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Abstract

In this paper, we use a method in order to find exact explicit traveling solutions in the subspace
of the phase space for coupled KdV equations. The key idea is removing a coupled relation for
the given system so that the new systems can be solved. The existence of solitary wave solutions
is obtained. It is shown that bifurcation theory of dynamical systems provides a powerful
mathematical tool for solving a great many nonlinear partial differential equations in
mathematical physics.

Keywords: Solitary wave solution, bifurcation theory, dynamical systems, coupled KdV
equations.

1 Introduction

The study on the various physical structures of nonlinear dispersive equations has attracted much
attention in connection with the important problems that arise in scientific applications.
Mathematically, these physical structures have been studied by using various analytical methods,
such as inverse scattering method [1], Darboux transformation method [2,3], Hirota bilinear
method [4], Lie group method [5,6], sine-cosine method [7,8], tanh function method [9,10], Fan-
expansion method [11,12] and so on. Practically, there is no unified technique that can be
employed to handle all types of nonlinear differential equations.

In 1981, Hirota [4] presented the following coupled KdV equations,
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which were derived to model the interaction of water waves. Here b,, are constants. Liu et al.
in [13] based on a subtle balance method, a given function expansion which was applied to Eq.
(1.1), a series of periodic solutions, solitary wave solutions and singular solutions are obtained by
aid of symbolic computation.

For   ,3b , Eq. (1.1) becomes to
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    (1.2)

Recently, Wang et al. [14] considered the solitary wave solutions of Eq. (1.2), by using a
homogeneous balance method.

In this paper, we consider the dynamical bifurcation behavior for the traveling wave solutions of
Eq. (1.2). Let ctxvtxvutxu   ),(),(),(),( , where c is the wave speed. Then Eq.
(1.2) become to
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(1.3)

where " ′ " is the derivative with respect to .To remove the coupled relationship of Eq. (1.3), let
2u a bv  , then  substitute it into Eq. (1.3) and integrate once, we obtain
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(1.4)

where 1g and 2g are integral constants.

Thus, we have two Hamiltonian systems

 2 2 2 4 2
1 3 6 3 3 2

, ,
2
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with the first integral
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and
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For
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system (1.5) and system (1.6) are equivalent to each other. In this paper, we always assume that
Eq. (1.2) satisfy (1.11). Therefore, under condition (1.11), we only consider the system (1.6) and
then we have two Hamiltonian systems
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with the first integral
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and

     
4

2 2 2
21 1 2

1

1 3, 12 0.
2 4 2 12

vH v y y c c g v
c c g


 

     
 

(1.16)

     
4

2 2 2
22 1 2

1

1 3, 12 0.
2 4 2 12

vH v y y c c g v
c c g


 

     
 

(1.17)

2 Exact Explicit Traveling Solutions of System (1.2)
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2

112
6

c c g
a




 


Suppose that 1 10, 0, 2 3g c g     or 1 10, 0, 2g c g    .Then, the origin of

system (1.12) is a saddle point. Corresponding to the level curves defined by  21 , 0H v y  ; two
homoclinic orbits of Eq. (1.12) have the following parametric representation (Fig. 1)
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Thus, we obtain the parametric representation of Eq. (1.2) a smooth solitary wave solution as
follows:
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1 10, 0, 2 3g c g     or 1 10, 0, 2g c g    .

Fig. 1. The phase portraits of (2.12) for  21 , 0.H v y 

2.2
2

112
6

c c g
a




 


Suppose that 1 10, 0, 2 3g c g     or 1 0, 0, 0g c   .Then, the origin of system

(1.13) is a saddle point. Corresponding to the level curves defined by  22 , 0H v y  ; two
homoclinic orbits of Eq. (1.13) have the following parametric representation (Fig. 2)
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Thus, we obtain the parametric representation of Eq. (1.2) a smooth solitary wave solution as
follows:
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1 10, 0, 2 3g c g     or 1 0, 0, 0g c   .

Fig. 2. The phase portraits of (2.13) for  22 , 0.H v y 

Remark. Obviously, solutions (2.2) and (2.4) are different from solutions (3.22) and (3.23) of
[13], respectively.

3 Conclusion

In this paper, we have considered traveling wave solutions for the coupled KdV equations of Eq.
(1.2) in its subspace of parameter space by using the method of dynamical systems. We obtain
parametric representations for the solitary wave solutions of Eq. (1.1) in different parameter
regions of the parameter space.
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