} X\ {= 2}Xe{= 2} X/ {= 2} Xy
= 2}) = X:1{= 2}X,{= 3}X3{= 3} X, {= 2}Xs{= 3}Xe{= 2}X;{= 3} X5{= 3}

P3P3P4P5Pg Py
= (X, {= 2}X, (= 3}X3(= 3} Xo{= 2}X:{= 31X, {= 3} Xg{= 3D (X1 {= 2} X, {= 2} X3{= 2}Xe{= 2} X {
> 3}) = X1 {2 2}X,{= 3}X:{= 3} Xo{= 2)X5{= 3)Xe(= 2}X,{= 3} Xa(= 3}

P,P3P,PsP; Py = (X1{= 2}X,{= 3}X3{= 3} Xo{= 2}Xs{= 3}Xs{= 2}X,{= 3} Xa{= 3D (X1 {= 2} X, {=
2 X322 X622 X7f23))=N122 X253 X353 X422 X523 X632 X723 X823

P,P3P,PP, Py
= (X {= 2}X,(= 33X {= 3} Xo{= 2}Xs{= 3} Xo{= 2}X,{= 3} Xs{= 3D (X1 {= 2} X, (= 2} X5{= 2}Xe{= 2} X, {
> 3}) = X, {= 2}X,{= 3}X3{= 3} Xo{= 2}Xs{= 3} Xs{= 2}X,{= 3} Xa{= 3}

PyP3PsPsP; Py = (X1{= 2}X,{= 3}X3{= 3} Xo{= 2}Xs{= 3} Xe{= 2}X7{= 3} Xg{
= 3D X {= 2} X, (= 2} X3{= 2}Xe{= 2} X, {
= 3}) = X {= 2}X,{= 3}X3{= 3} X, {= 2}X:{= 3} Xc{= 2}X,{= 3} Xg{= 3}

P,P,PsPeP; Py = (X1{= 2}X,{= 3}X3{= 3} Xo{= 2} Xs{= 23X, {= 3} Xo{= 2D( X1 {= 2} X, {= 2} X3{=
X632 X723))=X122 X223 X323 X422 X632 X753 X822

P;P,PsPgP,Pg
= X2 D[ X2 2 X, (2 20602 3} Xel2 20,02 3) Kol 3D)(K1 (2 2) K2 2) X2 20Xe(2 2) Ko
> 3}) = X, (= 2}X, (> 31X {= 2} X, {= 2}Xs{= 3} Xe{= 2)X, (= 3} Xe{= 3)

Py P, P3P, P5 Pe Py
= (Xi{2 2} X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} Xe{= 2} X7 (= 3}Xa{= 3D (X1 {2 2} X2 (= 2} Xu{= 2} {= 2} X7{= 2} Xef
> 2} = X, {= 2} X, (= 3}X3(= 3} X, {= 2} X5{= 3} X {= 2} X, {= 31X, (= 3}

Py P, P3Py Ps PsPg
= (X1{= 2} X,{= 3}X3{= 3} Xo{= 2} X5{= 3} Xe{= 2} X7{= 3}Xp{= 3D (X1 {= 2} X, {= 2} X3 {= 2}Xs{= 2} X7{
= 3}) = X1{= 2} X,{= 3}X3{= 3} Xu{= 2} Xs{= 3} Xe{= 2} X7 {= 3}Xe{= 3})

P,P,P;P,P;P,Pg
=X{z 25} Xo{= 3}X{= 3} Xo{= 2} Xs{= 3} Xe{= 2}X7{= 3}Xs{= 3}) (X1 {= 2} Xo{= 2} X3{= 2} X, {= 2} X7 {
= 3}) = X,1{= 2} X,{= 3}X3{= 3} Xo{= 2} X5 {= 3} Xe{= 2}X7{= 3}Xs{= 3}

Py P, P3P, P P7 P
= (Xi{2 2}X5(= 3}X3{= 3} X4 {= 2} X5{= 3} X6{= 2} X7{= 3}X{= 3D (X1 {= 2} Xp{= 2} X3{= 2}Xe{= 2} X/{
> 3}) = X, {= 23X, {= 3}X:{= 3} X, {= 2} Xs{= 3} X, {= 2} X, {= 3}X,{= 3}

P, P, P PsPgP; Py
= (X, {= 21X, {= 3}X3{= 3} Xo{= 2} Xs{= 3} Xe{= 2}X,{= 3}Xp{= 3D (X1 {= 2} X, {= 2} X3{= 2}Xe{= 2} Xy {
= 3}) = X {= 2}X,{= 3}X3{= 3} Xo{= 2} Xs{= 3} Xe{= 2}X7{= 3}Xs{= 3}

PyP,P,PsPsP;Py = (X1{= 2}X,{= 3}X3{= 3} X,{= 2} X5{= 3} Xs{= 2} X, {= 3} Xg{
= 3D (X1 {= 2} X {= 2} X3{= 2} X {= 2} X7 {
> 3}) = X1{= 2}X,{= 3}X3{= 3} X, {= 2} Xs{= 3} X {= 2} X,{= 3} Xg{= 3}

P, P3P, PsPyP; Py = (X1{= 2}X,{= 3} X3{= 3} X,{= 2}X5{= 3} Xs{= 2}X;{= 3} Xa{= 3})(X;{= 2} X, {>
2X322X622 X7{23))=X12 X2>3 X3=>3 X422 X523 X622 X7=>3 X8(=>3)

P,P3PyPsPsPr Py = (X1{= 2}X,{= 3}X3{= 3} Xy {= 2}Xs{= 3}Xe{= 2}X,{= 3} Xg{= 3N (X, {= 2} X,{=
2X322X622 X7{>3))=X122 X223 X323 X422 X523 X622 X7>3 X823

PyP,P3P,PsPeP; Py = (X1{= 2} X, {= 3}X5{= 3} Xy {= 2} Xs{= 3} Xe{= 2} X, {= 3}Xs{= 3D (X, {= 2} X,{=
2} X3{= 2}X6{= 2} X7{= 3D)= X1 {= 2} X,{= 3}X5{= 3} X,{= 2} X5 {= 3} Xs{= 2} X;{= 3}X{= 3}
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1.4 Improving IE with ‘Shellable’

Version of a PRE

a

In this section, we deal with the introduction of
orthogonality in a given sum-of-products formula
(disjunctive normal form). If neither of the two
terms A and B in the sum (AV B) subsumes the
other (AvB+#A and AvB#B) and the two
terms are not already disjoint (A A B # 0), then B
can be disjointed with A by using the formula
[24,36,43,48-57]

AVB=Av (Y vy hvyY,av.. vy, .Y, V)8,
®

Where the first term A still remains intact, while
the second term B is replaced by e terms which
are each disjoint with A and are also disjoint
among themselves. Note that each Y, (1 <k <
e) is a literal that appears in the product A and
does not appear in the product B. It stands for a
disjunction of certain instances of some variable
Xjx)- We are interested herein in the particular
case for which e = 1, i.e., when the two products
A and B are such that there is a single literal that
appears in the product A and does not appear in
the product B. For this case, the disjointing
formula (8) simplifies to the Reflection law [36].

€))

Which is conveniently referred to as a case of
‘shellable’ disjointing. We coin the name of
‘shellable disjointing’ to mimic the well-known
term of a ‘shellable disjunctive normal form
(DNF) that designates a DNF for which
orthogonalization can be (most) efficiently
performed, without any increase in the number of
terms [58-61]. In the sequel, we will not strive to
achieve complete orthogonality in a given sum-
of-products formula (disjunctive normal form).
Instead, we will apply shellable disjointing as
much as we can. In comparison with schemes for
producing a probability-ready expression, this
scheme enjoys the advantages of simplicity and
avoidance of increase in the number of terms, at
the expense of still requiring the further use of
the inclusion-exclusion (IE) principle. However,
the IE use might simplify dramatically. Therefore,
the net complexity of this scheme, which borrows
ideas partially from the PRE and IE procedures,
seems to be much faster and less error-prone,
than a scheme based on the IE scheme alone or
another using the PRE scheme solely.

AVB=AVY,B,

To demonstrate the proposed scheme, we re-
rearrange the 8 prime implicants in (1) as shown
in (10), and further introduce as much
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orthogonality as possible through shellable
disjointing (9), as shown by the bold literals in
(10). For example, the first prime implicant in (1)
has two literals X,{= 3} and X,{= 3}, and none of
the succeeding implicants share both these
literals (for otherwise, the succeeding implicant
would subsume the first implicant and get
absorbed by it, contradicting the fact that it is
prime). Three out of these succeeding implicants
(the fourth, the seventh, and the eighth) do not
share any of the afore-mentioned literals with the
first implicant, and we deliberately abstain from
disjointing any of them with the first implicant,
since such an action would be complicated and
would split each of the disjointed terms into
several (here two) terms. The third implicant
(alone) shares X,{= 3} with the first implicant, so
that only the literal X,{> 3} appears in the first
implicant but not in the third one. Therefore, we
achieve shellable disjointing of the third implicant
with the first by multiplying the third implicant with
the complement of X,{= 3}, which is X,{< 3}
(shown in bold). Likewise, we attain shellable
disjointing of the second, fifth, and sixth prime
implicants with the first by multiplying each of
them with the complement of X,{> 3}, which is
X,{< 3} (again, highlighted in bold). Shellable
disjointing is also possible for the fourth implicant
with the third by multiplying the fourth implicant
with X,{< 3} (shown in bold). As a result, the
fourth implicant immediately becomes disjoint
with the first, and turns capable of shellable
disjointing with the second implicant through
further multiplication with X,{< 3} (again shown
in bold). Each of the fifth and sixth implicants is
capable of shellable disjointing with the second
implicant through multiplication with X;{< 3}
(again, shown in bold). The eighth implicant is
capable of shellable disjointing with the seventh
implicant through multiplication with X,{< 2}
(shown in bold). As an offshoot, the eighth
implicant becomes orthogonal with four other
implicants (the first, the third, the fifth, and the
sixth).

S=X,{=3}X,{= 3} vX,{< 3} X;{= 3} X, {= 3}
V X,{= 3} Xs{= 3} X;{< 3} Xg{= 3}

v X,{< 3} X5{= 3} X:{= 3} X, {< 3} X3{= 3}

V X {2 2} Xp{< 3} Xa{= 23X3{< 3} X4 {= 2} X,{= 3} Xe{= 2}
V X, {2 2} Xp{2 23X, {< 3} X3 {2 2)X5{< 3}X({= 2} X,{= 3}
V X1 {= 2} X, {= 2} X, {= 2}Xe{= 2} X/ {= 2} X5{= 2}

V X1 {2 2} X, {< 23X {= 2} X {2 2} X (= 2} X, {= 2} Xa{= 2}
(10)
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Employing the relation (X;{= 2} X;{< 3} =X;{2}), R, =X,{=3}X,{=3}
we simplify Equation (10) to R, = X,{< 3} X:{= 3} X, {= 3}

S=X,{=3}X,{= 3} vX,{< 3} X3{= 3} X, {= 3} R; = X,{= 3} X:{= 3} X,{< 3} Xg{= 3}

V X,{= 3} Xo{= 3} X,{< 3} Xe{= 3}

R, = X,{< 3} Xo{=> 3} Xs{> 3} X,{< 3} Xg{= 3}
V X,{< 3} X3{= 3} Xs{= 3} X, {< 3} Xg{= 3} Rs = X,{2} X3{2} Xy {= 2} X, {= 3} X{= 2}

V X,{2} X3{2} X4{= 2} X, {= 3} Xg{= 2}

R = X1{2 2} XZ{Z}X3{2}X6{2 2} X;{=3

vV Xi{= 2} X, {2} X3 (2}Xe{= 2} X, {= 3} =3
VX1 (> 2} Xof> 2} X, {2 21K {2 2} X5 {> 2} Xal> 2) ?;;;21}{2 2} Xo(2 2} Xo{Z 2]Xe{z 2} X7 (2

V X {= 2} X {< 2}X3{= 2} X, {= 2} Xe{= 2} X/ {= 2} Xp{= 2}.

2 X722 X8{=2}

=R VRVR VRV R VRV R, VRg. (11D)

With so many orthogonalities achieved in (11a),
where the IE formula (2) reduces significantly to.

E{S} = E{R1} + E(R,} + E(RIHER,} + ERs} + E{Re} + E(R,} + E(Rg} — E{R R} — ER,N;} -
ER2RBE RIR7TE RARTE RARS £ RSR6E RSR7TE R6RT-H RSR6KT7},  (12)

where the various intersections in (12) are

RR; = (Xz{Z 3} X7{Z 3})(X1{2 2} Xz{Z 2} X4{Z Z}Xs{Z 2} X7{Z 2} Xg{=2}) = Xl{Z 2} Xz{Z
3 X422 X6>2 X7=3 X8{=2}

RNy = X{< 3} X3{= 3} X7 {= 3N (X1 {= 2} X, {= 2} X4 {= 2}Xe{= 2} X;{= 2} Xg{= 2}) =
X1{= 2} X, {2}X3{= 3} Xo{= 2}Xe{= 2} X;{= 3} Xg{= 2}

RN = (X{< 3} X3{= 3} X7 {= 3} (X4{= 2} Xo{< 2}X3{= 2} X {= 2} Xe{= 2} X7 {= 2} Xg{= 2}) =
X1{= 2} Xo{< 2}X3{= 3} X4 {= 2} X¢{= 2} X7{= 3} Xg{= 2}

R3R; = Xo{= 3} Xs{= 3} X7{< 3} Xp{= 3}) (Xi{= 2} Xo{= 2} X4{= 2}Xe{= 2} X7{= 2} Xg{= 2}) =
X1{= 2} Xo{= 3} X4 {= 2}Xs{= 3}Xe{= 2} X7{2} Xg{= 3}

RR7 = (X (<3} X5(= 3} X5 (= 3} X7{< 3}Xg{= 3})  (XulZ 2} Xa{= 2} Xu{= 2}Xe (= 2} X7 (=
2X8{>2}) =X1>2 X22X3>3 X4>2X5>3X6>2 X72 X8{>3}

RaRg = (Xo{< 3} X3{= 3} X5{= 3} X, {< 3} Xg{= 3}) (Xi{= 2} X,{< 2}X3{= 2} Xo{Z 2} Xe{z 2} X7 {2
2X8{>2})=X1>2 X2<ZX3>3 X422 X5>3X6>2 X72 X8{>3}

RsRe = (X212} X3{2} X4{= 2} X5{= 3} Xg{= 2}) (X1{= 2} Xp{2}X5{2}X6{= 2} X;{= 3}) = X1 {=
2 X22X32 X422 X622 X7{=3} X8{>2}

RsR, = (Xz{z} X3{2} X4{2 2} X7{2 3}X8{2 2}) (X1{2 2} XZ{Z 2} X4{2 2}X6{2 2} X7{2 2} XB{Z 2})
= X1{2 2} XZ{Z}X3{2} X4{2 Z}Xs{z 2} X7{2 3} XB{Z 2}

ReR; = X1 {= 23 X {23X3{2}Xe{= 2} X7{= 3}) (X1{= 2} Xo{= 2} Xul= 2}X6{= 2} X/ {= 2} Xp{= 2})
= X1{2 2} Xz{z} X3{2} X4{2 2}X6{2 2} X7{Z 3} XS{Z 2}

RsReR; = (Xa{= 2} Xo{2)X5{2) X = 2}X6{= 2} X7{2 3} Xp{2 2D (Xi{Z 2} X (= 2} Koz 2}X4(2
2X7>2 X8{>2}) =X1>2 X22X32 X4>2 X622 X7>3 X8{>2}

REPORT AND DISCUSSION OF methods agreed on a value of
NUMERICAL RESULTS 0.9819022224313, which is in agreement with

the solution of Rushdi and Amashah [30,31], and
We presented two |E methods, the conventional  g|so in agreement (albeit more precise) with the
one and an improved one, for solving the numerical value (0.981902) that was obtained
problem of our running example. Our two earlier by Lin et al. [22]. Table 2 details the
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computations performed by the two IE methods.
The table indicates clearly the improvements
brought about by the second method, both in
decreasing the number of operations and in
diminishing the effect of round-off errors. We
note that the round-off error in the first method
would have been more pronounced, had we
implemented the |IE formula as is. Actually, we
decreased the round-off significantly by
performing an actual subtraction only once, as
we summed all positive terms, summed all
negative terms, and only then took the
difference. We have to admit that we could not fix
our symbolic computations via the conventional
IE formula from the outset. The manual
computation of 255 terms were too tedious and
error-prone to be completed correctly in one trial.
We evaluated the IE formula correctly via the

python program in Appendix A, and then used
the results of this program to fix bugs in the
symbolic computations.

In passing, we note that the present
work inspired us to apply the MS-IE Principle to
the union of fewer (factored or composite)
paths that is subsequently converted (at minimal
cost) to PRE form [62]. We augmented the
resulting procedure with another that uses the
multi-state Boole-Shannon expansion
[23,24,27,30,42,48,54,63-68]. Consequently, we
were in a position to point out a liaison
among inclusion-exclusion, probability-
ready expressions and Boole-Shannon
expansion for multi-state reliability
[62].

Table 2. A comparison of computations by conventional IE and by IE improved with a

‘shellable’ PRE
Item Conventional IE IE improved with PRE
Sum of 8 expectations of single + 5.7002040911313365 + 1.638655916679425
indicators

— Sum of 28 expectations of pairwise
ANDing of indicators

—16.183321233651064

— 0.6589357136472941

+ Sum of 56 expectations of triple- + 28.38786762461678 + 0.0021820193991679074
wise ANDing of indicators

— Sum of 70 expectations of — 32.66489098333673 0

quadruple-wise ANDing of indicators

+ Sum of 56 expectations of + 24.82589302827858 0

quintuple-wise ANDing of indicators

— Sum of 28 expectations of sextuple- —12.067134436416122 0

wise ANDing of indicators

+ Sum of 8 expectations of septuple- + 3.4094675792097604 0

wise ANDing of indicators

— expectation of octuple-wise ANDing  — 0.42618344740122005 0

of indicators

Sum of all positive terms 62.3234323232364569 1.6408379360785929074
— Sum of all negative terms —61.34153010080513605  — 0.6589357136472941
Net required value 0.98190222243132085 0.9819022224312988074

3. CONCLUSIONS

This paper is a continuation of our ongoing
efforts to extend concepts of reliability
computations in the binary domain to the multi-
state domain. The paper serves as an exposition
of the inter-relationships between the multi-state
concepts MS-IE and MS-PRE. This exposition
was obtained by using the standard MS-IE
approach and an improved MS-IE approach
preceded by an efficient shellable PRE pre-
processing. The two approaches were applied to
the same problem of multi-state network
reliability. Each of the two approaches recovered
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the same result obtained by the conventional
RSDP method. Hopefully, the present work can
guide more useful applications of the Inclusion-
Exclusion Principle and its improved variants to
other real-life problems.
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APPENDIX A
Listing in Python of a Program Computing the IE Solution for the Running Example

From itertools import combinations

from functools import reduce

# the lists below are from Lin et al. [21,Table 2, p.6689]
P1=[0,0,3,0,3,0,0,3]

P2=10,0,3,0,0,0,3,0]

P3=10,3,0,0,3,0,0,3]

P4=10,2,2,2,0,0,3,2]

p5=10,3,0,0,0,0,3,0]

p6=[2,0,2,2,0,2,2,2]

p7=1[2,2,0,2,0,2,2,2]

p8=[2,2,2,0,0,2,3,0]

total=0

temp=[]  # temporary list to store digits
multi=1  # multiplier counter

Full_List = [P1, P2, P3, P4, p5, p6, p7, p8]

for rin range(1,9,1): # r number of tuples to be compared starting from 1
Combinations = combinations(Full_List, r)

print("Finding maximum for a combination size of %d"%r)

for eachCombination in Combinations:

# print("Finding combination for tuples ", *eachCombination)
temp=list(map(max,zip(*eachCombination)))

print(temp)
if (temp[0]==
if (temp[1]==

):multi=multi*0.897 # Enter the data from Table 1 p-6688
if ( ):multi=multi*0.965 # 0 for X_1, 1 for X_2 ...etc
if (temp[1]==3):multi=multi*0.892
if (temp[2]==2):multi=multi*0.953
if (temp[2]==3):multi=multi*0.905
if (temp[3]==2):multi=multi*0.863
if (temp[4]==3):multi=multi*0.903
if (temp[5]==2):multi=multi*0.943
if (temp[6]==2):multi=multi*0.945

if (temp[6]==3):multi=multi*0.884

if (temp[7]==2):multi=multi*0.965

if (temp[7]==3):multi=multi*0.906

print(multi)

if(r%2==1):total=total+multi # if r odd we add it otherwise subtract from total
else :total=total-multi

multi=1 # reset the counter

print('the total=",total)
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