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Abstract

The behavior of CD4+ T cells infection is modeled by a differential equation system with no exact
analytical solution. This work proposes the application of Multistage Homotopy Perturbation Method
(MuHPM) to track the path of damped oscillations in the evolution of HIV infection in CD4+ T cells.
In addition, the paper presents the results which compare the following methods: MuHPM, Modied
Variational Iteration Method (MVIM) and HPM, and showing that MuHPM analytical-numerical
method is more precise than the other methods, reaching to an adequately plot 70 days of the
progress of infection instead of the 0.8 days and 2 days attained by HPM and MVIM methods
respectively.
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1 Introduction

The Human Immunodeficiency Virus (HIV) causes the gradual depletion of CD4+ T cells, which leads
patients to acquire AIDS (Acquired Immune Deficiency Syndrome). Since the cells that HIV invades
are essentially lymphocytes CD4+ T, which in human immunity systems are mainly dedicated to fight
against diseases, the count of CD4+ T cells is used as primary indicator to measure progression of
HIV infection [1]. The development of improved models to describe the HIV dynamics were recently
introduced including characteristics as: therapy and cure rate [2], delay differential equation with
therapy and cure rate [3]. Furthermore, in [4, 5] are reported some methods for optimal treatment
HIV infection model including a version for a model with delay. Besides, a series of models have
been developed to study HIV virus infection in CD4+ T cells [1, 6, 7, 8, 9, 10]. In [1, 6] a system
of nonlinear differential equations, which has no exact analytical solution, is presented. Nowadays,
several approximate methods, which allow solving such kind of equations in an exact or approximate
form, have been proposed. Among many others, the following can be mentioned: variational approxi-
mations method [11, 12], Tanh method [13], exponential function method [14], Adomian decomposition
method [15, 16], parametric expansion method [17], homotopy perturbation method (HPM) [18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46],
homotopy analysis method (HAM) [47, 48, 49, 50, 51, 52, 53, 54, 55], and Lie group method [56, 57].
From all the methods above mentioned, the HPM method is one of the most widely used because it is
a powerful and simple tool which is easier to implement than other used techniques. Firstly proposed
by Ji-Huan He [34, 35], homotopy perturbation method was introduced as a tool to approach several
kinds of nonlinear problems.

Despite some analytic approximate solutions for HIV differential equation model [1, 6] are reported
in [29, 58, 59, 60], these approximations have a limited reach because they do not allow us to
appreciate the damped oscillations in the variables of the model. For that reason, the fourth order
Runge- Kutta method (RK4) is frequently used for numerical tracking of damped oscillations in the
model of HIV infection in CD4+ T cells [1]. This work proposes the multi-stage homotopy perturbation
method (MuHPM) [61], as a numerical-analytical technique for the efficient path tracking of HIV
dynamics. In the same manner, the obtained results will be compared with the obtained by RK4, in
order to establish that the proposed method can generate a similar accuracy. Moreover, a comparison
among the results of applying MuHPM Modified Variational Iteration, (MVIM) [58], and HPM methods
[60] is presented, showing that the proposed method is more precise than other methods when a 70
days infection evolution tracking is required.

This paper is organized as follows. Section 2 describes a brief review the basic idea of the
Multistage HPM method, while Section 3 presents the model of HIV infection of CD4+ T cells and its
solution by the MuHPM method. In Section 4, obtained numerical simulations are shown and their
results are discussed. Finally, a brief conclusion is given in Section 5.

2 Introduction to Multistage HPM Method

The HPM method [26, 27, 28, 33, 44, 62, 63, 64] is a powerful tool which is used to solve, approximately
or exactly, nonlinear differential equations in a systematic and simple way. In this section, the basic
concepts for the HPM and the MuHPM procedure will be explored, in order to perform an efficient
path tracking of damped oscillations in a model of HIV infection of CD4+ T cells [1, 6].
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2.1 Basic idea of HPM method
The basic idea of the HPM method is to introduce an homotopy parameter p, which can take values
from 0 to 1. When parameter p = 0, the equation is usually reduced to a simple or trivial solution.
Then, when p is gradually increased to 1, generating a sequence of deformations where every solution
is close to the last one. When eventually p = 1, the system takes the original form of the equation,
and the final stage of deformation provides the desired solution. As shown, only a few iterations are
needed to achieve a good accuracy.

The HPM method considers that a nonlinear differential equation can be expressed as

A(u)− f(r) = 0, where r ∈ Ω, (2.1)

with the boundary condition

B

(
u,

∂u

∂η

)
= 0, where r ∈ Γ, (2.2)

where A is a general differential operator, f(r) is a known analytic function, B is a boundary operator,
and Γ is the boundary of the domain Ω. The A operator, can usually be divided into two operators, L
and N , where L is the linear operator and N is the nonlinear operator. Hence, (2.1) can be rewritten
as

L(u) +N(u)− f(r) = 0. (2.3)

Now, the homotopy function is

H(v, p) = (1− p)[L(v)− L(u0)] + p(L(v) +N(v)− f(r)) = 0 where p ∈ [0, 1] (2.4)

where u0 is the initial approximation of (2.3), which satisfies the boundary conditions, and p is known
as the perturbation homotopy parameter. Analysing (2.4), it can be concluded that

H(v, 0) = L(v)− L(u0) = 0, (2.5)

H(v, 1) = L(v) +N(v)− f(r) = 0. (2.6)

We assume that the solution of (2.4) can be written as a power series of p

v = p0v0 + p1v1 + p2v2 + · · · . (2.7)

Adjusting p = 1 results that the approximate solution for (2.1) is

u = lim
p→1

v = v0 + v1 + v2 + · · · . (2.8)

The series (2.8) is convergent on most cases [34, 65, 66].

2.2 Basic Procedure of Multistage HPM method
The basic MuHPM [61] algorithm consists in:

1. Setup. M = (tf − t0)/∆t. M is defined as the number of path tracking steps, t0 is considered
as the initial time, tf the ending time and ∆t is the time step size for path tracking.

2. Set k = 0.

3. t∗ = t0 + k∆t and initial condition y(t∗) = yk.

4. Apply HPM method to obtain an approximate solution y(t) to the nonlinear differential equation.
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5. A prediction is performed for tk+1 = t0 + (k + 1)∆t. That is, yk+1 = y(tk+1).

6. Update k = k + 1.

7. Repeat steps 3, 4, 5, and 6 until k > M .

3 Solution of Model of HIV infection of CD4+ T cells
In [1, 6] a mathematical model that describes the behavior of the number of infected CD4+ T cells is
presented. That model is given by the equations

T ′ = s− αT + rT

(
1− T + I

Tmax

)
− kV T,

I ′ = kV T − βI,

V ′ = NβI − γV,

(3.1)

where initial conditions, parameters and units are defined in Table 1. The parameter values are taken
from [58, 60], in order to perform a further numerical comparison with the results presented in this
work.

Sym. Definition for parameters and constants Value Units
s Rate of supply of CD4+ T cells from precursors 0.1 d−1mm−3

r Rate of growth of the CD4+ T cell population 3 d−1

Tmax Maximum CD4+ cell population level 1500 mm−3

α Death rate of uninfected CD4+ cells 0.02 d−1

β Death rate of infected CD4+ cell population 0.3 d−1

γ Death rate of free virus 2.4 d−1

k Rate constant for CD4+ cells becoming infected by free virus .0027 mm3d−1

N Number of free virus produced by lysing a CD4+ cell 10
r1 Initial condition T (0) 0.1 mm−3

r2 Initial condition I(0) 0 mm−3

r3 Initial condition V (0) 0.1 mm−3

Table 1: Model Parameters (3.1).

In model (3.1), T (t), I(t) and V (t) corresponds the concentration in the blood of susceptible and
infected CD4+ T cells, while V (t) denotes the free HIV virus particles. On the other hand, parameters
α, β, and γ are natural turnover rates of uninfected T cells, infected T cells, and virus particles,
respectively. The T-cell dynamic is determined by the interactions among susceptible CD4+ T cells,
infected CD4+ T cells, and free HIV virus particles. Therefore, the homotopy equation (HPM) can be
formulated as

(1− p)(v′1 − T ′
0) + p(v′1 − s+ αv1 − rv1

(
1− v1 + v2

Tmax

)
+ kv3v1) = 0,

(1− p)(v′2 − I ′0) + p(v′2 − kv3v1 + βv2) = 0,

(1− p)(v′3 − V ′
0 ) + p(v′3 −Nβv2 + γv3) = 0,

(3.2)
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where v1,0 = T0(t) = r1, v2,0 = I0(t) = r2 and v3,0 = V0(t) = r3 fulfil with initial conditions of (3.1).
According to HPM method and equation (2.8), each system variable can be approached as

v1 = v1,0 + pv1,1 + p2v1,2 + p3v3,0 + · · · ,
v2 = v2,0 + pv2,1 + p2v2,2 + p3v2,3 + · · · ,
v3 = v3,0 + pv3,1 + p2v3,2 + p3v3,3 + · · · .

Substituting (3.3) into (3.2) and rearranging the coefficients of ”p” powers, the following system,
which includes 15 equations with 15 variables, can be constructed as follows

v′1,1 − 1/10 + (1/500)r21 + (1/500)r1r2 − (149/50)r1
+(27/1E4)r1r3 = 0, v1,1(t

∗) = 0,
v′1,2 + (1/500)r1v2,1 + (27/1E4)v1,1r3 + (1/500)v1,1r2

−(149/50)v1,1 + (1/250)r1v1,1 + (27/1E4)r1v3,1 = 0, v1,2(t
∗) = 0,

v′1,3 + (1/500)v1,1v2,1 + (1/500)v21,1 + (27/1E4)v1,2r3 + (1/500)r1v2,2 + (27/1E4)v1,1v3,1
+(1/500)v1,2r2 + (27/1E4)r1v3,2 − (149/50)v1,2 + (1/250)r1v1,2 = 0, v1,3(t

∗) = 0,
v′1,4 + (1/500)r1v2,3 + (1/500)v1,1v2,2 + (27/1E4)v1,2v3,1 + (27/1E4)v1,3r3

+(1/250)r1v1,3 + (1/250)v1,1v1,2 − (149/50)v1,3 + (27/1E4)v1,1v3,2
+(1/500)v1,3r2 + (1/500)v1,2v2,1 + (27/1E4)r1v3,3 = 0, v1,4(t

∗) = 0,
v′1,5 + (1/500)v1,3v2,1 − (149/50)v1,4 + (1/500)v21,2 + (27/1E4)v1,2v3,2 + (1/500)v1,2v2,2
+(1/250)v1,1v1,3 + (1/500)v1,1v2,3 + (27/1E4)v1,3v3,1 + (1/250)r1v1,4 + (27/1E4)v1,4r3

+(27/1E4)v1,1v3,3 + (1/500)r1v2,4 + (27/1E4)r1v3,4 + (1/500)v1,4r2 = 0, v1,5(t
∗) = 0,

v′2,1 + (3/10)r2 − (27/1E4)r1r3 = 0, v2,1(t
∗) = 0,

v′2,2 − (27/1E4)r1v3,1 + (3/10)v2,1 − (27/1E4)v1,1r3 = 0, v2,2(t
∗) = 0,

v′2,3 − (27/1E4)v1,2r3 − (27/1E4)v1,1v3,1 + (3/10)v2,2 − (27/1E4)r1v3,2 = 0, v2,3(t
∗) = 0,

v′2,4 + (3/10)v2,3 − (27/1E4)v1,1v3,2 − (27/1E4)v1,3r3
−(27/1E4)r1v3,3 − (27/1E4)v1,2v3,1 = 0, v2,4(t

∗) = 0,
v′2,5 − (27/1E4)v1,3v3,1 + (3/10)v2,4 − (27/1E4)v1,2v3,2 − (27/1E4)v1,4r3

−(27/1E4)v1,1v3,3 − (27/1E4)r1v3,4 = 0, v2,5(t
∗) = 0,

v′3,1 + (12/5)r3 − 3r2 = 0, v3,1(t
∗) = 0, v′3,2 − 3v2,1 + (12/5)v3,1 = 0, v3,2(t

∗) = 0,
v′3,3 + (12/5)v3,2 − 3v2,2 = 0, v3,3(t

∗) = 0, v′3,4 − 3v2,3 + (12/5)v3,3 = 0, v3,4(t
∗) = 0,

v′3,5 + (12/5)v3,4 − 3v2,4 = 0, v3,5(t
∗) = 0.

(3.3)
Following the MuHPM method, the step size is assigned to be ∆t = 0.1, initial point ti = 0,

ending path tracking point tf = 70 and M = 700. After the first three iterations of MuHPM method,
next results are obtained:

1. For k = 0. We set t∗ = 0, r1 = 0.1, r2 = 0 and r3 = 0.1. Solving (3.3) and using (3.3) to obtain
segment 0

Ts0(t) = 0.1 + 0.397953t+ 0.592849053045t2 + 0.588718771231t3

+0.438295158719t4 + 0.260863294726t5,

Is0(t) = 0.000027t+ 0.000017273655t2 − 0.00000840515372595t3

+0.00000614727820610t4 − 0.00000283586186805t5,

Vs0(t) = 0.1− 0.24t+ 0.2880405t2 − 0.230415126345t3

+0.138242771942t4 − 0.0663528421651t5.

(3.4)

Evaluating (3.4) at t = 0.1, it results in the following prediction: Ts0(0.1) = 0.146358947450,
Is0(0.1) = 0.00000286491776547 and Vs0(0.1) = 0.0786631506225. Besides, (3.4) would be
the result of applying the standard HPM method [62] to solve (3.1).
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(a) (b)

(c)

Figure 1: Damped oscillations of a) T (t), b) I(t), and c) V (t). Units: Time is in days
and T, I and V are in mm−3.

2. For k = 1. We set t∗ = 0.1, r1 = Ts0(0.1), r2 = Is0(0.1) and r3 = Vs0(0.1). Solving (3.3) and
using (3.3) to obtain segment 1

Ts1(t) = 0.0999997332523 + .397962630898t+ .592602743066t2

+.591949901749t3 + .414629905334t4 + .351078486008t5,

Is1(t) = 1.6968E-12 + 0.270000202E-4t+ 0.172722125E-4t2

−0.83858110E-5t3 + 0.5999265125E-5t4 − 0.2219598720E-5t5,

Vs1(t) = 0.0999999457692− .239998617212t+ .288007524964t2

−.229971204794t3 + .134844861291t4 − 0.0521956449518t5.

(3.5)

Evaluating (3.5) at t = 0.2, the following prediction is found: Ts1(0.2) = 0.208807721334,
Is1(0.2) = 0.00000603269631052 and Vs1(0.2) = 0.0618798028587.

3. For k = 2. We set t∗ = 0.2, r1 = Ts1(0.2), r2 = Is1(0.2) and r3 = Vs1(0.2). Then, equation
(3.3) is solved, and (3.3) is used to obtain an approximate solution for segment 2. In addition,
a further prediction is performed, and parameter k is incremented. This process is repeated
until obtain t∗ > tf or k > M .

Both, initial condition and predictions of MuHPM process, describe the differential equation
trajectory.
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(a) (b)

Figure 2: Graphics of concentrations a) T (t)-I(t) and b) T (t)-V (t) for 70 days.
Units: T, I and V are in mm−3.

4 Numerical Simulation and Discussion

Figure 1 shows the result of path tracking the iterative process described in the previous section.
A high accuracy in the range of 0 to 70 days can be noticed when is compared with the results
obtained by employing the fourth order Runge Kutta method (RK4). As expected, the concentration
of susceptible CD4+ T cells T (t), infected CD4+ T cells I(t), and free HIV virus particles in the blood
V (t) behaves as a damped oscillating manner. Similarly, Figures 2(a) and 2(b) show, respectively,
the path of T (t)-I(t) and T (t)-V (t) variables, where the damped oscillating behaviour can be also
appreciated.

On the other hand, Tables 2, 3, and 4 present a quantitative comparison among the results of
MuHPM, MVIM [58], HPM [60] methods and fourth order Runge-Kutta (RK4) for variables T (t), I(t)
and V (t), respectively, and compared with the numerical curve generated by RK4. We can notice
that all three methods have similar accuracy until t = 0.8. However, HPM and MVIM degrade their
accuracy at t = 0.8 and t = 2.0 respectively. In contrast, MuHPM follows RK4 behaviour until t = 70,
making its results useful for path tracking the damped oscillating behaviour of the variables in the HIV
model (3.1).

Since MuHPM is a numerical-analytical method that splits the region to be plotted into a series of
segments, which are used to obtain a series of analytical approximations (one by each segment), that
combination are useful for path following of the nonlinear differential equation trajectories. In addition,
MuHPM provides the possibility of knowing valid instant analytical solutions in the vicinity of some
given times, which can lead to a better understanding the effects of the model parameter over its
dynamic behaviour. As future work, the improvement for the obtained segment approximation will be
focused, in order to reduce the number of necessary segments to trace the trajectory , which allows
increasing the quantitative analysis of the parameter effects over the trajectory in longer periods of
time.

5 Conclusions

In this work, an application of MuHPM for path tracking of damped oscillation of HIV infection of
CD4+ T cells was presented. By presented results, It can be established that MuHPM has a good
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t MuHPM MVIM [58] HPM [60] RK4
0.00 0.10000000 0.10000000 0.10000000 0.10000000
0.10 0.14635895 0.1463591 0.1463589 0.14635908
0.20 0.20880772 0.2088081 0.2087991 0.20880807
0.40 0.40623923 0.4062408 0.4056066 0.40624044
0.60 0.76442034 0.7644287 0.7564485 0.76442360
0.80 1.41403830 1.414094 1.364215 1.41404612
1.00 2.59157570 2.591921 2.378679 2.59159323
1.20 4.72392418 4.725783 4.006512 4.72396174
1.40 8.57832730 8.587223 6.521303 8.57840433
1.60 15.52279258 15.56167 10.27357 15.52294312
1.80 27.96135433 28.11961 15.70079 27.96163187
2.00 50.00807072 50.61477 23.3374 50.00854230
3.00 605.32840070 758.3041 121.4166 605.33163787
4.00 1387.07811500 -38782.63 428.183 1387.07909636
5.00 1484.41661850 -1.282298e+07 1179.633 1484.41686125
10.00 578.76850000 -7.535057e+18 31121.36 578.75823022
30.00 42.96200000 -7.954982e+65 6710438 42.97734634
70.00 51.12600000 -8.866339e+159 4.491613e+08 50.72845936

Table 2: Numerical comparison for T(t) obtained by: MuHPM, MVIM [58], HPM [60]
and RK4. Time is in days.

t MuHPM MVIM [58] HPM [60] RK4
0.00 0.00000000 0.00000000 0.00000000 0.00000000
0.10 0.00000286 0.00000286 0.00000286 0.00000286
0.20 0.00000603 0.00000603 0.00000603 0.00000603
0.40 0.00001316 0.00001315 0.00001315 0.00001316
0.60 0.00002122 0.00002122 0.00002122 0.00002122
0.80 0.00003018 0.00003017 0.00002994 0.00003018
1.00 0.00004004 0.00004002 0.00003918 0.00004004
1.20 0.00005088 0.00005084 0.00004844 0.00005088
1.40 0.00006283 0.00006270 0.00005697 0.00006283
1.60 0.00007608 0.00007574 0.00006354 0.00007608
1.80 0.00009096 0.00009011 0.00006649 0.00009096
2.00 0.00010799 0.00010597 0.00006346 0.00010799
3.00 0.00030568 0.00021559 -0.00018166 0.00030568
4.00 0.00210920 0.00040533 -0.001483771 0.00210924
5.00 0.02011931 0.00074045 -0.005503822 0.02011964
10.00 828.59480000 0.01387534 -0.2285212 828.60463679
30.00 775.29370000 1625.2828 -64.14273 775.28159497
70.00 594.70400000 2.2292957e+13 -4621.433 593.99643299

Table 3: Numerical comparison for I(t) obtained by: MuHPM, MVIM [58], HPM [60]
and RK4. Time is in days.
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t MuHPM MVIM [58] HPM [60] RK4
0.00 0.10000000 0.10000000 0.10000000 0.10000000
0.10 0.07866315 0.07866318 0.07866315 0.07866317
0.20 0.06187980 0.06187991 0.06187825 0.06187984
0.40 0.03829484 0.03829596 0.03819947 0.03829488
0.60 0.02370450 0.02371029 0.02268158 0.02370455
0.80 0.01468033 0.01470042 0.009255115 0.01468036
1.00 0.00910082 0.009157239 -0.0104847 0.00910084
1.20 0.00565326 0.005793751 -0.04982591 0.00565328
1.40 0.00352541 0.003851242 -0.1294878 0.00352542
1.60 0.00221475 0.002938821 -0.2801688 0.00221477
1.80 0.00141046 0.002978637 -0.5450945 0.00141047
2.00 0.00092039 0.0042649 -0.9825656 0.00092040
3.00 0.00032941 0.1364981 -9.17492 0.00032941
4.00 0.00141090 5.40689 -43.55308 0.00141093
5.00 0.01292825 214.2914 -143.6518 0.01292847
10.00 668.78959000 2.095530e+10 -5456.768 668.80004502
30.00 983.98200000 1.916241e+42 -1506366 983.92316539
70.00 769.49000000 1.602369e+106 -1.082777e+08 768.95465807

Table 4: Numerical comparison for V(t) obtained by: MuHPM, MVIM [58] , HPM
[60] and RK4. Time is in days.

accuracy for significantly longer periods of time, compared to what is obtained by MVIM and basic
HPM methods.
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