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Abstract 

 
Aims: The aim of this paper is to investigate weighted hesitant fuzzy sets and their application 
to multi-criteria decision making. 
Study Design: This paper puts forward the concept of a weighted hesitant fuzzy set (WHFS), in 
which several possible membership degrees of each element have different weights. 
Archimedean t-conorm and t-norm provide a generalization of a variety of other t-conorms and 
t-norms that include as special cases Algebraic, Einstein, Hamacher and Frank t-conorms and t-
norms. 
Place and Duration of Study: Hesitant fuzzy set, permitting the membership degree of an 
element to be a set of several possible values, can be referred to as an efficient mathematical 
tool for modeling people’s hesitancy in daily life. It is noted that several possible membership 
degrees of each element in the hesitant fuzzy set are of equal importance, but in many practical 
problems, especially in multi-criteria decision making, the weights of several possible 
membership degrees of each element should be taken into account. 
Methodology: In this paper, based on Archimedean t-conorm and t-norm, we present some 
operations on weighted hesitant fuzzy sets (WHESs), and based on which, we develop two 
weighted hesitant fuzzy aggregation operators for aggregating weighted hesitant fuzzy 
information. Furthermore, some desired properties and special cases of the developed operators 
are discussed in detail. 
Results: We develop an approach for multi-criteria decision making under weighted hesitant 
fuzzy environment. 
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Conclusion: An illustrative example is provided to show the effectiveness and practicality of 
the proposed operators and approach. 
 

Keywords:  Multi-criteria decision making; hesitant fuzzy sets; weighted hesitant fuzzy sets; 
archimedean t-conorm and t-norm; weighted hesitant fuzzy aggregation operator. 
 

1 Introduction 
 
Due to the fact that when defining the membership degree of an element to a set, the difficulty of 
establishing the membership degree is not because we have a margin of error (as in intuitionstic 
fuzzy set [1], interval-valued fuzzy set [2], or interval-valued intuitionistic fuzzy set [3]) or some 
possibility distribution (as in type-2 fuzzy set [4]) on the possible values, but because we have 
some possible values, Torra [5] defined the hesitant fuzzy sets (HFS) to permit the membership 
degree of an element to a set represented as several possible values between 0 and 1. The HFS can 
be used to efficiently manage the situation where people hesitate between several possible values 
to express their opinions. Since it was introduced, HFS has attracted much attention. Torra and 
Narukawa [6] first applied hesitant fuzzy sets (HFSs) to decision making. Xu and Xia [7,8] 
proposed a lot of distance measures, similarity measures, and correlation measures for HFSs. 
Farhadinia [9] investigated the relationship between the entropy, the similarity measure, and the 
distance measure for HFSs and interval-valued hesitant fuzzy sets (IVHFSs) [10,11]. Peng et al. 
[12] presented a generalized hesitant fuzzy synergetic weighted distance (GHFSWD) measure 
based on the generalized hesitant fuzzy weighted distance (GHFWD) measure and the generalized 
hesitant fuzzy ordered weighted distance (GHFOWD) measure proposed in [7]. Qian et al. [13] 
extended hesitant fuzzy sets by intuitionistic fuzzy sets and referred to them as generalized 
hesitant fuzzy sets. 
 
It should be noted that only several possible values are involved in the classical HFS, but the 
importance of each possible value is not emphasized. Nevertheless, in many practical situations, 
especially in multi-criteria decision making, several possible values usually have different 
importance and thus need to be assigned different weights. For example, to get a reasonable 
decision result, ten decision makers who are very familiar with this area are invited to estimate the 
degree that an alternative satisfies an attribute. Suppose there are four cases, four decision makers 
provide 0.8 , three decision makers provide 0.7 , two decision makers provide 0.6 , and one 
decision maker provides 0.5, and these ten decision makers cannot persuade each other to change 
their opinions. In [7,14,15,16,17], the authors do not consider the importance of all of the possible 
values for an alternative under an attribute and allow these values repeated many times appear 
only once. According to [7,14,15,16,17], the degree that the alternative satisfies the attribute is 
represented by a HFS (0.5, 0.6, 0.7, 0.8), which is somewhat inconsistent with our intuition 
because these values repeated many times at least denote strength of the decision makers’ 
preferences. According to the strategy given in [7,14,15,16,17], more experts may not contribute 
to more reasonable decision results. When we consider a multiple attribute group decision making 
(MAGDM) problem, if two or more decision makers who are familiar with this area give the same 
preferences, then their preferences will be close to group preference. In such cases, the value 
repeated many times may be more important than the one repeated only one time. Therefore, the 
importance of all of the possible membership degrees should be attached to the construction of the 
HFS. To do it, in this paper, we introduce the concept of a weighted hesitant fuzzy set (WHFS), 
which is a new generalization of the classical hesitant fuzzy set by adding the weight information 
to the classical hesitant fuzzy set. In the WHFS, the importance of all of the possible membership 
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degrees is taken into account and the weight information is associated with all of the possible 
membership degrees. Thus, the WHFS can contain more information than the classical hesitant 
fuzzy set and can help the decision makers get more accurate, reasonable, and reliable decision 
results than the classical hesitant fuzzy set. In the previous example, the degree that the alternative 
satisfies the attribute can be represented by a WHFS {(0.5, 0.1), (0.6, 0.2), (0.7, 0.3), (0.8, 0.4)}. 
 
In order to aggregate hesitant fuzzy information, Xia and Xu [15] proposed some Algebraic t-
conorm and t-norm based operational laws for HFSs, based on which, a variety of hesitant fuzzy 
aggregation operators have been developed in recent years. For example, Xia and Xu [15] 
developed the hesitant fuzzy weighted averaging (HFWA) operator, the hesitant fuzzy weighted 
geometric (HFWG) operator, the generalized hesitant fuzzy weighted averaging (GHFWA) 
operator, the generalized hesitant fuzzy weighted geometric (GHFWG) operator, the hesitant 
fuzzy ordered weighted averaging (HFOWA) operator, the hesitant fuzzy ordered weighted 
geometric (HFOWG) operator, the generalized hesitant fuzzy ordered weighted averaging 
(GHFOWA) operator, the generalized hesitant fuzzy ordered weighted geometric (GHFOWG) 
operator, the hesitant fuzzy hybrid averaging (HFHA) operator, the hesitant fuzzy hybrid 
geometric (HFHG) operator, the generalized hesitant fuzzy hybrid averaging (HFHA) operator, 
and the generalized hesitant fuzzy hybrid geometric (GHFHG) operator. Xia et al. [18] proposed 
some new hesitant fuzzy aggregation operators, such as the quasi hesitant fuzzy weighted 
aggregation (QHFWA) operator, the hesitant fuzzy modular weighted averaging(QHFWA) 
operator, the hesitant fuzzy modular weighted geometric (HFMWG) operator, the quasi hesitant 
fuzzy ordered weighted aggregation (QHFOWA) operator, the hesitant fuzzy modular ordered 
weighted averaging (QHFOWA) operator, the hesitant fuzzy modular ordered weighted geometric 
(HFMWG) operator, the induced quasi hesitant fuzzy ordered weighted aggregation (IQHFOWA) 
operator, the induced hesitant fuzzy modular ordered weighted averaging (IHFMOWA) operator, 
and the induced hesitant fuzzy modular ordered weighted geometric (IHFMWG) operator. By 
extending the Bonferroni mean (BM) [19] to hesitant fuzzy environments, Zhu and Xu [20] 
developed the hesitant fuzzy Bonferroni means (HFBMs) and the weighted hesitant fuzzy 
Bonferroni mean (WHFBM). By extending the geometric Bonferroni mean (BM) [21] to hesitant 
fuzzy environments, Zhu et al. [22] proposed the hesitant fuzzy geometric Bonferroni mean 
(HFGBM) and the weighted hesitant fuzzy Choquet geometric Bonferroni mean (WHFCGBM). In 
order to consider the relationship between the hesitant fuzzy input arguments, Zhang [23] 
developed several new hesitant fuzzy aggregation operators, including the hesitant fuzzy power 
average (HFPA) operator, the hesitant fuzzy power geometric (HFPG) operator, the generalized 
hesitant fuzzy power average (GHFPA) operator, the generalized hesitant fuzzy power geometric 
(GHFPG)operator, the weighted the generalized hesitant fuzzy power average (WGHFPA) 
operator, the weighted generalized hesitant fuzzy power geometric (WGHFPG) operator, the 
hesitant fuzzy power ordered weighted average (HFPOWA) operator, the hesitant fuzzy power 
ordered weighted geometric(HFPOWG) operator, the generalized hesitant fuzzy power ordered 
weighted average (GHFPOWA) operator, and the generalized hesitant fuzzy power ordered 
weighted geometric (GHFPOWG) operator. Wei and Zhao [24] introduced some operations on 
hesitant interval-valued fuzzy sets (HIVFSs) based on Einstein t-conorm and t-norm, and based on 
which, developed some induced hesitant interval-valued fuzzy Einstein aggregation operators for 
aggregating hesitant interval-valued fuzzy information. 
 
Archimedean t-conorm and t-norm [25,26] are generalizations of lots of other t-conorms and t-
norms, such as Algebraic, Einstein, Hamacher and Frank t-conorms and t-norms [27]. Based on 
Archimedean t-conorm and t-norm, Beliakov et al. [28] gave some operations about intuitionistic 
fuzzy sets (IFSs). Xia et al. [27] further gave some other operations on IFSs, and proposed some 
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specific intuitionistic fuzzy aggregation operators. Motivated by the work of Beliakov et al. [28] 
and Xia et al. [27], this paper proposes some Archimedean t-conorm and t-norm based operation 
laws on weighted hesitant fuzzy sets (WHFSs), investigates their properties, and based on which, 
develops two Archimedean t-conorm and t-norm based weighted hesitant fuzzy aggregation 
operators, including the Archimedean t-conorm and t-norm based weighted hesitant fuzzy 
weighted averaging (ATS-WHFWA) operator and the Archimedean t-conorm and t-norm based 
weighted hesitant fuzzy weighted geometric (ATS-WHFWG) operator. Moreover, we study some 
desired properties of the new operators and give their special cases, such as the weighted hesitant 
fuzzy weighted averaging (WHFWA) operator, the weighted hesitant fuzzy Einstein weighted 
averaging (WHFEWA) operator, the weighted hesitant fuzzy Hammer weighted averaging 
(WHFHWA) operator, the weighted hesitant fuzzy Frank weighted averaging (WHFFWA) 
operator, the weighted hesitant fuzzy weighted geometric (WHFWG) operator, the weighted 
hesitant fuzzy Einstein weighted geometric (WHFEWG) operator, the weighted hesitant fuzzy 
Hammer weighted geometric (WHFHWG) operator, and the weighted hesitant fuzzy Frank 
weighted geometric (WHFFWG) operator. Finally, we develop an approach for multi-criteria 
decision making under weighted hesitant fuzzy environment, and provide a numerical example to 
illustrate the proposed approach. 
 
This paper is organized as follows. Section 2 introduces some basic concepts of hesitant fuzzy sets 
and Archimedean t-conorm and t-norm. In Section 3, we define the concept of weighted hesitant 
fuzzy sets (WHFSs) and introduce some operational laws for them based on Archimedean t-
conorm and t-norm. Section 4 proposes two Archimedean t-conorm and t-norm based weighted 
hesitant fuzzy aggregation operators for aggregation weighted hesitant fuzzy information. Some 
desired properties and special cases of the proposed operators are also investigated in this section. 
In the sequel, Section 5 develops an approach to multi-criteria decision making under weighted 
hesitant fuzzy environment and gives a practical example to illustrate the developed approach. 
The final section offers some concluding remarks. 
 

2 Preliminaries 
 
In this section, we will give a brief introduction of hesitant fuzzy sets [5] and Archimedean t-
conorm and t-norm [25,26]. 
 
Definition 2.1 [5]. Let X  be a fixed set, a hesitant fuzzy set (HFS) on X  is in terms of a function 
that when applied to X  returns a subset of [ ]0,1 . 

 
Xia and Xu [15] expressed a HFS by the following form: 
 

( ){ }, EE x h x x X= ∈                                                                                                     (1) 

 
where ( )Eh x  is a set of some values in [ ]0,1 , denoting the possible membership degrees of the 

element x X∈  to the set E . For convenience, Xia and Xu [15] called ( )Eh h x=  a hesitant fuzzy 

element (HFE) and H  the set of all hesitant fuzzy elements (HFEs). 
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Assume three HFEs represented by h , 1h  and 2h , Torra [5] defined some operations on them, 

which can be described as: 
 

{ }1ch hγ γ= − ∈ ;                                                                                                      (2) 

 

{ }1 2 1 2 1 1 2 2,h h h hU γ γ γ γ= ∨ ∈ ∈ ;                                                                                 (3) 

 

{ }1 2 1 2 1 1 2 2,h h h hI γ γ γ γ= ∧ ∈ ∈ .                                                                                 (4) 

 
Definition 2.2 [25,26]. A function [ ] [ ] [ ]: 0,1 0,1 0,1T × →  is called a t-norm if it satisfies the 

following four conditions: 
 

(1) ( )1,T a a= , for all [ ]0,1a∈ . 

(2) ( ) ( ), ,T a b T b a= , for all [ ], 0,1a b∈ . 

(3) ( )( ) ( )( ), , , ,T a T b c T T a b c= , for all [ ], , 0,1a b c∈ . 

(4) If a a′≤  and b b′≤  for all [ ], , , 0,1a a b b′ ′∈ , then ( ) ( ), ,T a b T a b′ ′≤ . 

 
Definition 2.3 [25,26]. A function [ ] [ ] [ ]: 0,1 0,1 0,1S × →  is called a t-conorm if it satisfies the 

following four conditions: 
 

(1) ( )0,S a a= , for all [ ]0,1a∈ . 

(2) ( ) ( ), ,S a b S b a= , for all [ ], 0,1a b∈ . 

(3) ( )( ) ( )( ), , , ,S a S b c S S a b c= , for all [ ], , 0,1a b c∈ . 

(4) If a a′≤  and b b′≤  for all [ ], , , 0,1a a b b′ ′∈ , then ( ) ( ), ,S a b S a b′ ′≤ . 

 
Definition 2.4 [25,26]. A t-norm function ( ),T a b  is called Archimedean t-norm if it is 

continuous and ( ),T a a a<  for all ( )0,1a∈ . An Archimedean t-norm is called strictly 

Archimedean t-norm if it is strictly increasing in each variable for ( ), 0,1a b∈ . 

 
Definition 2.5 [25,26]. A t-conorm function ( ),S a b  is called Archimedean t-conorm if it is 

continuous and ( ),S a a a>  for all ( )0,1a∈ . An Archimedean t-conorm is called strictly 

Archimedean t-conorm if it is strictly increasing in each variable for ( ), 0,1a b∈ . 

 
It is well known [29] that a strict Archimedean t-norm ( ),T a b  is expressed via its additive 

generator g  as ( ) ( ) ( )( )1,T a b g g a g b−= + , where [ ] [ ]: 0,1 0,g → +∞  is a strictly decreasing 
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function  such that ( )1 0g = . A dual Archimedean t-conorm ( ),S a b  is expressed as 

( ) ( ) ( )( )1,S a b f f a f b−= +  with ( ) ( )1f t g t= − . 

 

3  Weighted Hesitant Fuzzy Sets (WHFSS) and Weighted 
Hesitant Fuzzy Elements (WHFES) 

 
Considering that the classical hesitant fuzzy set does not involve the importance of all of the 
possible membership degrees of each element, in this section, we will propose a new concept of 
weighted hesitant fuzzy set by assigning a weight vector to all of the possible membership degrees 
of each element. 
 
Definition 3.1.  Let X  be a reference set, a weighted hesitant fuzzy set (WHFS) on X  is defined 
as: 

( ){ } ( ){ }( ){ }, , ,
A

xA h x
A x h x x X x w x Xγγ

γ
∈

= ∈ = ∈
%

%
%% U                         (5) 

 

where ( )A
h x%  is a set of some different values in [ ]0,1 , denoting all possible membership degrees 

of the element x X∈  to the set A% , xw γ  is the weight of γ , [ ]0,1xw γ ∈ , and 
( )

1
A

x
h x

w γ
γ∈

=∑
%

 

for any x X∈ . 
 

For convenience, we call ( ){ },
h

h wγγ
γ

∈
=% U  a weighted hesitant fuzzy element (WHFE), 

where h  is a set of some different membership degrees in [ ]0,1 , wγ  is the weight of γ , 

[ ]0,1wγ ∈  for any hγ ∈ , and 1
h

wγ
γ∈

=∑ . Let H%  denote the set of all weighted hesitant fuzzy 

elements (WHFEs). 
 

Let ( ){ } ( ){ }( ){ }, , ,
A

xA h x
A x h x x X x w x Xγγ

γ
∈

= ∈ = ∈
%

%
%% U  be a WHFS. If for any x X∈  

and ( )A
h xγ ∈ % , ( )

1
x

A

w
h xγ =

# %

 ( ( )A
h x# %  is the number of the elements in ( )A

h x% ), then A%  

reduces to a HFS. Let ( ){ },
h

h wγγ
γ

∈
=% U  be a WHFE. If 

1
w

hγ =
#

, then h%  reduces to a 

HFE. 
 
By Definition 3.1, the WHFS extends the HFS to contain several membership degrees and their 
corresponding weights. The difference between the HFS and WHFS is that the former assumes 
that the possible membership degrees of each element are of equal importance, while the latter 
assigns different weights to different membership degrees. Thus, compared with the HFS, the 
WHFS can depict human uncertainty more objectively and precisely. 
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In the following, we illustrate how to construct a WHFE. Suppose that l  experts are required to 

evaluate the membership degree of the element x in the set A% . 1l  experts provide 1γ , 2l  experts 

provide 2γ , L , and kl  experts provide kγ , where 
1

k

k
i

l l
=

=∑ . Assume that these l  experts cannot 

persuade each other to change their opinions. In such cases, the membership degree of the element 

x in the set A%  has k  possible values 1γ , 2γ , L , and kγ . The weights of iγ  ( 1,2, ,i k= L ) are 

i

ilw
lγ =  ( 1,2, ,i k= L ). Thus, the membership degree of the element x  in the set A%  can be 

represented by a WHFE 1 2
1 2, , , , , , k

k

ll l
h

l l l
γ γ γ     =       
      

% L . Based on the above analysis, 

we can see that constructing of a WHFE consists of two steps: (1) collecting different possible 
membership degree values into a HFE; (2) assigning the weights to these different membership 
degree values. 
 
The WHFS is an efficient tool to represent situations in which several different membership 
functions for a fuzzy set are possible and different membership functions have different weights. It 
is particularly suitable to address the hesitancy and uncertainty that are quite usual in real world 
decision making problems. 
 

Example 3.1. Let { }1 2 3, ,X x x x= , 

 ( ) ( ){ } ( ) ( ) ( ){ } ( ) ( ){ }{ }1 2 3, 0.5,0.3 , 0.6,0.7 , , 0.1,0.5 , 0.3,0.2 , 0.4,0.3 , , 0.7,0.5 ,0.9,0.5%A x x x= , 

and ( ) ( ) ( ){ }0.1,0.5 , 0.3,0.2 , 0.4,0.3h =% . Then, A%  is a WHFS on X  and h%  is a WHFE. 

 
To compare two WHFEs, we define the following comparison laws: 
 

Definition 3.2. For a WHFE ( ){ },
h

h wγγ
γ

∈
=% U , ( ) ( )

h

s h wγ
γ

γ
∈

= ⋅∑%  is called the score function 

of h% . For two WHFEs 1h%  and 2h% , if ( ) ( )1 2s h s h>% % , then 1 2h h>% % ; if ( ) ( )1 2s h s h=% % , then 

1 2h h=% % . 

Given three WHFEs represented by ( ){ },
h

h wγγ
γ

∈
=% U , ( ){ }11 1

1 1 1,
h

h wγγ
γ

∈
=% U , and 

( ){ }22 2
2 2 2,

h
h w γγ

γ
∈

=% U , we define some basic operations on them as below: 

 

   ( ){ }1 ,c

h
h wγγ

γ
∈

= −% U ;                                                                                                     (6) 

 

( ){ }1 21 1 2 2
1 2 1 2 1 2,

,
h h

h h w wγ γγ γ
γ γ

∈ ∈
= ∨ ⋅% %U U ;                                                                         (7) 
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( ){ }1 21 1 2 2
1 2 1 2 1 2,

,
h h

h h w wγ γγ γ
γ γ

∈ ∈
= ∧ ⋅% %I U .                                                                         (8) 

 

Theorem 3.1. Let h% , 1h% , and 2h%  be three WHFEs. Then, ch% , 1 2h h% %U , and 1 2h h% %I  are also 
WHFEs. 
 

Proof. It is clear that ch%  is a WHFE. 
 
According to Definition 3.1, we have 
 

( ) ( )
1 2 1 2 1

1 1 2 2 1 1 2 2 1 1

1 2 1 2 1
,

1 1
h h h h h

w w w w wγ γ γ γ γ
γ γ γ γ γ∈ ∈ ∈ ∈ ∈

  
⋅ = ⋅ = ⋅ =    

  
∑ ∑ ∑ ∑  

 

which shows that  1 2h h% %U  is a WHFE. 
 

Similarly, we can conclude that  1 2h h% %I  is also a WHFE. 
 
This completes the proof of Theorem 3.1.                      � 
In the above operations, we allow the membership degrees repeated many times appear only once, 
whose weight is a sum of the weights of the membership degrees repeated many times. 
 

Example 3.2. Given two WHFEs 1h%  and 2h%  as follows: 
 

( ) ( ) ( ){ }1 0.1,0.5 , 0.3,0.2 , 0.4,0.3h =% ,  ( ) ( ){ }2 0.7,0.6 , 0.8,0.4h =% . 

 
Then, we have 
 

( ) ( ) ( ){ }1 0.9,0.5 , 0.7,0.2 , 0.6,0.3ch =%  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 2

0.1 0.7,0.5 0.6 , 0.1 0.8,0.5 0.4 , 0.3 0.7,0.2 0.6 ,

0.3 0.8,0.2 0.4 , 0.4 0.7,0.3 0.6 , 0.4 0.8,0.3 0.4

0.7,0.3 , 0.8,0.2 , 0.7,0.12 , 0.8,0.08 , 0.7,0.18 , 0.8,0.12

0.7,0.6 , 0.8,0.4

h h
 ∨ ⋅ ∨ ⋅ ∨ ⋅ =  

∨ ⋅ ∨ ⋅ ∨ ⋅  

=

=

% %U

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

2

0.1 0.7,0.5 0.6 , 0.1 0.8,0.5 0.4 , 0.3 0.7,0.2 0.6 ,

0.3 0.8,0.2 0.4 , 0.4 0.7,0.3 0.6 , 0.4 0.8,0.3 0.4

0.1,0.3 , 0.1,0.2 , 0.3,0.12 , 0.3,0.08 , 0.4,0.18 , 0.4,0.12

0.1,0.5 , 0.3,0.2 , 0.4,0.3

h h
 ∧ ⋅ ∧ ⋅ ∧ ⋅ =  

∧ ⋅ ∧ ⋅ ∧ ⋅  

=

=

% %I

 

 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(8), 1091-1123, 2014 
 
 

1099 
 

In order to aggregate weighted hesitant fuzzy information, we defined some new operations on the 

WHFEs h% , 1h%  and 2h% : 
 

( )( ){ } ( ) ( )( )( ){ }1 2 1 21 1 2 2 1 1 2 2

1
1 2 1 2 1 2 1 2 1 2, ,

, , ,% % U Uh h h h
h h S w w f f f w wγ γ γ γγ γ γ γ

γ γ γ γ−
∈ ∈ ∈ ∈

⊕ = ⋅ = + ⋅ ;      

(9) 
 

( )( ){ } ( ) ( )( )( ){ }1 2 1 21 1 2 2 1 1 2 2

1
1 2 1 2 1 2 1 2 1 2, ,

, , ,% % U Uh h h h
h h T w w g g g w wγ γ γ γγ γ γ γ

γ γ γ γ−
∈ ∈ ∈ ∈

⊗ = ⋅ = + ⋅ ;    (10) 

 

( )( )( ){ }1 ,
h

h f f wγγ
λ λ γ−

∈
=% U , 0λ > ;                                                                          (11) 

( )( )( ){ }1 ,
h

h g g wλ
γγ

λ γ−
∈

=% U , 0λ > .                                                                           (12) 

 

Theorem 3.2. For three WHFEs h% , 1h% , and 2h% , we have the following properties: 
 

(1) 1 2 2 1h h h h⊕ = ⊕% % % % ; 

(2) 1 2 2 1h h h h⊗ = ⊗% % % % ; 

(3) ( )1 2 1 2h h h hλ λ λ⊕ = ⊕% % % % ,  0λ > ; 

(4) ( )1 2 1 2h h h h
λ λ λ⊗ = ⊗% % % % ,  0λ > ; 

(5) ( )1 2 1 2h h hλ λ λ λ⊕ = +% % % ,  1 2, 0λ λ > ; 

(6) 1 2 1 2h h hλ λ λ λ+⊗ =% % % ,  1 2, 0λ λ > ; 

(7) ( ) ( )1 2 1 2
% % % % % %h h h h h h⊕ ⊕ = ⊕ ⊕ ; 

(8) ( ) ( )1 2 1 2
% % % % % %h h h h h h⊗ ⊗ = ⊗ ⊗ ; 

(9) ( )1 2 1 2
% % % %U I

c c ch h h h= ; 

(10) ( )1 2 1 2
% % % %I U

c
c ch h h h= ; 

(11) ( ) ( )% %
cch h

λ
λ= ; 

(12) ( ) ( )% %
c

ch hλλ = ; 

(13) ( )1 2 1 2
% % % %

c c ch h h h⊕ = ⊗ ; 

(14) ( )1 2 1 2
% % % %

c
c ch h h h⊗ = ⊕ . 
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4  Aggregation Operators for Weighted Hesitant Fuzzy 
Information 

 
In the current section, we will propose several operators for aggregating the weighted hesitant 
fuzzy information and investigate some properties of these operators. 
 

Definition 4.1. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, and let  ( )1 2, , ,
T

nω ω ω ω= L  

be the weight vector of ih%  ( 1,2, ,i n= L ) with [ ]0,1iω ∈  and 
1

1
n

i
i

ω
=

=∑ . Then, an Archimedean 

t-conorm and t-norm based weighted hesitant fuzzy weighted averaging (ATS-WHFWA) operator 
is a mapping nH H→% % , where 
 

( ) ( )1 2
1

ATS-WHFWA , , ,
n

n i i
i

h h h hω
=

= ⊕% % % %L                                                                                (13) 

 

Theorem 4.1. Let ( ){ },
ii i

i i ih
h wγγ

γ
∈

=% U  ( 1,2, ,i n= L ) be a collection of WHFEs, and 

( )1 2, , ,
T

nω ω ω ω= L  be the weight vector of ih%  ( 1,2, ,i n= L ), where iω  indicates the 

importance degree of ih% , satisfying [ ]0,1iω ∈  and 
1

1
n

i
i

ω
=

=∑ , then the aggregated value by using 

the ATS-WHFWA operator is also a WHFE, and 
 

      ( ) ( )
1 1 2 2

1
1 2 , , ,

1 1

ATS-WHFWA , , , ,
in n

nn

n i i ih h h
i i

h h h f f wγγ γ γ
ω γ−

∈ ∈ ∈
= =

    =    
    
∑ ∏L

% % %L U    (14) 

 
Proof. By using mathematical induction on n: For 2n = , since 
 

( )( )( ){ }11 1

1
1 1 1 1 1,

h
h f f wγγ

ω ω γ−
∈

=% U  

( )( )( ){ }22 2

1
2 2 2 2 2,

h
h f f w γγ

ω ω γ−
∈

=% U  

we have 

( )( )( ){ }( ) ( )( )( ){ }( )
( )( )( ) ( )( )( )( )( ){ }

( ) ( )( )( ){ }

1 21 1 2 2

1 21 1 2 2

1 21 1 2 2

1 1
1 1 2 2 1 1 1 2 2 2

1 1 1
1 1 2 2 1 2,

1
1 1 2 2 1 2,

, ,

,

,

h h

h h

h h

h h f f w f f w

f f f f f f f w w

f f f w w

γ γγ γ

γ γγ γ

γ γγ γ

ω ω ω γ ω γ

ω γ ω γ

ω γ ω γ

− −
∈ ∈

− − −
∈ ∈

−
∈ ∈

⊕ = ⊕

= + ⋅

= + ⋅

% % U U

U

U
 

That is, the Eq. (14) holds for 2n = . Suppose that the Eq. (14) holds for n k= , i.e., 
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( ) ( )
1 1 2 2

1

, , ,1
1 1

,
ik k

kkk

i i i i ih h hi
i i

h f f wγγ γ γ
ω ω γ−

∈ ∈ ∈= = =

    ⊕ =    
    
∑ ∏L

% U  

 
then, when 1n k= + , we have 
 

( ) ( ) ( )

( ) ( )( )( ){ }( )
( ) ( )

11 1 2 2 1 1

1

1 1
1 1

1 1
1 1 1, , ,

1 1

1
1

1 1
1 1

, ,

,

L

% % %

U Ui kk k k k

i

k k

i i i i k k
i i

kk

i i i k k kh h h h
i i

kk

i i k k i
i i

h h h

f f w f f w

f f f w

γ γγ γ γ γ

γ

ω ω ω

ω γ ω γ

ω γ ω γ

++ +

+

+ += =

− −
+ + +∈ ∈ ∈ ∈

= =

+
−

+ +
= =

 ⊕ = ⊕ ⊕ 
 

     = ⊕          

   = +   
  

∑ ∏

∑ ∏

( )

1 1 2 2 1 1

1 1 2 2 1 1

, , , ,

11
1

, , , ,
1 1

,

L

L

U

U

k k k k

ik k k k

h h h h

kk

i i ih h h h
i i

f f w

γ γ γ γ

γγ γ γ γ
ω γ

+ +

+ +

∈ ∈ ∈ ∈

++
−

∈ ∈ ∈ ∈
= =





    =    
    
∑ ∏

 
i.e., Eq. (14) holds for 1n k= + . Thus Eq. (14) holds for all n. 
 

In addition, because [ ] [ ]: 0,1 0,g → +∞  is a strictly decreasing function and ( ) ( )1f t g t= − , 

[ ] [ ]: 0,1 0,f → +∞  is a strictly increasing function, which implies that 

 

( )1

1

0 1
n

i i
i

f fω γ−

=

 ≤ ≤ 
 
∑  

 
Furthermore, we have 
 

( )

1 1 2 2 1 1 2 2 1 1

1 2

1 1 2 2 1 1 1 1 2 2

1

1 1

1

, , , , , ,1 1

1

1 2
, , , 1

1

i i n

n n n n n n

i

n n

n n

i i n
h h h h h h hi i

n

i
h h h h hi

h

w w w

w w w

w

γ γ γ
γ γ γ γ γ γ γ

γ γ γ
γ γ γ γ γ

γ
γ

− −

− −

−

∈ ∈ ∈ ∈ ∈ ∈ ∈= =

−

∈ ∈ ∈ ∈ ∈=

∈

    
 = ⋅            

   = = = ⋅          

= =

∑ ∑ ∑∏ ∏

∑ ∑ ∑∏

∑

L L

L

L

1

 

 
This completes the proof of Theorem 4.1.                                                                              
In the following, let’s study some desirable properties of the ATS-WHFWA operator. 
 

Theorem 4.2. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if 0r > , then 
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                       ( ) ( )1 2 1 2ATS-WHFWA , , , ATS-WHFWA , , ,n nrh rh rh r h h h=% % % % % %L L       (15) 

 
Proof. Since for any  1,2, ,i n= L , 
 

( )( )( ){ }1 ,
ii i

i i ih
rh f rf w γγ

γ−
∈

=% U  

 
Based on Theorem 4.1, we have 
 

( )
( )( )( )

( )

1 1 2 2

1 1 2 2

1 2

1 1

, , ,
1 1

1

, , ,
1 1

ATS-WHFWA , , ,

,

,

in n

in n

n

nn

i i ih h h
i i

nn

i i ih h h
i i

rh rh rh

f f f rf w

f r f w

γγ γ γ

γγ γ γ

ω γ

ω γ

− −
∈ ∈ ∈

= =

−
∈ ∈ ∈

= =

    =    
    

    =    
    

∑ ∏

∑ ∏

L

L

% % %L

U

U

 

 
According to Eq. (11), we can get 
 

( )
( )

( )

( )

1 1 2 2

1 1 2 2

1 2

1

, , ,
1 1

1 1

, , ,
1 1

1

1

ATS-WHFWA , , ,

,

,

in n

in n

n

nn

i i ih h h
i i

nn

i i ih h h
i i

n

i i
i

r h h h

r f f w

f rf f f w

f r f

γγ γ γ

γγ γ γ

ω γ

ω γ

ω γ

−
∈ ∈ ∈

= =

− −
∈ ∈ ∈

= =

−

=

     =           

      =              

=

∑ ∏

∑ ∏

∑

L

L

% % %L

U

U

1 1 2 2, , ,
1

,
in n

n

ih h h
i

wγγ γ γ∈ ∈ ∈
=

    
   

    
∏LU

 

 
This completes the proof of Theorem 4.2.     �                                                                        � 
 

Theorem 4.3. Let ( ){ },
ii i

i i ih
h wγγ

γ
∈

=% U  and ( ){ },
ii i

i i il
l ξξ

ξ ϖ
∈

=% U  ( 1,2, ,i n= L ) be two 

collections of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their weight vector with [ ]0,1iω ∈  (

1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , then 

 
( )

( ) ( )
1 1 2 2

1 2 1 2

ATS-WHFWA , , ,

ATS-WHFWA , , , ATS-WHFWA , , ,

% % % % % %L

% % % % % %L L

n n

n n

h l h l h l

h h h l l l

⊕ ⊕ ⊕

= ⊕
                                                   (16) 
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Proof. According to Eq. (9), we have 
 

( ) ( )( )( ){ }1

,
,

i ii i i i
i i i i i ih l

h l f f f wγ ξγ ξ
γ ξ ϖ−

∈ ∈
⊕ = + ⋅% % U  

 
According to Theorem 4.1, we have 
 

( )
( ) ( )( )( ) ( )

( ) ( ) ( )

1 1 1 1

1 1 1

1 1 2 2

1 1

, , , , ,
1 1

1

, , ,
1 1 1

ATS-WHFWA , , ,

,

,

i in n n n

i in n

n n

nn

i i i i ih h l l
i i

nn n

i i i i i ih h
i i i

h l h l h l

f f f f f w

f f f w

γ ξγ γ ξ ξ

γ ξγ γ ξ

ω γ ξ ϖ

ω γ ω ξ ϖ

− −
∈ ∈ ∈ ∈

= =

−
∈ ∈ ∈

= = =

⊕ ⊕ ⊕

    = + ⋅   
    

    = + ⋅   
    

∑ ∏

∑ ∑ ∏

L L

L

% % % % % %L

U

1, , n nl lξ ∈LU

 

 
On other hand, according to Theorem 4.1 and Eq. (9), we have 
 

( ) ( )
( ) ( )

1 1 2 2 1 1 2 2

1 2 1 2

1 1

, , , , , ,
1 11 1

1

ATS-WHFWA , , , ATS-WHFWA , , ,

, ,
L L

% % % % % %L L

U Ui in n n n

n n

n nn n

i i i i i ih h h l l l
i ii i

h h h l l l

f f w f f

f f f

γ ξγ γ γ ξ ξ ξ
ω γ ω ξ ϖ− −

∈ ∈ ∈ ∈ ∈ ∈
= == =

− −

⊕

               = ⊕                              

=

∑ ∑∏ ∏

( ) ( )

( ) ( ) ( )

1 1 1 1

1 1

1 1

, , , , ,
1 1 1 1

1

, , ,
1 1 1

,

,

L L

L

U i in n n n

i in n

n nn n

i i i i i ih h l l
i i i i

nn n

i i i i i ih h
i i i

f f f f w

f f f w

γ ξγ γ ξ ξ

γ ξγ γ

ω γ ω ξ ϖ

ω γ ω ξ ϖ

−
∈ ∈ ∈ ∈

= = = =

−
∈ ∈

= = =

          + ⋅                      

    = + ⋅   
    

∑ ∑ ∏ ∏

∑ ∑ ∏
1 1, ,LU

n nl lξ ξ∈ ∈

 

which completes the proof of Theorem 4.3.   �                                                                        � 
 
If the additive generator g  is assigned different forms, then some specific weighted hesitant fuzzy 

aggregation operators can be obtained as follows: 
 

Case 1. If ( ) ( )logg t t= − , then the ATS-WHFWA operator reduces to the following form: 

 

  ( ) ( )
1 1 2 2

1 2 , , ,
1 1

WHFWA , , , 1 1 ,i

in n

n n

n i ih h h
i i

h h h w
ω

γγ γ γ
γ

∈ ∈ ∈
= =

  = − −  
  

∏ ∏L

% % %L U               (17) 

 
which is the weighted hesitant fuzzy weighted averaging (WHFWA) operator. 
 

In fact, if ( ) ( )logg t t= − , then ( ) ( ) ( )1 log 1f t g t t= − = − −  and ( )1 1 tf t e− −= − . Thus, 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(8), 1091-1123, 2014 
 
 

1104 
 

( ) ( )

( )

( )

1 1 2 2

1

1 1 2 2

1

1
1 2 , , ,

1 1

log 1

, , ,
1

log 1

1

WHFWA , , , ,

1 ,

1 ,

in n

n

i i
i

in n

n
i

i
i

i

nn

n i i ih h h
i i

n

ih h h
i

n

i
i

h h h f f w

e w

e w

ω

γγ γ γ

ω γ

γγ γ γ

γ

γ

ω γ

=

=

−
∈ ∈ ∈

= =

−

∈ ∈ ∈
=

 
 −
 
 

=

    =    
    

  ∑  = − 
    

 ∏ = −  
 

∑ ∏

∏

∏

L

L

% % %L U

U

( )

1 1 2 2

1 1 2 2

, , ,

, , ,
1 1

1 1 ,

n n

i

in n

h h h

n n

i ih h h
i i

w

γ γ γ

ω
γγ γ γ

γ

∈ ∈ ∈

∈ ∈ ∈
= =





 


  = − −  
  

∏ ∏

L

L

U

U

 

 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , where ih#  is the number of the elements in ih , 

then the Eq. (17) is transformed to 

 ( ) ( )
1 1 2 2

1 2 , , ,
1

1

1
HFWA , , , 1 1 ,i

n n

n

n i nh h h
i

i
i

h h h
h

ω

γ γ γ
γ

∈ ∈ ∈
=

=

  
    = − − 
  #    

∏
∏

L

% % %L U           (18) 

 
which is the hesitant fuzzy weighted average (HFWA) operator proposed by Xia and Xu [15]. 
 

Case 2. If ( ) 2
log

t
g t

t

− =  
 

, then the ATS-WHFWA operator reduces to the following form:

( )
( ) ( )

( ) ( )1 1 2 2

1 1
1 2 , , ,

1

1 1

1 1
WHFEWA , , , ,

1 1

i i

in n
i i

n n

i i n
i i

n in nh h h
i

i i
i i

h h h w

ω ω

γγ γ γ ω ω

γ γ

γ γ

= =
∈ ∈ ∈

=

= =

  + − −    =  
  + + −    

∏ ∏
∏

∏ ∏
L

% % %L U  (19) 

 
which is the weighted hesitant fuzzy Einstein weighted averaging (WHFEWA) operator. 
 

In fact, if ( ) 2
log

t
g t

t

− =  
 

, then ( ) ( ) 1
1 log

1

t
f t g t

t

+ = − =  − 
 and ( )1 1

1

t

t

e
f t

e
− −=

+
. Thus, 
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( ) ( )
1 1 2 2

1

1 1 2 2

1

1
1 2 , , ,

1 1

1
log

1

, , , 1
log 1

1

WHFEWA , , , ,

1
,

1

in n

n
i

i
ii

n in n i
i

ii

nn

n i i ih h h
i i

n

ih h h
i

h h h f f w

e
w

e

γγ γ γ

γω
γ

γγ γ γ γω
γ

ω γ

=

=

−
∈ ∈ ∈

= =

 +
  − 

∈ ∈ ∈  +
  = − 

    =    
    

  ∑
  − =   

∑   +   

∑ ∏

∏

L

L

% % %L U

U

1

1 1 2 2

1

1
log

1

, , , 1 1log
1

1

1

1

1
,

1

1
1

1
,

1
1

1

in
i

ii

in in n i

ii

i

ii

n

ih h h
i

n
i

n
i i

i
n i

i

i i

e
w

e

w

ω

ω

γ
γ

γγ γ γ γ
γ

ω

γω

γ
γ

γ
γ

=

=

  +    −  

 ∈ ∈ ∈  +  =   −  

=

=

=

  ∏  −  =  
  ∏  +  

  +
 − −  =  

 + +  −  

∏

∏
∏

∏

LU

( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

, , ,

1 1

, , ,
1

1 1

1 1
,

1 1

n n

i i

in n
i i

h h h

n n

i i n
i i

in nh h h
i

i i
i i

w

γ γ γ

ω ω

γγ γ γ ω ω

γ γ

γ γ

∈ ∈ ∈

= =
∈ ∈ ∈

=

= =

 
 
 
 
 
 
 

  + − −    =  
  + + −    

∏ ∏
∏

∏ ∏

L

L

U

U

 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (19) is transformed to 

( )
( ) ( )

( ) ( )1 1 2 2

1 1
1 2 , , ,

1 1 1

1 1
1

HFEWA , , , ,
1 1

i i

n n
i i

n n

i i
i i

n n n nh h h

i i i
i i i

h h h
h

ω ω

γ γ γ ω ω

γ γ

γ γ

= =
∈ ∈ ∈

= = =

  + − −    =  
  + + − #    

∏ ∏

∏ ∏ ∏
L

% % %L U    (20) 

 
which is the hesitant fuzzy Einstein weighted average (HFEWA) operator given by Wei and Zhao 
[24]. 

Case 3. If ( ) ( )1
log

t
g t

t

θ θ + − 
=  

 
, 0θ > , then the ATS-WHFWA operator reduces to the 

following form: 

  ( )
( )( ) ( )

( )( ) ( ) ( )1 1 2 2

1 1
1 2 , , ,

1

1 1

1 1 1
WHFHWA , , , ,

1 1 1 1
L

% % %L U

i i

in n
i i

n n

i i n
i i

n in nh h h
i

i i
i i

h h h w

ω ω

γγ γ γ ω ω

θ γ γ

θ γ θ γ

= =
∈ ∈ ∈

=

= =

  + − − −    =  
  + − + − −    

∏ ∏
∏

∏ ∏
(21) 
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which is the weighted hesitant fuzzy Hammer weighted averaging (WHFHWA) operator. 
Especially, if 1θ = , then the WHFHWA operator reduces to the WHFWA operator; if 2θ = , 
then the WHFHWA operator reduces to the WHFEWA operator. 
 

In fact, if ( ) ( )1
log

t
g t

t

θ θ + − 
=  

 
, then ( ) ( ) ( )1 1

1 log
1

t
f t g t

t

θ + − 
= − =  − 

 and 

( )1 1

1

t

t

e
f t

eθ
− −=

− −
. Thus, 

( ) ( )

( )

( )

1 1 2 2

1

1

1
1 2 , , ,

1 1

1 1
log

1

1 1 1log
1

WHFHWA , , , ,

1
,

1

L

% % %L U in n

in
i

ii

in i
i

ii

nn

n i i ih h h
i i

n

i
i

h h h f f w

e
w

e

ω

ω

γγ γ γ

θ γ
γ

γθ γ
γ

ω γ

θ

=

=

−
∈ ∈ ∈

= =

 + −     −  

 + −   =   −  

    =    
    

  ∏  − =    ∏  − − 

∑ ∏

∏

( )( ) ( )

( )( ) ( ) ( )

1 1 2 2

1 1 2 2

, , ,

1 1

, , ,
1

1 1

1 1 1
,

1 1 1 1

L

L

U

U

n n

i i

in n
i i

h h h

n n

i i n
i i

in nh h h
i

i i
i i

w

γ γ γ

ω ω

γγ γ γ ω ω

θ γ γ

θ γ θ γ

∈ ∈ ∈

= =
∈ ∈ ∈

=

= =






  + − − −    =  
  + − + − −    

∏ ∏
∏

∏ ∏

 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (21) is transformed to 

( )
( )( ) ( )

( )( ) ( ) ( )
1 1 2 2

1 1
1 2 , , ,

1 1 1

1 1 1
1

HFHWA , , , ,
1 1 1 1

L

% % %L U

i i

n n
i i

n n

i i
i i

n n n nh h h

i i i
i i i

h h h
h

ω ω

γ γ γ ω ω

θ γ γ

θ γ θ γ

= =
∈ ∈ ∈

= = =

  + − − −  
  =  
  + − + − − #    

∏ ∏

∏ ∏ ∏
    (22) 

 
which is the hesitant fuzzy Hammer weighted average (HFHWA) operator. Especially, if 1θ = , 
then the HFHWA operator reduces to the HFWA operator; if 2θ = , then the HFHWA operator 
reduces to the HFEWA operator. 
 

Case 4. If ( ) 1
log

1t
g t

θ
θ

− =  − 
, 0θ > , then the ATS-WHFWA operator reduces to the following 

form: 
                      

( ) ( )
1 1 2 2

1
1 2 , , ,

1 1

WHFFWA , , , 1 log 1 1 ,
i

i

in n

n n

n ih h h
i i

h h h w
ωγ

θ γγ γ γ
θ −

∈ ∈ ∈
= =

    = − + −   
    

∏ ∏L

% % %L U  (23) 

 
which is the weighted hesitant fuzzy Frank weighted averaging (WHFFWA) operator. Especially, 
if 1θ → , then the WHFFWA operator reduces to the WHFWA operator. 
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In fact, if ( ) 1
log

1t
g t

θ
θ

− =  − 
, then ( ) ( ) 1

1
1 log

1t
f t g t

θ
θ −

− = − =  − 
 and 

( )1 1
1 log

t

t

e
f t

eθ
θ−  − += −  
 

. Thus, 

( ) ( )
1 1 2 2

1
1

1
1

1
1 2 , , ,

1 1

1
log

1

1
1log

1

WHFFWA , , , ,

1
1 log ,

L

% % %L U in n

n i

i
i

n i i

i
i

nn

n i i ih h h
i i

n

i
i

h h h f f w

e
w

e

ω

γ

ω

γ

γγ γ γ

θ
θ

θ γθ
θ

ω γ

θ
−

=

−
=

−
∈ ∈ ∈

= =

 −    −  

 −   =  −  

    =    
    

  ∏  − +  = −
  ∏

  
  

∑ ∏

∏

( )

1 1 2 2

1 1 2 2

, , ,

1
1

, , ,
1

1
1

1

1 1

1
1

1
1 log ,

1

1

1 log 1 1 ,

L

L

U

U

n n

i

i

iin n

i

i
i

i

h h h

n

n
i

ih h h n
i

i

n

i
i i

w

w

γ γ γ

ω

γ

θ γωγ γ γ

γ

ωγ
θ γ

θθ
θ

θ
θ

θ

∈ ∈ ∈

−
=

∈ ∈ ∈
=

−
=

−

= =

 
 
 
 
 
  

   − 
 − +   −    = −   −        −    

 = − + − 
 

∏
∏

∏

∏
1 1 2 2, , ,LU

n n

n

h h hγ γ γ∈ ∈ ∈

   
  
   

∏

 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (23) is transformed to 

 ( ) ( )
1 1 2 2

1
1 2 , , ,

1

1

1
HFFWA , , , 1 log 1 1 ,

i
i

n n

n

n nh h h
i

i
i

h h h
h

ωγ
θγ γ γ

θ −
∈ ∈ ∈

=

=

  
     = − + −  
   #    

∏
∏

L

% % %L U   (24) 

 
which is the hesitant fuzzy Frank weighted average (HFFWA) operator. 
Based on the ATS-WHFWA operator and the geometric mean, here we define an Archimedean t-
conorm and t-norm based weighted hesitant fuzzy weighted geometric (ATS-WHFWG) operator: 
 

Definition 4.2. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, and let  ( )1 2, , ,
T

nω ω ω ω= L  

be the weight vector of ih%  ( 1,2, ,i n= L ) with [ ]0,1iω ∈  and 
1

1
n

i
i

ω
=

=∑ . Then, an Archimedean 

t-conorm and t-norm based weighted hesitant fuzzy weighted geometric (ATS-WHFWG) operator 
is a mapping nH H→% % , where 
 

                                         ( ) ( )1 2
1

ATS-WHFWG , , , i

n

n i
i

h h h hω

=
= ⊗% % % %L                                        (25) 
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Theorem 4.4. Let ( ){ },
ii i

i i ih
h wγγ

γ
∈

=% U  ( 1,2, ,i n= L ) be a collection of WHFEs, and 

( )1 2, , ,
T

nω ω ω ω= L  be the weight vector of ih%  ( 1,2, ,i n= L ), where iω  indicates the 

importance degree of ih% , satisfying [ ]0,1iω ∈  and 
1

1
n

i
i

ω
=

=∑ , then the aggregated value by using 

the ATS-WHFWG operator is also a WHFE, and 
 

     ( ) ( )
1 1 2 2

1
1 2 , , ,

1 1

ATS-WHFWG , , , ,
in n

nn

n i i ih h h
i i

h h h g g wγγ γ γ
ω γ−

∈ ∈ ∈
= =

    =    
    
∑ ∏L

% % %L U          (26) 

 

Theorem 4.5. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if 0r > , then 

  ( ) ( )( )1 2 1 2ATS-WHFWG , , , ATS-WHFWG , , ,
r

r r r
n nh h h h h h=% % % % % %L L                                   (27) 

 

Theorem 4.6. Let ( ){ },
ii i

i i ih
h wγγ

γ
∈

=% U  and ( ){ },
ii i

i i il
l ξξ

ξ ϖ
∈

=% U  ( 1,2, ,i n= L ) be two 

collections of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their weight vector with [ ]0,1iω ∈  (

1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , then 

 

( )
( ) ( )
1 1 2 2

1 2 1 2

ATS-WHFWG , , ,

ATS-WHFWG , , , ATS-WHFWG , , ,

% % % % % %L

% % % % % %L L

n n

n n

h l h l h l

h h h l l l

⊗ ⊗ ⊗

= ⊗
                                        (28) 

 
In what follows, we will investigate the relationship between ATS-WHFWA operator and ATS-
WHFWG operator. 
 

Theorem 4.7. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , then we have 

( ) ( )( )1 2 1 2ATS-WHFWA , , , ATS-WHFWG , , ,
c

c c c
n nh h h h h h=% % % % % %L L                                    (29) 

( ) ( )( )1 2 1 2ATS-WHFWG , , , ATS-WHFWA , , ,
c

c c c
n nh h h h h h=% % % % % %L L                                    (30) 
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Proof. (1) According to Eqs. (6), (14), and (26), we can get 
 

( ) ( )

( )

( )

1 1 2 2

1 1 2 2

1
1 2 , , ,

1 1

1

, , ,
1 1

1

1 1

ATS-WHFWA , , , 1 ,

1 ,

,

in n

in n

i

nn
c c c

n i i ih h h
i i

nn

i i ih h h
i i

nn

i i i
i i

h h h f f w

g g w

g g w

γγ γ γ

γγ γ γ

γ

ω γ

ω γ

ω γ

−
∈ ∈ ∈

= =

−
∈ ∈ ∈

= =

−

= =

    = −   
    

    = −   
    

  =   
  

∑ ∏

∑ ∏

∑ ∏

L

L

% % %L U

U

( )( )
1 1 2 2, , ,

1 2 ATS-WHFWG , , ,

n n

c

h h h

c

nh h h

γ γ γ∈ ∈ ∈

 
     

=

L

% % %L

U

 

 
(2) According to Eqs. (6), (14), and (26), we have 
 

( ) ( )

( )

( )

1 1 2 2

1 1 2 2

1
1 2 , , ,

1 1

1

, , ,
1 1

1

1 1

ATS-WHFWG , , , 1 ,

1 ,

,

in n

in n

i

nn
c c c

n i i ih h h
i i

nn

i i ih h h
i i

nn

i i i
i i

h h h g g w

f f w

f f w

γγ γ γ

γγ γ γ

γ

ω γ

ω γ

ω γ

−
∈ ∈ ∈

= =

−
∈ ∈ ∈

= =

−

= =

    = −   
    

    = −   
    

  =   
  

∑ ∏

∑ ∏

∑ ∏

L

L

% % %L U

U

( )( )
1 1 2 2, , ,

1 2ATS-WHFWA , , ,

n n

c

h h h

c

nh h h

γ γ γ∈ ∈ ∈

 
     

=

L

% % %L

U

 

 
This completes the proof of Theorem 4.7. 
 

Theorem 4.8. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if % %
ih h=  for all i , then 

 

                                  ( )1 2ATS-WHFWA , , ,% % % %L nh h h h=  

 

Theorem 4.9. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if %h  is a WHFE, then 

 

               ( ) ( )1 2 1 2ATS-WHFWA , , , ATS-WHFWA , , ,% % % % % % % % % %L Ln nh h h h h h h h h h⊕ ⊕ ⊕ = ⊕  
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Theorem 4.10. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if 0r >  and %h  is a WHFE, then 

 

               ( ) ( )1 2 1 2ATS-WHFWA , , , ATS-WHFWA , , ,% % % % % % % % % %L Ln nrh h rh h rh h r h h h h⊕ ⊕ ⊕ = ⊕  

 

Theorem 4.11. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if % %
ih h=  for all i , then 

 

                                  ( )1 2ATS-WHFWG , , ,% % % %L nh h h h=  

 

Theorem 4.12. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if %h  is a WHFE, then 

 

               ( ) ( )1 2 1 2ATS-WHFWG , , , ATS-WHFWG , , ,% % % % % % % % % %L Ln nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗  

 

Theorem 4.13. Let ih%  ( 1,2, ,i n= L ) be a collection of WHFEs, ( )1 2, , ,
T

nω ω ω ω= L  be their 

weight vector with [ ]0,1iω ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

ω
=

=∑ , if 0r >  and %h  is a WHFE, then 

               ( ) ( )( )1 2 1 2ATS-WHFWA , , , ATS-WHFWA , , ,% % % % % % % % % %L L
r

r r r
n nh h h h h h h h h h⊗ ⊗ ⊗ = ⊗  

 
If the additive generator g  is assigned different forms, then some specific ATS-WHFWG 
operators can be obtained as follows: 
 

Case 1. If ( ) ( )logg t t= − , then the ATS-WHFWG operator reduces to the following form: 

 

            ( )
1 1 2 2

1 2 , , ,
1 1

WHFWG , , , ,i

in n

n n

n i ih h h
i i

h h h wω
γγ γ γ

γ
∈ ∈ ∈

= =

  =   
  
∏ ∏L

% % %L U                              (31) 

 
which is the weighted hesitant fuzzy weighted geometric (WHFWG) operator. Furthermore, if 

1
ii

i

w
hγ =

#
 for any 1,2, ,i n= L , where ih#  is the number of the elements in ih , then the Eq. 

(31) is transformed to 
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( )
1 1 2 2

1 2 , , ,
1

1

1
HFWG , , , ,i

n n

n

n i nh h h
i

i
i

h h h
h

ω
λ γ γ γ

γ
∈ ∈ ∈

=

=

  
    =  
  #    

∏
∏

L

% % %L U                       (32) 

 
which is the hesitant fuzzy weighted geometric (HFWG) operator proposed by Xia and Xu [15]. 
 

Case 2. If ( ) 2
log

t
g t

t

− =  
 

, then the ATS-WHFWG operator reduces to the following form: 

      ( )
( )1 1 2 2

1
1 2 , , ,

1

1 1

2
WHFEWG , , , ,

2

i

in n
i i

n

i n
i

n in nh h h
i

i i
i i

h h h w

ω

γγ γ γ ω ω

γ

γ γ

=
∈ ∈ ∈

=

= =

  
    =  
  − +    

∏
∏

∏ ∏
L

% % %L U      (33) 

 
which is the weighted hesitant fuzzy Einstein weighted geometric (WHFEWG) operator. 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (33) is transformed to 

( )
( )1 1 2 2

1
1 2 , , ,

1 1 1

2
1

HFEWG , , , ,
2

i

n n
i i

n

i
i

n n n nh h h

i i i
i i i

h h h
h

ω

λ γ γ γ ω ω

γ

γ γ

=
∈ ∈ ∈

= = =

  
    =  
  − + #    

∏

∏ ∏ ∏
L

% % %L U                    (34) 

 
which is the hesitant fuzzy Einstein weighted geometric (HFEWG) operator given by Wei and 
Zhao [24]. 

Case 3. If ( ) ( )1
log

t
g t

t

θ θ + − 
=  

 
, 0θ > , then the ATS-WHFWG operator reduces to the 

following form: 

  ( )
( ) ( )( ) ( )1 1 2 2

1
1 2 , , ,

1

1 1

WHFHWG , , , ,
1 1 1 1

L

% % %L U

i

in n
i i

n

i n
i

n in nh h h
i

i i
i i

h h h w

ω

γγ γ γ ω ω

θ γ

θ γ θ γ

=
∈ ∈ ∈

=

= =

  
    =  
  + − − + −    

∏
∏

∏ ∏
  (35) 

 
which is the weighted hesitant fuzzy Hammer weighted geometric (WHFHWG) operator. 
Especially, if 1θ = , then the WHFHWG operator reduces to the WHFWG operator; if 2θ = , 
then the WHFHWG operator reduces to the WHFEWG operator. 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (35) is transformed to 
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( )
( ) ( )( ) ( )

1 1 2 2

1
1 2 , , ,

1 1 1

1
HFHWG , , , ,

1 1 1 1
L

% % %L U

i

n n
i i

n

i
i

n n n nh h h

i i i
i i i

h h h
h

ω

γ γ γ ω ω

θ γ

θ γ θ γ

=
∈ ∈ ∈

= = =

  
  
  =  
  + − − + − #    

∏

∏ ∏ ∏
     (36) 

 
which is the hesitant fuzzy Hammer weighted geometric (HFHWG) operator. Especially, if 1θ = , 
then the HFHWG operator reduces to the HFWG operator; if 2θ = , then the HFHWG operator 
reduces to the HFEWG operator. 
 

Case 4. If ( ) 1
log

1t
g t

θ
θ

− =  − 
, 0θ > , then the ATS-WHFWG operator reduces to the following 

form: 
                    

( ) ( )
1 1 2 2

1 2 , , ,
1 1

WHFFWG , , , log 1 1 ,
i

i

in n

n n

n ih h h
i i

h h h w
ωγ

θ γγ γ γ
θ

∈ ∈ ∈
= =

    = + −   
    

∏ ∏L

% % %L U     (37) 

 
which is the weighted hesitant fuzzy Frank weighted geometric (WHFFWG) operator. 
 

Furthermore, if 
1

ii
i

w
hγ =

#
 for any 1,2, ,i n= L , then the Eq. (37) is transformed to 

     ( ) ( )
1 1 2 2

1 2 , , ,
1

1

1
HFFWG , , , log 1 1 ,

i
i

n n

n

n nh h h
i

i
i

h h h
h

ωγ
θγ γ γ

θ
∈ ∈ ∈

=

=

  
     = + −  
   #    

∏
∏

L

% % %L U           (38) 

 
which is the hesitant fuzzy Frank weighted geometric (HFFWG) operator. 
 
5  An Approach to Multi-Criteria Decision Making with Weighted 

Hesitant Fuzzy Information 
 
In this section, we shall utilize the proposed operators to develop an approach to multi-criteria 
decision making (MCDM) with weighted hesitant fuzzy information. For a MCDM problem, let 

{ }1 2, , , mY Y Y Y= L  be a set of m  alternatives, { }1 2, , , nG G G G= K  be a collection of n  

criteria, whose weight vector is  ( )1 2, , ,
T

nω ω ω ω= L , with [ ]0,1jω ∈ , 1,2, ,j n= L , and 

1

1
n

j
j

ω
=

=∑ , where jω  denotes the importance degree of the criterion jG . The decision makers 

provide all the possible values with their corresponding weights for the alternative iY  with respect 
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to the criterion jG  represented by a WHFE ( ){ },
ijij ij

ij ij ijr
r w γγ

γ
∈

=% U . All ijr%  ( 1,2, ,i m= L ; 

1,2, ,j n= L ) construct the weighted hesitant fuzzy decision matrix ( )ij m n
R r

×
= %  (see Table 1). 

 
Table 1. The weighted hesitant fuzzy decision matrix R  

 
 

1G  L  
jG  L  

nG  

1Y  
11r%  L  

1 jr%  L  
1nr%  

L  L  L  L  L  L  

iY  
1ir%  L  

ijr%  L  
inr%  

L  L  L  L  L  L  

mY  
1mr%  L  

mjr%  L  
mnr%  

 
In general, there are benefit attributes (i.e., the bigger the attribute values the better) and cost 
attributes (i.e., the smaller the attribute values the better) in a MCDM problem. In such cases, we 
need transform the attribute values of cost type into the attribute values of benefit type, i.e., 

transform the weighted hesitant fuzzy decision matrix ( )ij m n
R r

×
= %  into a normalized weighted 

hesitant fuzzy decision matrix ( )ij m n
A a

×
= %  by the method given by Xu and Hu [30], where 

 

, for benefit attribute

, for cost attribute

ij j

ij c
ij j

r G
a

r G

= 


%
%

%
,    1,2, ,i m= L , 1,2, ,j n= L ,            (39) 

 

where c
ijr%  is the complement of ijr%  such that ( ){ }1 ,

ijij ij

c
ij ij ijr
r w γγ

γ
∈

= −% U . 

Step 1. Transform the weighted hesitant fuzzy decision matrix ( )ij m n
R r

×
= %  into the normalized 

weighted hesitant fuzzy decision matrix ( )ij m n
A a

×
= %  based on Eq. (39). 

 
Step 2. Utilize the ATS-WHFWA operator (Eq. (14)) 
 

( ) ( )
1 1 2 2

1
1 2 , , ,

1 1

ATS-WHFWA , , , ,
iji i i i in in

nn

i i i in j ij ija a a
j j

a a a a f f wγγ γ γ
ω γ−

∈ ∈ ∈
= =

    = =     
    
∑ ∏L

% % % %L U   (40) 

 
or the ATS-WHFWG operator (Eq. (26)) 

( ) ( )
1 1 2 2

1
1 2 , , ,

1 1

ATS-WHFWG , , , ,
iji i i i in in

nn

i i i in j ij ija a a
j j

a a a a g g wγγ γ γ
ω γ−

∈ ∈ ∈
= =

    = =     
    
∑ ∏L

% % % %L U   (41) 

to aggregate all the performance values ija%  ( 1,2, ,j n= L ) in the ith line of A , and then derive 

the overall performance value ia%  ( 1,2, ,i m= L ) of the alternative iY  ( 1,2, ,i m= L ). 
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Step 3. According to Definition 3.2, calculate the scores ( )is a%  ( 1,2, ,i m= L ) of ia%  (

1,2, ,i m= L ) and rank all the alternatives iY  ( 1,2, ,i m= L ) according to ( )is a%  in descending 

order. 
 
Step 4. End. 
 
In the following, we use a numerical example adapted from [20,22] to illustrate our approach. 
 
Example 5.1 [20,22]. Suppose that a factory intends to select a new site for new buildings. 
Assume that there are three possible alternatives iY  ( 1,2,3i = ) and three criteria are considered 

to decide which site to choose: (1) 1G  (price); (2) 2G  (location); and (3) 3G  (environment). The 

weight vector of three criteria jG  ( )1,2,3j =  is ( )0.3,0.2,0.5
Tω = . Suppose that the 

characteristics of the alternatives iY  ( 1,2,3i = ) with respect to the criteria jG  ( 1,2,3j = ) are 

denoted by the WHFE ( ){ },
ijij ij

ij ij ijr
r w γγ

γ
∈

=% U , where ijγ  indicates the possible degree to which 

the alternative iY  satisfies the criterion jG  and 
ijijw γ  is the weight of ijγ . All ijr%  ( 1,2,3i = ; 

1,2,3j = ) are contained in the weighted hesitant fuzzy decision matrix ( )ij m n
R r

×
= %  (see Table 

2). 
 

Table 2. The weighted hesitant fuzzy decision matrix R  
 
 

1G  2G  3G  
1Y  

{(0.6, 0.3), (0.5, 0.3), (0.4, 
0.4)} 

{(0.6, 0.8), (0.4, 0.2)} {(0.5, 0.3), (0.3, 0.7)} 

2Y  
{(0.4, 0.6), (0.3, 0.4)} {(0.8, 1)} {(0.4, 0.2), (0.3, 0.3), (0.2, 

0.5)} 

3Y  
{(0.8, 1)} {(0.7, 0.1), (0.6, 0.3), (0.5, 

0.6)} 
{(0.2, 0.5), (0.1, 0.5)} 

 
Step 1. Because all of the criteria jG  ( 1,2,3j = ) are of the benefit type, the performance values 

of the alternatives iY  ( 1,2,3i = ) do not require normalization. 
 
Step 2. Utilize the WHFHWA operator (Eq. (21)) (suppose that 1θ = ) to aggregate all the 

preference values ijr%  ( 1,2,3j = ) in the ith line of R , and then derive the overall performance 

value ir%  ( 1,2,3i = ) of the alternative iY  ( 1,2,3i = ): 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

0.5528,0.0720 , 0.4708,0.1680 , 0.5150,0.0180 , 0.4262,0.0420 ,

0.5218,0.0720 , 0.4342,0.1680 , 0.4814,0.0180 , 0.3864,0.0420 ,

0.4949,0.0960 , 0.4024,0.2240 , 0.4523,0.0240 , 0.3519,0.0560

r

 
 

=  
 
 

%  
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( ) ( ) ( )
( ) ( ) ( )2

0.5184,0.1200 , 0.4798,0.1800 , 0.4438,0.3000 ,

0.4956,0.0800 , 0.4551,0.1200 , 0.4175,0.2000
r

  =  
  

%  

( ) ( ) ( )
( ) ( ) ( )3

0.5662,0.0500 , 0.5399,0.0500 , 0.5405,0.1500 ,

0.5126,0.1500 , 0.5196,0.3000 , 0.4904,0.3000
r

  =  
  

%  

 

Step 3. According to Definition 3.2, we calculate the score values ( )is r%  ( 1,2,3i = ) of ir%  (

1,2,3i = ) as: 
 

( )1 0.4497s r =% ,     ( )2 0.4595s r =% ,     ( )3 0.5163s r =% . 
 

Step 4. Since ( ) ( ) ( )3 2 1s r s r s r> >% % % , then we get the ranking of the alternatives iY  ( )1,2,3i =  as 

3 2 1Y Y Y> > . Thus, the best alternative is 3Y . 
 
In the following, we will analyze how different values of the parameter θ  change the aggregation 
results. As θ  is assigned different values between 0 and 30, the score functions of the alternatives 
obtained by the WHFHWA operator are shown in Fig. 1. 
 

 
Fig. 1. Score functions for alternatives obtained by the WHFHWA operator 

Fig. 1 demonstrates that all the score functions decrease as θ  increases from 0 to 30, from which we can 
find that 

(1) when ( ]0,1.5087θ ∈ , the ranking of the four alternatives is 3 2 1Y Y Y> >  and the best choice is 3Y . 

(2) when ( ]1.5087,6.2170θ ∈ , the ranking of the four alternatives is 3 1 2Y Y Y> >  and the best choice is 

3Y . 

(3) when ( ]6.2170,30θ ∈ , the ranking of the four alternatives is 1 3 2Y Y Y> >  and the best choice is 1Y . 
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In the above example, if we use the WHFHWG operator instead of the WHFHWA operator to 
aggregate the values of the alternatives, then the score functions of the alternatives are shown in 
Fig. 2. From Fig. 2, we can see that all the score functions obtained by the WHFHWG operator 
increase as the parameter θ  increases from 0 to 30 and the aggregation arguments are kept fixed. 
From Fig. 2, we can also see that as θ  increases from 0 to 30, the ranking of alternatives is 
always 1 2 3Y Y Y> >  and the best choice is always 1Y . 

 
 

Fig. 2. Score functions for alternatives obtained by the WHFHWG operator 
 

Fig. 3 illustrates the deviation values between the score functions obtained by the WHFHWA 
operator and the ones obtained by the WHFHWG operator, from which we can find that the values 
obtained by the WHFHWA operator are greater than the ones obtained by the WHFHWG operator 
for the same value of the parameter θ  and the same aggregation values, and the deviation values 
decrease as the value of the parameter θ  increases. 

 
 

Fig. 3. Deviation values for alternatives between the WHFHWA and WHFHWG operators 
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Fig. 3 indicates that the WHFHWA operator can obtain more favorable (or optimistic) 
expectations, and therefore can be considered as an optimistic operator, while the WHFHWG 
operator has more unfavorable (or pessimistic) expectations, and therefore can be considered as a 
pessimistic operator. The values of the parameter θ  can be considered as the optimistic or 
pessimistic levels. According to Figs. 1, 2, and 3, we can conclude that the decision makers who 
take a gloomy view of the prospects could use the WHFHWG operator and choose the smaller 
values of the parameter θ , while the decision makers who are optimistic could use the 
WHFHWA operator and choose the smaller values of the parameter θ . 

 
If we use the WHFFWA (or WHFFWG) operator instead of the WHFHWA (or WHFHWG) 
operator to aggregate the attribute values of alternatives, then the score functions of alternatives 
are given in Figs. 4 and 5, respectively. Fig. 4 shows that all the score functions obtained by the 
WHFFWA operator decrease as the parameter θ  increases from 0 to 30, from which we can get 
that 
 
(1) when ( ]0, 2.3659θ ∈ , the ranking of the four alternatives is 3 2 1Y Y Y> >  and the best choice is 

3Y . 

(2) when ( ]2.3659,30θ ∈ , the ranking of the four alternatives is 3 1 2Y Y Y> >  and the best choice 

is 3Y . 

 
 

Fig. 4. Score functions for alternatives obtained by the WHFFWA operator 
 

Fig. 5 illustrates that all the score functions obtained by the WHFFWG operator increase as the 
parameter θ  increases from 0 to 30, from which we can see that as θ  increases from 0 to 30, the 
ranking of alternatives is always 1 2 3Y Y Y> >  and the best choice is always 1Y . 
 
Fig. 6 illustrates the deviation values between the score functions obtained by the WHFFWA 
operator and the ones obtained by the WHFFWG operator, from which we can find that the values 
obtained by the WHFFWA operator are greater than the ones obtained by the WHFFWG operator 
for the same value of the parameter θ  and the same aggregation values, and the deviation values 
decrease as the value of the parameter θ  increases. 
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Fig. 5. Score functions for alternatives obtained by the WHFFWG operator 

 
Fig. 6. Deviation values for alternatives between the WHFFWA and WHFFWG operators 
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operator has more unfavorable (or pessimistic) expectations, and therefore can be considered as a 
pessimistic operator. The values of the parameter θ  can be considered as the optimistic or 
pessimistic levels. According to Figs. 4, 5, and 6, we can conclude that the decision makers who 
take a gloomy view of the prospects could use the WHFFWG operator and choose the smaller 
values of the parameter θ , while the decision makers who are optimistic could use the WHFFWA 
operator and choose the smaller values of the parameter θ . 
 
Based on the above analysis, we can see that the parameter θ  reflects the decision makers’ 
preferences and the decision makers can choose the proper values of θ  according to their 
preferences. By choosing different values of the parameter θ , we can derive different score 
functions, and then derive the different rankings of the alternatives and the different optimal 
alternatives. That is, the final optimal decisions based on different values of the parameter θ  
could be different. Therefore, the developed aggregation operators with the parameters can 
provide us with more choices and more flexibility than the existing ones due to the fact they allow 
us to choose different values of the parameter in the light of the different practical situations. 
 
Example 5.2 (Continued with Example 5.1). In Example 5.1, if we do not consider the 
importance of all of the possible values for an alternative under an attribute and only use the HFEs 
to represent the performance values of an alternative under an attribute, then the weighted hesitant 

fuzzy decision matrix R  reduces to the hesitant fuzzy decision matrix ( )
3 3

%ijR r
×

′ ′=  (see Table 3). 

 
Table 3. The hesitant fuzzy decision matrix R′  

 
 

1G  2G  3G  

1Y  {0.6, 0.5, 0.4} {0.6, 0.4} {0.5, 0.3} 

2Y  {0.4, 0.3} {0.8}  {0.4, 0.3, 0.2} 

3Y  {0.8} {0.7, 0.6, 0.5} {0.2, 0.1} 

 
We utilize the WHFHWA operator (Eq. (21)) (suppose that 1θ = ) to aggregate all the preference 

values %ijr ′  ( 1,2,3j = ) in the ith line of R′ and then derive the overall performance value  

%ir ′ ( 1,2,3i = ) of the alternative iY  ( 1,2,3i = ): 

 

1

0.5528,0.4708,0.5150,0.4262,0.5218,0.4342,

0.4814,0.3864,0.4949,0.4024,0.4523,0.3519
%r

 ′=  
 

 

{ }2 0.5184,0.4798,0.4438,0.4956,0.4551,0.4175%r ′ =  

{ }3 0.5662,0.5399,0.5405,0.5126,0.5196,0.4904%r ′ =  

 

According to Definition 3.2, we calculate the score values ( )%is r′  ( 1,2,3i = ) of %ir ′  ( 1,2,3i = ) as: 

 

( )1 0.5282%s r′ = ,     ( )2 0.4575%s r′ = ,     ( )3 0.4684%s r′ = . 
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Since ( ) ( ) ( )1 3 2% % %s r s r s r′ ′ ′> > , then we get the ranking of the alternatives iY  ( )1,2,3i =  as 

1 3 2Y Y Y> > . Thus, the best alternative is 1Y . 

 
From the results of calculations, one can find a difference in the ranking results derived in 
Examples 5.1 and 5.2. The reason is that Example 5.1 uses the WHFEs to represent the preference 
values, which consider the importance of all of the possible values for an alternative under an 
attribute; while, Example 5.2 uses the HFEs to represent the preference values, which do not 
consider the importance of all of the possible values for an alternative under an attribute. 
 
In fact, suppose that ten decision makers are required to anonymously provide their evaluations 
about the alternatives with regard to the attributes. For the evaluations about the alternative 1Y  

with regard to the attribute 1G , assume that three decision makers provide 0.6, three decision 
makers provide 0.5, the remaining four decision makers provide 0.4, and these ten decision 
makers cannot persuade each other to change their opinions. When we consider a MAGDM 
problem, if two or more decision makers who are familiar with this area give the same 
preferences, then their preferences will be close to group preference. In such cases, the value 
repeated many times may be more important than the one repeated only one time. Therefore, the 
most likely evaluation about the alternative 1Y  with regard to the attribute 1G  should be 0.4. For 

the evaluations about the alternative 1Y  with regard to the attribute 2G , assume that eight decision 

makers provide 0.6, the remaining two decision makers provide 0.4, and these ten decision makers 
cannot persuade each other to change their opinions. Then, the most likely evaluation about the 
alternative 1Y  with regard to the attribute 2G  should be 0.6. For the evaluations about the 

alternative 1Y  with regard to the attribute 3G , assume that three decision makers provide 0.5, the 
remaining seven decision makers provide 0.3, and these ten decision makers cannot persuade each 
other to change their opinions. Then, the most likely evaluation about the alternative 1Y  with 

regard to the attribute 3G  should be 0.3. If we use the WHFHWA operator (Eq. (21)) (suppose 

that 1θ = ) to aggregate 0.4, 0.6, and 0.3, then the most likely overall performance value of the 
alternative 1Y  should be 0.4024: 
 

We can easily see that the score value ( )1 0.4497s r =%  of the alternative 1Y  obtained in Example 

5.1 is much closer to the most likely overall performance value 0.4024 than the score value 

( )1 0.5282%s r′ =  of the alternative 1Y  obtained in Example 5.2. As a result, the WHFEs are more 

reasonable and reliable than the HFEs in some practical applications. 
 

6 Conclusions 
 
Considering that the classical hesitant fuzzy set does not consider the importance of several 
possible membership degrees of each element, in this paper, we have proposed a new 
generalization of the classical hesitant fuzzy set, which we call the WHFS. The WHFS adds a 
weight vector to several possible membership degrees of each element of the classical hesitant 
fuzzy set, which denotes the importance of several possible membership degrees. Then, based on 
Archimedean t-conorm and t-norm, we have defined some operational laws for WHFEs and 
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studied their properties, based on which, we have developed two weighted hesitant fuzzy 
aggregation operators, including the ATS-WHFWA and ATS-WHFWG operators, and 
investigated some desired properties of two new operators. Furthermore, when the additive 
generator g  is assigned different forms, some special cases of two new operators have been 
obtained, such as the WHFWA, WHFEWA, WHFHWA, WHFFWA, WHFWG, WHFEWG, 
WHFHWG, and WHFFWG operators. Finally, we have developed an approach based on the 
proposed operators for multi-criteria decision making with weighted hesitant fuzzy information, 
and the proposed operators and approach have been illustrated by a practical example involving a 
detailed analysis of the variation trend of the score functions and rankings of the alternatives with 
respect to the parameter θ . 
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