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Abstract

=)

Aims. The aim of this paper is to investigate weighted hesitartyfgets and their applicatid
to multi-criteria decision making.
Study Design: This paper puts forward the concept of a weighted maditazy set (WHFS), i
which several possible membership degrees of eachmeate have different weights.
Archimedean t-conorm and t-norm provide a generalizatian\ariety of other t-conorms and
t-norms that include as special cases Algebraic, Emst&imacher and Frank t-conorms and t-
norms.
Place and Duration of Study: Hesitant fuzzy set, permitting the membership degreanq
element to be a set of several possible values, can d&meetfto as an efficient mathematical
tool for modeling people’s hesitancy in daily life. Itristed that several possible membership
degrees of each element in the hesitant fuzzy set agual importance, but in many practical
problems, especially in multi-criteria decision making, tveights of several possible
membership degrees of each element should be taken intm&cco
Methodology: In this paper, based on Archimedean t-conorm and t-normpregent some
operations on weighted hesitant fuzzy sets (WHESSs),baséd on which, we develop two
weighted hesitant fuzzy aggregation operators for agdgireg weighted hesitant fuzzy
information. Furthermore, some desired properties ancialpsases of the developed operatprs
are discussed in detail.
Results: We develop an approach for multi-criteria decision makindeumweighted hesitan
fuzzy environment.
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Conclusion: An illustrative example is provided to show the effestiess and practicality g
the proposed operators and approach.

Keywords: Multi-criteria decision making; hesitantzfy sets; weighted hesitant fuzzy sets;
archimedean t-conorm and t-norm; weighted hesitant fuggsegation operator.

1 Introduction

Due to the fact that when defining the membership degree efement to a set, the difficulty of
establishing the membership degree is not because we haamgia of error (as in intuitionstic
fuzzy set [1], interval-valued fuzzy set [2], or intervalued intuitionistic fuzzy set [3]) or some
possibility distribution (as in type-2 fuzzy set [4]) on thessible values, but because we have
some possible values, Torra [5] defined the hesitant fuetsy(8IFS) to permit the membership
degree of an element to a set represented as severalgwosastiles between 0 and 1. The HFS can
be used to efficiently manage the situation where people helséateen several possible values
to express their opinions. Since it was introduced, H&S ditracted much attention. Torra and
Narukawa [6] first applied hesitant fuzzy sets (HFSsHdégision making. Xu and Xia [7,8]
proposed a lot of distance measures, similarity measundscarelation measures for HFSs.
Farhadinia [9] investigated the relationship between theogy the similarity measure, and the
distance measure for HFSs and interval-valued hesitaat/ fsets (IVHFSs) [10,11]. Peng et al.
[12] presented a generalized hesitant fuzzy synergetightesl distance (GHFSWD) measure
based on the generalized hesitant fuzzy weighted distattEV{®) measure and the generalized
hesitant fuzzy ordered weighted distance (GHFOWD) mreagoposed in [7]. Qian et al. [13]
extended hesitant fuzzy sets by intuitionistic fuzzy setd referred to them as generalized
hesitant fuzzy sets.

It should be noted that only several possible valuesrar@vied in the classical HFS, but the
importance of each possible value is not emphasized. NMeless, in many practical situations,
especially in multi-criteria decision making, several possiédues usually have different
importance and thus need to be assigned different weights. Borpkx to get a reasonable
decision result, ten decision makers who are very familith this area are invited to estimate the
degree that an alternative satisfies an attribute. Suppese are four cases, four decision makers
provide 0.8, three decision makers provide7, two decision makers provide.6, and one
decision maker provideB8.5, and these ten decision makers cannot persuade eachoothange
their opinions. In [7,14,15,16,17], the authors do not cons$ideimportance of all of the possible
values for an alternative under an attribute and allowetvatues repeated many times appear
only once. According to [7,14,15,16,17], the degree thatalternative satisfies the attribute is
represented by a HFS (0.5, 0.6, 0.7, 0.8), which is someimbansistent with our intuition
because these values repeated many times at least dereotgth of the decision makers’
preferences. According to the strategy given in [7,1461571, more experts may not contribute
to more reasonable decision results. When we consicherdtgle attribute group decision making
(MAGDM) problem, if two or more decision makers who amifliar with this area give the same
preferences, then their preferences will be close to gpoeference. In such cases, the value
repeated many times may be more important than the onatedpenly one time. Therefore, the
importance of all of the possible membership degrees shouldblsbed to the construction of the
HFS. To do it, in this paper, we introduce the concept oéighted hesitant fuzzy set (WHFS),
which is a new generalization of the classical hesitarmyfset by adding the weight information
to the classical hesitant fuzzy set. In the WHFS, itigortance of all of the possible membership
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degrees is taken into account and the weight informatiossscated with all of the possible
membership degrees. Thus, the WHFS can contain more inffornthan the classical hesitant
fuzzy set and can help the decision makers get more #&ecueasonable, and reliable decision
results than the classical hesitant fuzzy set. In the quie\éxample, the degree that the alternative
satisfies the attribute can be represented by a WKES,{0.1), (0.6, 0.2), (0.7, 0.3), (0.8, 0.4)}.

In order to aggregate hesitant fuzzy information, Xia awnd[>5] proposed some Algebraic t-
conorm and t-norm based operational laws for HFSs, basedich, a variety of hesitant fuzzy
aggregation operators have been developed in recent yearexample, Xia and Xu [15]
developed the hesitant fuzzy weighted averaging (HFWA) tprerdie hesitant fuzzy weighted
geometric (HFWG) operator, the generalized hesitant fumejghted averaging (GHFWA)
operator, the generalized hesitant fuzzy weighted geomésttF\\VG) operator, the hesitant
fuzzy ordered weighted averaging (HFOWA) operator, thdtdrgsfuzzy ordered weighted
geometric (HFOWG) operator, the generalized hesitant fumdered weighted averaging
(GHFOWA) operator, the generalized hesitant fuzzy orderddhtesl geometric (GHFOWG)
operator, the hesitant fuzzy hybrid averaging (HFHA) operathe hesitant fuzzy hybrid
geometric (HFHG) operator, the generalized hesitant flgbyid averaging (HFHA) operator,
and the generalized hesitant fuzzy hybrid geometric (GBlFbperator. Xia et al. [18] proposed
some new hesitant fuzzy aggregation operators, such as tisé lpgtant fuzzy weighted
aggregation (QHFWA) operator, the hesitant fuzzy modulaighted averaging(QHFWA)
operator, the hesitant fuzzy modular weighted geometric (WYl operator, the quasi hesitant
fuzzy ordered weighted aggregation (QHFOWA) operator, thsitam fuzzy modular ordered
weighted averaging (QHFOWA) operator, the hesitant fumagular ordered weighted geometric
(HFMWG) operator, the induced quasi hesitant fuzzy odlereighted aggregation (IQHFOWA)
operator, the induced hesitant fuzzy modular ordered weightedgiver(IHFMOWA) operator,
and the induced hesitant fuzzy modular ordered weightetheigic (IHFMWG) operator. By
extending the Bonferroni mean (BM) [19] to hesitant fuznvironments, Zhu and Xu [20]
developed the hesitant fuzzy Bonferroni means (HFBMs) dued weighted hesitant fuzzy
Bonferroni mean (WHFBM). By extending the geometric Bonfeirroean (BM) [21] to hesitant
fuzzy environments, Zhu et al. [22] proposed the hesitarzyf geometric Bonferroni mean
(HFGBM) and the weighted hesitant fuzzy Choquet geomBwitderroni mean (WHFCGBM). In
order to consider the relationship between the hesitant figayt arguments, Zhang [23]
developed several new hesitant fuzzy aggregation opgrammiuding the hesitant fuzzy power
average (HFPA) operator, the hesitant fuzzy power geam@gtFPG) operator, the generalized
hesitant fuzzy power average (GHFPA) operator, thergéned hesitant fuzzy power geometric
(GHFPG)operator, the weighted the generalized hesitaaty fppower average (WGHFPA)
operator, the weighted generalized hesitant fuzzy payeemetric (WGHFPG) operator, the
hesitant fuzzy power ordered weighted average (HFPOWAjatpe the hesitant fuzzy power
ordered weighted geometric(HFPOWG) operator, the gbredahesitant fuzzy power ordered
weighted average (GHFPOWA) operator, and the generalizeidahie fuzzy power ordered
weighted geometric (GHFPOWG) operator. Wei and Zhao i4pduced some operations on
hesitant interval-valued fuzzy sets (HIVFSs) based ont&msconorm and t-norm, and based on
which, developed some induced hesitant interval-valued fErzstein aggregation operators for
aggregating hesitant interval-valued fuzzy information.

Archimedean t-conorm and t-norm [25,26] are generalizatibriets of other t-conorms and t-
norms, such as Algebraic, Einstein, Hamacher and Frank trosrand t-norms [27]. Based on
Archimedean t-conorm and t-norm, Beliakov et al. [28] gemme operations about intuitionistic
fuzzy sets (IFSs). Xia et al. [27] further gave someotperations on IFSs, and proposed some
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specific intuitionistic fuzzy aggregation operators. Mdiaehby the work of Beliakov et al. [28]
and Xia et al. [27], this paper proposes some Archimedeandrm and t-norm based operation
laws on weighted hesitant fuzzy sets (WHFSSs), investightas properties, and based on which,
develops two Archimedean t-conorm and t-norm based weidgmsidant fuzzy aggregation
operators, including the Archimedean t-conorm and t-norm basEdhied hesitant fuzzy
weighted averaging (ATS-WHFWA) operator and the Archimedeaomorm and t-norm based
weighted hesitant fuzzy weighted geometric (ATS-WHFV@@¢rator. Moreover, we study some
desired properties of the new operators and give their spasast, such as the weighted hesitant
fuzzy weighted averaging (WHFWA) operator, the weightedtdmsfuzzy Einstein weighted
averaging (WHFEWA) operator, the weighted hesitant fuzzynidar weighted averaging
(WHFHWA) operator, the weighted hesitant fuzzy Frank weijhteeraging (WHFFWA)
operator, the weighted hesitant fuzzy weighted geometric KW8&) operator, the weighted
hesitant fuzzy Einstein weighted geometric (WHFEWG) operdbar,weighted hesitant fuzzy
Hammer weighted geometric (WHFHWG) operator, and the weighesitant fuzzy Frank
weighted geometric (WHFFWG) operator. Finally, we devedopapproach for multi-criteria
decision making under weighted hesitant fuzzy environment, anidera numerical example to
illustrate the proposed approach.

This paper is organized as follows. Section 2 introduce® $i@sic concepts of hesitant fuzzy sets
and Archimedean t-conorm and t-norm. In Section 3, we ddimedancept of weighted hesitant

fuzzy sets (WHFSs) and introduce some operational lawshéon based on Archimedean t-

conorm and t-norm. Section 4 proposes two Archimedeamdrm and t-norm based weighted

hesitant fuzzy aggregation operators for aggregationhtegighesitant fuzzy information. Some

desired properties and special cases of the proposed oparataiso investigated in this section.
In the sequel, Section 5 develops an approach to multi-cridledesion making under weighted

hesitant fuzzy environment and gives a practical exanwpliustrate the developed approach.
The final section offers some concluding remarks.

2 Preliminaries

In this section, we will give a brief introduction of hesitdmtzy sets [5] and Archimedean t-
conorm and t-norm [25,26].

Definition 2.1 [5]. Let X be a fixed set, a hesitant fuzzy set (HFS)6ris in terms of a function
that when applied tX returns a subset ¢0,1] .

Xia and Xu [15] expressed a HFS by the following form:
e={{xh.(4) e % &

where h. (x) is a set of some values [0,1], denoting the possible membership degrees of the

elementx X to the setE . For convenience, Xia and Xu [15] calléd= h. ( x) a hesitant fuzzy
element (HFE) anH the set of all hesitant fuzzy elements (HFESs).
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Assume three HFEs representedtbyh andh,, Torra [5] defined some operations on them,
which can be described as:

h ={1-yyon; )
hUh ={y,0yy,0h,y,0h}; 3)
hNh ={y,0y)y,0h,y,0h}. @)

Definition 2.2 [25,26]. A function T:[0,1]x[0,4 - [ 0,] is called a t-norm if it satisfies the
following four conditions:

(1) T(1a)=a, forall ad[o0,]].

(2)T(ab)=T(h g, forall a,bl][o,]].

(3) T(a,T(h c)): T( T ah, gt for all a,b,c0[0,].

(4)If a<a andbs<b forall a,a,b,B0[0,],thenT(ab)< T(4d,b).

Definition 2.3 [25,26]. A function S:[0,1]x[0,4 -~ [ 0,] is called a t-conorm if it satisfies the
following four conditions:

(1) s(0,8) = a, for all ad[0,1] .

(2) sS(ab= g b a,forall a,bd[0,].

@) s(agbg)= $ &.a)).forall abcofo,].

(4 If a<d andb<b forall a,a,bB0[0,4,thenS(ab< g § B.

Definition 2.4 [25,26]. A t-norm function T(a, b) is called Archimedean t-norm if it is
continuous andT (a,a)< a for all ad(0,1) . An Archimedean t-norm is called strictly
Archimedean t-norm if it is strictly increasing in eachiatle for a,b1(0,1) .

Definition 2.5 [25,26]. A t-conorm functionS( a b is called Archimedean t-conorm if it is
continuous andS(a @ > a for all ad(0,1) . An Archimedean t-conorm is called strictly
Archimedean t-conorm if it is strictly increasing imoé variable fora,b((0,1) .

It is well known [29] that a strict Archimedean t-nor‘ﬁ(a, b) is expressed via its additive

generatorg asT(ab)= g (g( 9+ ¢ ). whereg :[O,ZI] . [O,+00] is a strictly decreasing

1095



British Journal of Mathematics & Computer Scien€8)41091-1123, 2014

function  such thatg(l):O. A dual Archimedean t—conornS(a,b) is expressed as

S(ah= f*( f(g+ f(B) with f(t)=g(1-t).

3 Weghted Hesitant Fuzzy Sets (WHFSS) and Weighted
Hesitant Fuzzy Elements (WHFEYS)

Considering that the classical hesitant fuzzy set doesnmotve the importance of all of the
possible membership degrees of each element, in ttti®sewe will propose a new concept of
weighted hesitant fuzzy set by assigning a weight vectall tuf the possible membership degrees
of each element.

Definition 3.1. Let X be a reference set, a weighted hesitant fuzzy set (Wb is defined

| A={(x R (%) O x}:{< X ol (7 %)}}‘ q % ©®)

where hA ( X) is a set of some different values[iﬁ,]] , denoting all possible membership degrees

of the elementx[] X to the setA, w,, is the weight ofy’, W, D[O,ZI], and Z w,, =1
¥z (%)

for any X[ X .

For convenience, we cal =Umh{(y, Wy)} a weighted hesitant fuzzy element (WHFE),

where h is a set of some different membership degree{sOLd], w, is the weight ofy/,

w, D[O,]] for any y[Ih, andZWy =1. Let H denote the set of all weighted hesitant fuzzy
yih

elements (WHFES).

Let A= { Fk ><} {< thZ\(X){(y, \yy)}>‘ xJ >} be a WHFS. If for any[] X
1

and yOh, (x), Wy =y XC) (#h, () is the number of the elements I (X)), then A

- 1 -
reduces to a HFS. Lét —Umh{(y, Wy)} be a WHFE. Iny —%, then h reduces to a
HFE.

By Definition 3.1, the WHFS extends the HFS to contain s¢veembership degrees and their
corresponding weights. The difference between the HFS aABSAs that the former assumes
that the possible membership degrees of each elesmerdf equal importance, while the latter
assigns different weights to different membership degreless, compared with the HFS, the
WHFS can depict human uncertainty more objectively and migcis
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In the following, we illustrate how to construct a WHFRIppose that experts are required to
evaluate the membership degree of the elenxeint the setA. I, experts providey;, |, experts

k

provide y, , ---, andl, experts providey, , whereZIk =| . Assume that thesk experts cannot
i=1

persuade each other to change their opinions. In such tasesembership degree of the element

X in the setA hask possible valuey;, y,, -+, and J, . The weights ofy; (i =1,2,-- k) are

I -
W, =|—' (i=1,2,-- k). Thus, the membership degree of the elemeit the setA can be

~ [
represented by a WHFB = {(Vl'l_lJ ,(yz,l—zj ;o ,(yk ,I—k)} Based on the above analysis,

we can see that constructing of a WHFE consists ofsteps: (1) collecting different possible
membership degree values into a HFE; (2) assigning the weighhese different membership
degree values.

The WHFS is an efficient tool to represent situations inckvtseveral different membership
functions for a fuzzy set are possible and different nesitip functions have different weights. It

is particularly suitable to address the hesitancy and uncegrthgit are quite usual in real world
decision making problems.

Example3.1. Let X ={ X, %, >g} )

A={(x{(0.50.3 (0.6,0%) (% {( 0195, 039, 0.4P3 x{( . 0.7,6c9,05})},

and h ={(0.1,0.E) (0.3,0.p(, 0.4,0)}3. Then, A is a WHFS onX and h is a WHFE.

To compare two WHFESs, we define the following comparisarsia

Definition 3.2. For a WHFEh = Um{(y, Wy)} , S( Fl) = Z( w, Ey) is called the score function
yoh

of h. For two WHFEsh, and h,, if S(Fl)> s(b) thenh > h,; if S(Fl)z s(h), then
h=h,
Given three WHFEs represented bI§:UVDh{(y, Wy)} , ﬁl:Ulem{(yl,vsg%)} , and

ﬁz = Uyzuhz{(yz, W, )} , we define some basic operations on them as below:
h* :UVDh{(l_y’WV)}; ©)

RUR=U, ol (1500w, Dy, )} (7)
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RNR=U, o (1502w, O, )} ®)

Theorem 3.1. Let h, i, andh, be three WHFEs. Therh®, h Uh,, andh Nh, are also
WHFEs.

Proof. It is clear thath® is a WHFE.

According to Definition 3.1, we have

2 (WlnDNZVZ):Z[V\{yl ZV\QVZB Zp](whﬂ):l

yOhy, y,0h, yihy 4h,
which shows thath U b, is a WHFE.

Similarly, we can conclude thalfll N F\Z is also a WHFE.

This completes the proof of Theorem 3.1. (|
In the above operations, we allow the membership degrpeatesl many times appear only once,
whose weight is a sum of the weights of the membership degrpeated many times.

Example 3.2. Given two WHFEsh, and h, as follows:

h ={(0.1,0.9 ( 0.3,0.p(, 0.4,0, h,={(0.7,0. (0.8,0}.

Then, we have

hr ={(0.9,0.9 ( 0.7,0.(, 0.6,08
- - [(0.100.7,0.805(, 0m 0.8,05 Q.4 , @3 0.7[0.2)46 ,
hUh= {(03D0802]0)1( 0.4 07,03 0.6 , 04 08[03)(}4

={(0.7,0.9 ( 0.8,0.(, 0.7,0.)1 , 0.8,0)08 , 0.18).(0.8,0.1}

={(0.7,0.6 ( 0.8,0.%
AR < (0.100.7,0.510.p(, 00 0.8,056 Q.4 , @W3 0.7,0.2)4.6 ,
1(0.300.8,0.210%(, 0.8 0.7,0B 0.6 , 04 0.8,0.3)d.4

(
{ (0.1,0.3 ( 0.1,0.(, 0.3,0.)1, 0.3,0)08 , 0.48),(0.4,0.13}
={(0.1,0.9 ( 0.3,0.(, 0.4,08
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In order to aggregate weighted hesitant fuzzy informatiend@fined some new operations on the
WHFEsh, h andh,:

ROR=U, ., (S0nra) W ow b =U o P10+ (), w Ow, )}
(9)

ROR=U, o d(TOre) o w, D} =U o {( 95 di)+ d0a)), wow, )} o)

Aﬁ:UﬂdU*@H(nyw%,A>o; (11)
i =U,.{(g*(1a(). w)} . 1>0. 2

Theorem 3.2. For three WHFE#, h,, and h,, we have the following properties:
() ROR=h0Hk;
 hOh=h0h;
3 A(ROh)=AR0AR, 1>0;
~ ~ \A ~ ~
@ (ROR) =R O/, 1>0;
(5) AhO A,h=(A,+2,)h, A,4,>0;
(6) h* O b = i, A,A,>0;
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4 Aggregation Operators for Weghted Hesitant Fuzzy
Information

In the current section, we will propose several operatorgdgregating the weighted hesitant
fuzzy information and investigate some properties ofettuperators.

Definition 4.1. Let ﬁ (i=1,2,:-- n) be a collection of WHFEs, and |aw:(wl,w2,-~,a4,)T
n

be the weight vector olﬁ (i=1,2,-- n) with w D[O,:I] and Z:a)I =1. Then, an Archimedean
i=1

t-conorm and t-norm based weighted hesitant fuzzy weighehging (ATS-WHFWA) operator
is a mappingH" - H , where

ATS-WHFWA(R, R, .h) =0 (wh) (13)

Theorem 4.1. Let ﬁ:Uy,mn{(yi’W% )} (i=12:--n) be a collection of WHFEs, and
w=(,@,,@)" be the weight vector ofy (i=12;--n), where & indicates the
importance degree dﬁ , satisfying @ D[O,ZI] and Zcq =1, then the aggregated value by using
i=1
the ATS-WHFWA operator is also a WHFE, and
- . =\ 4 n n
ATS-WHFWA(R, R, - ,hh)_prhﬁyﬁhy.”m{[ f [Zwl f(yi)j,u W, ]} (14)

i=1

Proof. By using mathematical induction am: For n= 2, since

ah=U, {(F(af (1) w, )}
wh, = Uyzmhz{( (@t (r) ws, )}

we have

wh, O wZﬁZ:(Ulehl{( f 1(a)1f(y1)) w )})D (Uyzth{( (w,1(r). W%)})
_Uylmmzmhz{(f B af(n ))+ f (f Yo, f (Vz))))’wlyl D’Vafz)}
_Ulehl;/Zth{(f 1 aif yl +w2f }/2)) W1V1 )}

That is, the Eq. (14) holds far = 2. Suppose that the Eq. (14) holds for k, i.e.,

)
(
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E(Wﬁ):Uylmm,yzuhz,...,ym{( ‘l(wa jrjwy]}

then, whenn =Kk +1, we have

B(ah) =( 8(wh))o (@.h.)

:[U%Dmyﬁhﬁ“‘m{[ (2@ (v )J ﬂw }HD(UM%{(f‘l(%lf(Vkﬂ))vwwm)})
U{( (z W}

i.e., Eq. (14) holds fon=k +1. Thus Eq. (14) holds for af.

In addition, becaus@:[0,1] — [0] is a strictly decreasing function arki(t)=g(1-t),
f :[0,]] - [0,+00] is a strictly increasing function, which implidsat

0< f'l[zn:w,f (yi)]sl

i=1

Furthermore, we have

n -1
2 [l‘jwiy.} 2 {l‘j{w.y vaynm
yOhy yo0h, - 0, = KOO Yo OB a\ 1= YO
n-1
= 2 (I‘jwiy.j:-:Z(wlylEﬁZ WZB
yi0hy,yo0h, - Ol g\ 1= 18k} y.0h

>

This completes the proof of Theorem 4.1.
In the following, let's study some desirable prdjgesr of the ATS-WHFWA operator.

Theorem 4.2. Let ﬁ (i=1,2;-- n) be a collection of WHFE%«)=(a)l,a)2,~-,a4,)T be their

weight vector witha D[O,:I] (i=14,2;--n)and Zcq =1,if r >0, then
i=1
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ATS-WHFWA(rfi, i, -« i, ) =r ATS-WHFWA(R, R, - f) (15)

Proof. Since for anyi =1,2,-- n,

=, (57 (F (), )}

Based on Theorem 4.1, we have

ATS-WHFWA A, - h )

rhy,rh,,
=Uenrin. m{( (of (Va)))]vljw.y]}
Ui sin] ! (w 0} e |

According to Eq. (11), we can get

rATS- WHFWA(h1 h, rh)

:UMM{[f-{rf(f—l@wmm.rw}
:Umhmhﬁm{[ f _l(rém (Vi)], % ]}

This completes the proof of Theorem 4.2(] ]
Theorem 4.3. Let h =Uy,mn{(yi’W% )} and |, =Um‘{(<ﬁ,w{;‘ )} (i=1,2:--n) be two
collections of WHFES, w=(d,@,, @) be their weight vector witha 0[0,] (
n
i=1,2,--n)and ) @ =1, then
i=1

2 ’ﬁn U rn)

ATS-WHFWA(f, 5 L.h,OT
= ATS-WHFWA (R, B, ) ) O ATSWHFWA(T [, ;- )

(16)
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Proof. According to Eq. (9), we have
AT =U, e { (T (100 1(8))w, 7, )}
According to Theorem 4.1, we have

ATS-WHFWA(R, O1,,R, 0T, R, OT,)

Ui s o[ (St (20000 1) [ o, )|
Ui s o [ St 0+ Zat )] [, )|

On other hand, according to Theorem 4.1 and Eqw@have

ATS WHFWA n )D ATS-WHFW. 1 5 ;-

(A2 e 2000
RSN e P

- UHDMMDWémwmn{( f ‘{Zn:w.f (n)+ é“” (& )J' |_] (w, @, )j}

i=1

which completes the proof of Theorem 4.8. 0

If the additive generatog is assigned different forms, then some specifighted hesitant fuzzy
aggregation operators can be obtained as follows:

Case 1. If g(t)=-log(t), then the ATS-WHFWA operator reduces to the foifayform:

WHFWA(FL |:12, , FF) = Uyluq,yzmh2,<-»,ynﬂh1{(l_ Ij (1_%)@ 'lj i ]} (17)

which is the weighted hesitant fuzzy weighted agemg (WHFWA) operator.

In fact, if g(t) =—-log(t), then f (t)=g(1-t) =-log(1-t) and f *(t) =1-€". Thus,
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WHFWA(ﬁpFlz,...,FL):Uylum,yzuhz,‘..,ynmm{ f‘l(;w f(”)J’ﬂ " j}
Zﬂ:“'°9(l‘l".) n

:Unum.yzuhz,m,ym 1-e* ’”W% }
log| Ill(l_y‘)u n

:Uylmhl,yzuhz,.u,ym l-e ['ﬂ J WVJ

:Ul’lm"lszth:"':VnDW{[l_D(l_%)@' W, }

Furthermore, ifw, =% for anyi =1,2:-- n, where#h is the number of the elements i,

then the Eq. (17) is transformed to

HFWA(FII.FIZ,“'.FL)=Uylmhl‘yzuh2mym 1—|1|(1—yi)"‘ - 1 (18)
=1 r]#h

which is the hesitant fuzzy weighted average (HF\Wp@rator proposed by Xia and Xu [15].

Case2.If g(t)= Iog(?j , then the ATS-WHFWA operator reduces to the follmyform:

n n

o e -[0-n)"
WHFEWA(R Ry ) =U o ol 5 = ] (19)

[]@en)* [ )" |

which is the weighted hesitant fuzzy Einstein wégghaveraging (WHFEWA) operator.

— \d -
In fact, if g(t) = Iog(%), then f (t)=g(1-t) = Iog(%j and f ()= € i Thus,

e+
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1ty
| -_-n
Sl
= W
UVlm‘lszthf”:VnDW ifqlog[ﬂ] ’I:J W
eT 41
(NPT
Iog[ [—'J J
4\ 17K
_U e I-ll _1 i W
yOh,yo0hy -y, Ok, Iog[ﬁ[h—y‘]q 'I:J 07
1_
e Wy

U 0y, yolhg, -y, Ohy

_ Al
(

= |
_Unmhl,yzmhz,---,ym n n I_1I W,
-

Furthermore, ifvvim =i foranyi=1,2,-- n, then the Eq. (19) is transformed to

n n

LSl 1 (G
[y +[)a-n)" []#

which is the hesitant fuzzy Einstein weighted ager@HFEWA) operator given by Wei and Zhao
[24].

HFEWA(FII, y o :Fh) = UVIDW,yZDh2,<..,ynDh1

(20)

g+(1-6)t
Case 3. If g(t)=log — 6>0, then the ATS-WHFWA operator reduces to the

following form:
[JrE-9r) -] 6 [w, |1 @V

[+ (e-9n)" +(e-9[) (=n)"

WHFHWA(H“ e, ﬁ‘) = Uylmhl,yzuhzc--.ym
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which is the weighted hesitant fuzzy Hammer weidhteveraging (WHFHWA) operator.
Especially, if@=1, then the WHFHWA operator reduces to the WHFWArap; if =2,
then the WHFHWA operator reduces to the WHFEWA afist

In fact, if g(t):log{w] , then f(t):g(l—t):log{wj and

1-t
1y=_L17€¢
f (t) _1—H—et . Thus,
WHFHWA(F& ﬁz Fh) Uylﬂhiyzﬂhz yﬂm{( (Za{f j |_1| W j}
.og[j[“(fy”f n
=Uy1Jh*V2Jh2""'V"uh' Iog[ J |V.
1-6-e ‘

— i=
U;ﬁJhl,yzuhz,---,y"Jh, n

Furthermore, ifvvm = foranyi=1,2,-- n, then the Eq. (21) is transformed to

S

#n
esE-9n) -0

[+ (e-9)" +(e-3[)(+0)" [}

which is the hesitant fuzzy Hammer weighted aver@gtfeHWA) operator Especially, ifd=1,
then the HFHWA operator reduces to the HFWA operatod = 2, then the HFHWA operator
reduces to the HFEWA operator.

(22)

HFHWA(ﬁl Ry, ﬁ') = Uylmhl,yzmnz,--~.ynuh1

Case4.If g(t)= Iog[%} , 8>0, then the ATS-WHFWA operator reduces to the foltay

form:

WHEFWA(R, -, :Uylm‘yzmzmm{[l— |ogg( # |‘J (6 - ;ﬂj ”wy J} (23)

which is the weighted hesitant fuzzy Frank weighaedraging (WHFFWA) operator. Especially,
if 8 - 1, then the WHFFWA operator reduces to the WHFW Arajme.
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In- fact, if g(t)='°9(g—__llj . then f(t)=g(1—t)=|og[—6fl9_t__1lj and
- t
£(t) =1-log, [ge&] . Thus,

WHFFWA(R R} =Uy1m,yzmhz,.,,m{ f‘l[zn:w. f(Vi)} In W, J}

U 7By, ya0h, -, Oy

n -1 o
oy o)) |
~ I oy p,0hy, 0, n ( 6-1 )‘4

U, oo {[1— log, [1+ |‘J (6 - 1" J ” w, j}

Furthermore, ifvvm = foranyi=1,2,-- n, then the Eq. (23) is transformed to

1
#h

HFFWA(ﬁl,ﬁz,--- ,ﬁ) =U nyom | 1 Io%(1+ |‘J (6 - :)“‘j - 1 (24)

| o

which is the hesitant fuzzy Frank weighted aver@tiegFWA) operator.
Based on the ATS-WHFWA operator and the geometeamhere we define an Archimedean t-
conorm and t-norm based weighted hesitant fuzzghted geometric (ATS-WHFWG) operator:

Definition 4.2. Let i (i =1,2,-- n) be a collection of WHFEs, and Ieav:(ai,a)z,---,a)n)T

n
be the weight vector ofy (i =1,2;-- n) with @ D[O,]] and Za), =1. Then, an Archimedean
i=1

t-conorm and t-norm based weighted hesitant fuzeighted geometric (ATS-WHFWG) operator
is a mappingH" - H , where

ATS-WHFWG(R, f ;- b)) =0 () (25)

i=1
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Theorem 4.4. Let ﬁ:UyDH{(yi,vy% )} (i=1,2,--n) be a collection of WHFEs, and

w=(,@,,@)" be the weight vector ofy (i=12;--n), where ¢ indicates the

n
importance degree df , satisfying D[O,]] and Z(q =1, then the aggregated value by using
i=1

the ATS-WHFWG operator is also a WHFE, and
ATS-WHFWG(R b, ;- f) = Um,yzmhz,___,ym{[ 9‘{2@ o ¥ )j, 1w ]} (26)
i=1 1=!

Theorem 4.5. Let ﬁ (i=1,2,-- n) be a collection of WHFEz«):(wl,a)z,m,a%)T be their

weight vector witha D[O,:I] (i=14,2;--n)and Zcq =1,if r >0, then

ATSWHFWG(R f§ ;- i) =( ATSWHFWd h b+ h)) 27)

Theorem 4.6. Let h = UyDh y,,V\(y} andINi:Um‘{(gﬁ,w{{)} (i=1,2,--n) be two

collections of WHFESs, w=(a, @, -,@) be their weight vector withey 0[0, (

i=1,2,-n)and) @ =1, then

i=1

ATS-WHFWG(f, O, , 0T, ;- f, OT,)

In what follows, we will investigate the relationigtbetween ATS-WHFWA operator and ATS-
WHFWG operator.

Theorem 4.7. Let f (i =1,2,-- 1) be a collection of WHFEsw= (a3, @, -,c,) be their

weight vector witha) D[O,]] (i=1,2,--n)and Zn:a{ =1, then we have
i=1
ATS-WHFWA (ff i - ) = ( ATS-WHFWG(  Jy 5 r;;)) (29)
hy

ATS-WHFWG( ¢ i, -,Ff):( ATS-WHFWAh b - t;,)) (30)
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Proof. (1) According to Egs. (6), (14), and (26), we cah g
ATS-WHFWA(ﬁf,ﬁ; n) :thzmhz’___ym{ f‘l(Zcq f(1- yi)j 1w, ]}
:Uylm,yzmhz,_.m{(l- g‘l(ng(Vi )j- W, J}

o))

= (ATS-WHFWG(R fy ;- )

(2) According to Egs. (6), (14), and (26), we have

ATS-WHFWG(Ff 5 ;- f) :Uylwzmhz,__’m{[ g‘l[iw A Fy j ” W, ]}
(

:Um‘yzmhzv__ym{ 1- fl[icqf Jrjwy]}

SCORN (X

= (ATS-WHFWA(f . B))
This completes the proof of Theorem 4.7.
Theorem 4.8. Let ﬁ (i=1,2;-- n) be a collection of WHFEsw:(cq,wz,---,a)n)T be their

weight vector with@ D[O,:I] (i=1,2;--n)and Z(q =1,if R = h forall i, then
i=1
ATS-WHFWA(R, R, -, ) = h

Theorem 49. Let f (i =1,2,-- 1) be a collection of WHFEsw= (4, @, +,a,)" be their

weight vector witha) D[O,]] (i=1,2,--n)and Za{ =1, if h is a WHFE, then
i=1

ATS-WHFWA(R, O AR, 0 by~ O §= ATSWHFWA B, )0 1
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Theorem 4.10. Let i (i =1,2,-- 1) be a collection of WHFEaf,J=(a{,a)2,~-,a)n)T be their

weight vector witha) D[O,]] (i=1,2,--n)and Za{ =1,if r >0 andh is a WHFE, then
i=1

ATS-WHFWA(rh, O A,rh, O B, ,rh, O h) = rATS-WHFWA( R b ;- )0 T

Theorem 4.11. Let i (i =1,2,-- n) be a collection of WHFEsw= (4, @,,--,@,)" be their

weight vector with@ D[O,]] (i=1,2;--n)and Za{ =1,if h =h forall i , then
i=1

ATS-WHFWG(h, i, ;- f) = h

Theorem 4.12. Let i (i =1,2,-- n) be a collection of WHFEsw= (4, @,,--,@,)" be their

weight vector witha D[O,:I] (i=14,2;--n)and Za), =1, if h is a WHFE, then

=
ATS-WHFWG(R, 00 A, O b+ i O )= ATS-WHFWQ T - Jh) O 1
Theorem 4.13. Let h (i =1,2,-- n) be a collection of WHFEsa):(a)l,a)z,---,a)n)T be their
weight vector witha D[O,:I] (i=14,2;--n)and Zn:(q =1, if r >0 and h is a WHFE, then
i=1
ATS-WHFWA(R 0 h,F 0 By B O B =( ATS-WHFWA( 9,5 ) 01

If the additive generatoy is assigned different forms, then some specificSAVHFWG
operators can be obtained as follows:

Case 1. If g(t)=-log(t), then the ATS-WHFWG operator reduces to the famorm:

WHFWG(FH .ﬁz o 'FL) = U;ﬁmm,yzﬂhzv""ynmm{[lj 8 ’lj W ]} o

which is the weighted hesitant fuzzy weighted geiimdWHFWG) operator. Furthermore, if

W, =% for anyi =1,2;-- n, where#h is the number of the elements Im, then the Eq.

(31) is transformed to
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HFWGA (ﬁl 'Flz r ’ﬁ‘) :UMDM,VZthmyan Ill W -

which is the hesitant fuzzy weighted geometric (HEM@perator proposed by Xia and Xu [15].

(32)

Case2. If g(t)= Iog(?j, then the ATS-WHFWG operator reduces to the faithgform:

- ol
WHFEWG(Q My ’h‘) - Ulem,yzthr--,Van n - i | Wy 33
[J@=w)"+[]n "

which is the weighted hesitant fuzzy Einstein wédgh geometric (WHFEWG) operator.

Furthermore, ifw;, :#hi foranyi=1,2,-- n, then the Eq. (33) is transformed to

o 2] )
HFEWG, (h1 U ’h‘) = Ulehl,VZth,---,yan n = n 'on (34)
|:J(2—yi)’”+|:lyi‘q D#h

which is the hesitant fuzzy Einstein weighted gewmimg§HFEWG) operator given by Wei and
Zhao [24].

g+(1-0)t
Case 3. If g(t) =log f , >0, then the ATS-WHFWG operator reduces to the

following form:

o il n
WHFHWG(R R o+ 0 ) =U oo ]| = — ] (35)
[+ -9(=r)" +(e-3[ ] -

which is the weighted hesitant fuzzy Hammer weighgeometric (WHFHWG) operator.
Especially, ifd=1, then the WHFHWG operator reduces to the WHFWGraipe if =2,
then the WHFHWG operator reduces to the WHFEWG aiper

Furthermore, ifvvm =i foranyi=1,2,-- n, then the Eq. (35) is transformed to
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o il .
HFHWG(hl‘ o ‘h’) :Uyluhl,yzuhz,‘--,ynun‘ n = n "n (36)
[J+(E-9@-y)" +(e-3[]x* []#

which is the hesitant fuzzy Hammer weighted geoiméitFHWG) operatorEspecially, if =1,
then the HFHWG operator reduces to the HFWG operit@ = 2, then the HFHWG operator
reduces to the HFEWG operator.

Case4.If g(t)= Iog(%) , 8>0, then the ATS-WHFWG operator reduces to the faithgw

form:

WHFFWG(R, fy, - b) =Uhlm{ '09( b I'j (6" - )”J I'jW J} @7

which is the weighted hesitant fuzzy Frank weighdedmetric (WHFFWG) operator.

Furthermore, ifvvim = foranyi=1,2,-- n, then the Eq. (37) is transformed to

1
#h

HEFWG(R ., 5 ) =U, o Iog{ ¥ I‘J (67 - )“*] 1 (38)

which is the hesitant fuzzy Frank weighted geomédtiFFWG) operator.

5 An Approach to Multi-Criteria Decision Making with Weighted
Hesitant Fuzzy | nformation

In this section, we shall utilize the proposed apans to develop an approach rtailti-criteria
decision making (MCDM) with weighted hesitant fuzrjormation. For a MCDM problem, let

Y={Y,Y, -, Y} be a set ofm alternatives,G={G,G,,...,G} be a collection ofn
criteria, whose weight vector isa)=(cq,a)z,--‘,a)n)T . with w, 0[0,1], j=1,2;--n, and
ij =1, wherew, denotes the importance degree of the criteﬁqn The decision makers
j=1

provide all the possible values with their corresing weights for the alternativé with respect
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to the criterionG; represented by a WHFE, :UVqu{(y‘j Wy )} AL (=12, m;

j =1,2,-- n) construct the weighted hesitant fuzzy decisiotrimeR = (T,J )mxn (see Table 1).

Table 1. The weighted hesitant fuzzy decision matrix R

G G, G,
" M1 f o
X iy f fi

Ym I7ml f:mj I:'mn

In general, there are benefit attributes (i.e., ltigger the attribute values the better) and cost
attributes (i.e., the smaller the attribute valtresbetter) in a MCDM problem. In such cases, we
need transform the attribute values of cost tyge the attribute values of benefit type, i.e.,

transform the weighted hesitant fuzzy decision 'maR:(Tij )mxn into a normalized weighted
hesitant fuzzy decision matri = (é}j ) ) by the method given by Xu and Hu [30], where

mx

8=, i=1,2,-m, j=12:n, (39)
ij

) {ﬁj , for benefit attributes,

, for cost attributésj

where r“if is the complement of; such tha‘rﬁjc =in,- oy {(1— Vi W, )} .

Step 1. Transform the weighted hesitant fuzzy decision 'rmalfi:(fij )mxn into the normalized

weighted hesitant fuzzy decision matrk= (a, )mxn based on Eq. (39).

Step 2. Utilize the ATS-WHFWA operator (Eq. (14))

&4 = ATS-WHFWA(4,,3,, - ,;r?,n):UVIID&IY%ZD%“%qu {( f-{ile f(y”. )]I‘l W, ]} (40)

or the ATS-WHFWG operator (Eqg. (26))

8 :ATS-WHFWG(a1 A, 0,8 ) :Umalvmm%l“%% { g'l[za)j E(Vi,- )J I‘l W, ]} (41)
=1 1=

to aggregate all the performance valt&?s(j =1,2,-- n) in theith line of A, and then derive

the overall performance valu& (i =1,2,-- m) of the alternativeY, (i =1,2,-- m).
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Step 3. According to Definition 3.2, calculate the score§gd) (i=1,2;--m) of & (

i =1,2;--m) and rank all the alternative$ (i =1,2,-- m) according tos(a) in descending
order.

Step 4. End.
In the following, we use a numerical example adajtem [20,22] to illustrate our approach.

Example 5.1 [20,22]. Suppose that a factory intends to select a nesvfsit new buildings.
Assume that there are three possible alternafiygs =1,2,3) and three criteria are considered

to decide which site to choose: (&) (price); (2)G, (location); and (3)G, (environment). The
weight vector of three criteriaG, (j=1,2,3 is ©=(0.3,0.2,0.5 . Suppose that the
characteristics of the alternativé¥s (i =1,2,3) with respect to the criteries; (j =1,2,3) are

denoted by the WHFE; = Uy., o {(yIl Wy, )} , Where J; indicates the possible degree to which

the alternativeY, satisfies the criteriors; and w; 9

is the weight ofy; . All F, (i=1,2,3;
j =1,2,3) are contained in the weighted hesitant fuzzy slesi matrix R=('r}j )mxn (see Table
2).

Table 2. The weighted hesitant fuzzy decision matrix R

G G, G
Y, {(0.6,0.3), (0.5,0.3), (0.4, {(0.6,0.8), (0.4,0.2)} {(0.5, 0.3), (0.3, 0.7)}
0.4)}
Y, {(0.4,0.), (0.3, 0.4)} {(0.8, 1)} {(0.4,0.2), (8, 0.3), (0.2,
0.5)}
Y, {08 1)} {(0.7, 0.1), (0.6, 0.3), (0.5, {(0.2, 0.5), (0.1, 0.5)}
0.6)}

Step 1. Because all of the criteri@j (j =1,2,3) are of the benefit type, the performance values

of the alternativesy; (i =1,2,3) do not require normalization.

Step 2. Utilize the WHFHWA operator (Eq. (21)) (supposettith=1) to aggregate all the
preference valuei§j (j=1,2,3) in theith line of R, and then derive the overall performance

value f; (i =1,2,3) of the alternativey, (i =1,2,3):

(0.5528,0.072p(, 0.4708,0.1680 , 0.5150,0)160.4262,0.042p],
;, =4(0.5218,0.072p (, 0.4342,0.1680 , 0.4814,0@)160.3864,0.042D ¢,
(0.4949,0.096p (, 0.4024,0.2240 , 0.4523,0()240.3519,0.056p
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__[(0.5184,0.120p(, 0.4798,0.1800 , 0.4438,0.30D0 ,
E _{(0.4956,0.080))(, 0.4551,0.1200 , 0.4175,0.2)0E0

__[(0.5662,0.050p(, 0.5399,0.0500 , 0.5405,0.95p0 ,

g _{(0.5126,0.150))(, 0.5196,0.3000 , 0.4904,0.30Eo

Step 3. According to Definition 3.2, we calculate the score valséﬁ) (i=1,2,3) of [ (
i=12,3) as:

s(%)=0.4497, s(%,)=0.4595 s(%)=0.5163

Step 4. Sinces(%) > (%) > (), then we get the ranking of the alternatives(i =1,2,3 as
Y, > Y, > Y. Thus, the best alternative ¥§.

In the following, we will analyze how different valuektbe parametef change the aggregation
results. As@ is assigned different values between 0 and 30, the Bowrgons of the alternatives
obtained by the WHFHWA operator are shown in Fig. 1.

0.65
—s(Y1)
—s(Y2)
0.6/ thet=1.5087 s(Y3) |
m s(Y1)=s(Y2)=0.4472
c
2 0.55 e
(@]
c
=]
)]
g 0.5 thet=6.2170 B
n s(Y1)=s(Y3)=0.4403
0.45[ 1
04 L L L 1 I
0 5 10 15 20 25 30

thet

Fig. 1. Scorefunctionsfor alternatives obtained by the WHFHW A oper ator
Fig. 1 demonstrates that all the score functionsrease asd increases from 0 to 30, from which we can
find that

(1) when@ (0,1.508'], the ranking of the four alternatives ¥§ > Y, > Y and the best choice ¥, .
(2) wheng O (1.5087,6.217p, the ranking of the four alternatives¥§ > Y, > Y, and the best choice is
Y;.
(3) wheng0(6.2170,3], the ranking of the four alternatives ¥ > Y, > Y, and the best choice 1 .

1115



British Journal of Mathematics & Computer Scien€®)41091-1123, 2014

In the above example, if we use the WHFHWG operator idstéahe WHFHWA operator to
aggregate the values of the alternatives, then the foocgons of the alternatives are shown in
Fig. 2. From Fig. 2, we can see that all the scoretfoms obtained by the WHFHWG operator
increase as the parametrincreases from 0 to 30 and the aggregation arguments @tréxes.
From Fig. 2, we can also see thatésncreases from 0 to 30, the ranking of alternatiiges
alwaysY, > Y, > Y, and the best choice is always

0.45
,///7I77
0.4F E
[2]
c
£ 0.35F e
8]
c
3
(&)
5 03r |
(8]
[}
0.25 —s(Y1) |4
—5s(Y2)
s(Y3)
Il I I I I
0.2 5 10 15 20 25 30

thet
Fig. 2. Scorefunctionsfor alter natives obtained by the WHFHWG operator

Fig. 3 illustrates the deviation values between the shoretions obtained by the WHFHWA
operator and the ones obtained by the WHFHWG operaton, frhich we can find that the values
obtained by the WHFHWA operator are greater than the aoaéned by the WHFHWG operator

for the same value of the parametérand the same aggregation values, and the deviation values
decrease as the value of the paramétencreases.

0.4 ‘
—VY1
—Y2

0.3 Y3

Deviation values
o
N

o
=

O 5 10 15 20 25 30
thet

Fig. 3. Deviation valuesfor alter natives between the WHFHWA and WHFHWG operator s
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Fig. 3 indicates that the WHFHWA operator can obtain mfaeorable (or optimistic)
expectations, and therefore can be considered as an siftimperator, while the WHFHWG
operator has more unfavorable (or pessimistic) expenttiand therefore can be considered as a
pessimistic operator. The values of the paramétetan be considered as the optimistic or
pessimistic levels. According to Figs. 1, 2, and 3, weamatlude that the decision makers who
take a gloomy view of the prospects could use the WHFHWG tpesad choose the smaller
values of the parametef , while the decision makers who are optimistic could thee
WHFHWA operator and choose the smaller values of the pasafiet

If we use the WHFFWA (or WHFFWG) operator instead led WHFHWA (or WHFHWG)
operator to aggregate the attribute values of alternatiliea the score functions of alternatives
are given in Figs. 4 and 5, respectively. Fig. 4 showsahdhe score functions obtained by the
WHFFWA operator decrease as the paramétancreases from 0 to 30, from which we can get
that

(1) wheng0(0,2.3659, the ranking of the four alternatives¥s> Y, > Y and the best choice is
Y;.

(2) when60(2.3659,30, the ranking of the four alternativesYs>Y, > Y, and the best choice
isY;.

0.75

—s(Y1)
0.7r —s(Y2) | 1
s(Y3)
0.65F B

0.6 b
thet=2.3659

s(Y1)=s(Y2)=0.4473 |

0.55p

Score functions

0.5

0.45p

0.4 : : ‘
0 5 10 15 20 25 30

thet

Fig. 4. Score functionsfor alternatives obtained by the WHFFW A oper ator

Fig. 5 illustrates that all the score functions obtainedheyWHFFWG operator increase as the
parameterd increases from 0 to 30, from which we can see th# ascreases from 0 to 30, the
ranking of alternatives is alwayg > Y, > Y, and the best choice is always

Fig. 6 illustrates the deviation values between the sfioretions obtained by the WHFFWA
operator and the ones obtained by the WHFFWG operator vitdomh we can find that the values
obtained by the WHFFWA operator are greater than the onamebtby the WHFFWG operator
for the same value of the parametérand the same aggregation values, and the deviation values

decrease as the value of the paraméténcreases.
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Fig. 6. Deviation valuesfor alter natives between the WHFFWA and WHFFWG operators

Fig. 6 indicates that the WHFFWA operator can obtain mifaneorable (or optimistic)
expectations, and therefore can be considered as an omtimp&trator, while the WHFFWG
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operator has more unfavorable (or pessimistic) expectatonstherefore can be considered as a
pessimistic operator. The values of the paramétetan be considered as the optimistic or
pessimistic levels. According to Figs. 4, 5, and 6, weamartlude that the decision makers who
take a gloomy view of the prospects could use the WHFFWGatpeand choose the smaller
values of the paramet& , while the decision makers who are optimistic could us&\tHé&FWA
operator and choose the smaller values of the pararfieter

Based on the above analysis, we can see that the parafheédlects the decision makers’
preferences and the decision makers can choose the prajpes wof & according to their
preferences. By choosing different values of the parantewe can derive different score
functions, and then derive the different rankings of thermdtives and the different optimal
alternatives. That is, the final optimal decisions basedlitfarent values of the parametér
could be different. Therefore, the developed aggregationatgusr with the parameters can
provide us with more choices and more flexibility than tkisteng ones due to the fact they allow
us to choose different values of the parameter in giie &f the different practical situations.

Example 5.2 (Continued with Example 5.1). In Example 5.1, if we do not consider the
importance of all of the possible values for an altéweaunder an attribute and only use the HFEs
to represent the performance values of an alternativer andattribute, then the weighted hesitant

fuzzy decision matrixR reduces to the hesitant fuzzy decision maEEbF(Tij')3x3 (see Table 3).

Table 3. The hesitant fuzzy decision matrix R

G G, G,
Y, {0.6, 0.5, 0.4} {0.6, 0.4} {0.5, 0.3}
Y, {0.4,0.3} {0.8} {0.4,0.3,0.2
Y, {0.8} {0.7, 0.6, 0.5} {0.2, 0.1}

We utilize the WHFHWA operator (Eq. (21)) (suppose tHat 1) to aggregate all the preference
values r"ij’ (j =1,2,3) in theith line of R and then derive the overall performance value

f' (i =1,2,3) of the alternativey, (i =1,2,3):

o {0.5528,0.4708,0.5150,0.4262,0.5218,0A§
' ]0.4814,0.3864,0.4949,0.4024,0.4523,0%
F, ={0.5184,0.4798,0.4438,0.4956,0.4551, 05}
f; ={0.5662,0.5399,0.5405,0.5126,0.5196, 04)¢

According to Definition 3.2, we calculate the score vala(a$’) (i=1,2,3)of ' (i=1,2,3) as:

s(¥)=0.5282 s(%)=0.4575 s(%)=0.4684
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Since s(%)>s(%)> (1), then we get the ranking of the alternativés (i=1,2,3 as
Y, > Y, > Y. Thus, the best alternative ¥§.

From the results of calculations, one can find a diffegeem the ranking results derived in
Examples 5.1 and 5.2. The reason is that Example 5.1 @s®¥¢HRESs to represent the preference
values, which consider the importance of all of the fbssialues for an alternative under an
attribute; while, Example 5.2 uses the HFEs to reprefentpreference values, which do not
consider the importance of all of the possible valuesificalternative under an attribute.

In fact, suppose that ten decision makers are requiredaiwymously provide their evaluations
about the alternatives with regard to the attributes. Foretaduations about the alternatiYe

with regard to the attributGl, assume that three decision makers provide 0.6, thresiateci

makers provide 0.5, the remaining four decision makers prd¥ide and these ten decision
makers cannot persuade each other to change their opiMidren we consider a MAGDM
problem, if two or more decision makers who are famil@th this area give the same
preferences, then their preferences will be close to gpoeference. In such cases, the value
repeated many times may be more important than the peatesl only one time. Therefore, the

most likely evaluation about the alternatiVe with regard to the attribut&, should be 0.4. For
the evaluations about the alternati¥ewith regard to the attribut&, , assume that eight decision

makers provide 0.6, the remaining two decision makendged.4, and these ten decision makers
cannot persuade each other to change their opinions. Themostdikely evaluation about the

alternativeY; with regard to the attributés, should be 0.6. For the evaluations about the
alternative, with regard to the attribut&,, assume that three decision makers provide 0.5, the
remaining seven decision makers provide 0.3, and teesgetision makers cannot persuade each
other to change their opinions. Then, the most likely esn about the alternativ¥ with
regard to the attributé, should be 0.3. If we use the WHFHWA operator (Eq. (21)) (Suppos
that & =1) to aggregate 0.4, 0.6, and 0.3, then the most likelyafiveerformance value of the
alternativey, should be 0.4024:

We can easily see that the score vaﬂiﬁ@l) =0.4497 of the alternativey, obtained in Example
5.1 is much closer to the most likely overall performamakie 0.4024 than the score value
S( ﬁ') =0.5282 of the alternativey, obtained in Example 5.2. As a result, the WHFEs areemor
reasonable and reliable than the HFEs in some pracgipitations.

6 Conclusions

Considering that the classical hesitant fuzzy set doescowsider the importance of several
possible membership degrees of each element, in this pejerhave proposed a new
generalization of the classical hesitant fuzzy set, whehcall the WHFS. The WHFS adds a
weight vector to several possible membership degrees ofeadectent of the classical hesitant
fuzzy set, which denotes the importance of several possiblebership degrees. Then, based on
Archimedean t-conorm and t-norm, we have defined some apahiaws for WHFEs and
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studied their properties, based on which, we have developed twghteeihesitant fuzzy
aggregation operators, including the ATS-WHFWA and ATSPW operators, and
investigated some desired properties of two new operatorgheimore, when the additive
generatorg is assigned different forms, some special cases ofneve operators have been
obtained, such as the WHFWA, WHFEWA, WHFHWA, WHFFWA, WHNG, WHFEWG,
WHFHWG, and WHFFWG operators. Finally, we have developedapproach based on the
proposed operators for multi-criteria decision making withighted hesitant fuzzy information,
and the proposed operators and approach have been illustraqutdstical example involving a
detailed analysis of the variation trend of the score fonstand rankings of the alternatives with
respect to the parametét.
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