
____________________________________________________________________________________________

*Corresponding author: E-mail: ppalazzo@technip.com;

British Journal of Applied Science & Technology
4(2): 261-278, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Performance Optimization of the Carnot and
Joule Cycles and Relationship with the

Formulation of Physical Exergy Property

Pierfrancesco Palazzo1*

1Technip, Viale Castello della Magliana 68, 00148 Rome, Italy.

Author’s contribution

Author PP designed the study and wrote all revisions of the manuscript. Assumptions,
method, proofs and conclusions were elaborated by author PP solely. Author read and

approved the final version.

Received 13th August 2013
Accepted 28th September 2013

Published 19th October 2013

ABSTRACT

The present theoretical study proposes an analysis, underpinned by the basic
foundations reported in the literature, aimed at establishing a generalization of the
relationship between cyclic thermo-mechanical conversion processes and the physical
exergy property defined for a system interacting with two different and independent
reservoirs. The outcome of the study is the demonstration that physical exergy expresses
both useful work or useful heat, if these interactions undergo conversion when withdrawn
from a system. The approach to conversion consists in comparing the efficiency of (ideal)
Carnot and Joule cycles leading to the argument that the Joule cycle is the one
performing at maximum efficiency between two constant pressures, similarly to the
Carnot cycle performing at maximum efficiency between two constant temperatures. In
terms of specific (per cycle) work or heat of Carnot and Joule cycles, the study proves
that the roles of temperature and pressure are opposed as evidenced by a performance
optimization analysis for the two cycles. Interactions between a system and two
independent reservoirs undergoing isothermal and isobaric processes respectively are
examined in relation to useful work and useful heat. The aim and the novelty of this
analysis is to explore the role of the Joule cycle and the pressure of system and isobaric
reservoir, which are similar to the role of the Carnot cycle and the temperature of system
and isothermal reservoir. This implies a generalized formulation of physical exergy which,
for this reason, may be regarded as a temperature-and-pressure-dependent property in
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the general case of a system interacting with two reservoirs. Finally, the expression of the
thermal and mechanical components of physical exergy, depending on temperature and
pressure, and their relationship with the Carnot and Joule cycles, are envisaged as
possible consequences of this analysis representing the basis for future research.

Keywords: Thermo-mechanical conversion; Carnot cycle; Joule cycle; useful work; useful
heat; thermal exergy; mechanical exergy; physical exergy; isothermal reservoir;
isobaric reservoir.

DEFINITIONS, ACRONYMS, ABBREVIATIONS

PC Specific heat at constant pressure )( 11   KkgJ

VC Specific heat at constant volume )( 11   KkgJ
K Ratio of pC over vC
P Pressure )(Pa
Q Heat )(J
R Universal gas constant )( 11   KkgJ
T Absolute temperature )(K
U Internal energy )(J
V Volume )( 13  kgm
W Work )(J
Greek symbols
 Cycle efficiency


K
K 1

Superscripts and Subscripts
DIR Direct cycle
id Ideal
INV Inverse cycle
Irr Irreversible
HP High pressure
HT High temperature
LP Low pressure
LT Low temperature
M mechanical
T Thermal
vRe Reversible

R Reservoir
Input into system
Output from system
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1. INTRODUCTION

The efficiency determining the specific (per cycle) work of the Carnot ideal cycle
characterizes one of the procedures leading to the definition of the physical exergy property
[1,2]. Exergy is the “quality” of energy. In more rigorous terms, exergy expresses the
maximum net useful work withdrawn, from the available energy, through the interaction of
the system with a thermal reservoir at constant temperature [3,4,5,6]. This study attempts to
explore, from a wider standpoint, the thermal exergy and mechanical exergy components
that constitute the contributions to physical exergy due to: (i) thermal exergy losses
determined by reversible heat interactions and irreversible thermal exergy destruction
determined by thermal dissipation driven by temperature differences; (ii) mechanical exergy
losses associated with reversible work interactions and mechanical exergy destruction
determined by irreversible mechanical dissipation due to transport phenomena driven by
pressure differences. The aim and novel approach of this analysis lies in exploring the role of
the Joule cycle and pressure, similar to the role of the Carnot cycle and temperature, in
defining the physical exergy property.

2. ASSUMPTIONS AND METHOD

The following assumptions are posited: (i) the system is closed (non-flow) and consists of an
ideal and single-phase homogeneous gas considered as a simple system [7]; (ii) the state

equation for ideal gas TRnPV  [7] is applicable; (iii) there are no phase changes,
chemical or nuclear reactions inside the system; (iv) the kinetic and potential energy
associated with the overall mass are not considered.

With regard to method, a dual perspective, induced by the thermal and mechanical aspects
and by the correlations existing between them, is adopted in order to discuss the
performances of the Carnot and Joule cycles directly correlated to absolute temperature and
pressure, as well as to heat and work interactions between the system and reservoir.

The principle of symmetry, formulated in geometry to govern the correspondence of two or
more elements and a reference entity, is adopted to analyse the properties of
thermodynamic cycles with respect to temperature and pressure, here considered as
“reference entities for symmetry”.

3. USEFUL WORK AND USEFUL HEAT

The expression of useful work, constituting the outcome of the available energy of a generic
system with respect to a reservoir R at constant temperature [1,2], is based on the
temperature level determining the thermal exergy quantity associated with the heat and
temperature according to the following canonical formula [6,7]:

USEFUL WORK = HT
HT

LT
HTRDIRT Q

Q
Q

Q
T
TWEX 





















 11

LPHPLTHT WWQQ  (1a)
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where the product of the efficiency of the Carnot direct ideal cycle times the high
temperature heat value HTQ , expresses the specific work of the cyclic direct conversion
process representing maximum net useful work in which the maximum value is obtained, if
and only if, all interactions and processes are reversible. In general, and also considering
non-cyclic processes, useful work can be withdrawn directly in the form of work interaction
and or as the result of “inter-conversion” through a direct cycle from useful heat to useful
work, no matter what the process, from the initial to the final state, exergy being a state
property.

On the basis of the concepts of equivalence and inter-convertibility of useful work and useful
heat withdrawn from available energy [5,6], the amount of useful heat is identical to the
amount of useful work, so that both constitute the outcome of the (thermal and mechanical)
exergy of the system with respect to the (thermo-mechanical) reservoir, characterized by the
state of least energy. Thus, useful heat can be withdrawn directly in the form of heat
interaction and or as the result of “inter-conversion” through an inverse cycle, of work
interaction (useful work) into useful heat, again no matter what the process from the initial to
final state exergy being a state property. The concepts of equivalence and inter-convertibility
imply an equal amount of useful heat Q or useful work W , and consequently both useful
work and useful heat, withdrawn individually or combined together to realize whatever
process connecting two states, must undergo a heat-to-work or work-to-heat conversion
process to ensure the same amount of Q and W between the two states so that
physical exergy behaves as a state property. The proof here proposed concerns the
reversible adiabatic and reversible isovolumic processes of an ideal system. The symbology
adopted is defined by Gyftopoulos and Beretta [7].

(i) Adiabatic reversible process, from state 1 to state 0 of Fig. 1A, may be accomplished by a
sequence of isovolumic-isothermal reversible processes (1X-X0): equivalence requires that

  QW where  01 UUW  from state 1 to state 0 of adiabatic process 10 while
Q may be calculated by the contributions along the isovolumic-isothermal process (1X-

X0) between the same states 1 and 0.

As regard the isovolumic process 1X from state 1 to state X,  XX UUQ 
11 which is

equal to  01 UU  since XU and 0U lie on the same isothermal curve and internal energy

U depends on temperature only for ideal systems here assumed. Therefore

    XQWUU 101 .

As regard the isothermal process,   00 XX WQ from state X to state 0 along the isothermal
process X0.

The comparison between useful heat and useful work contributions calculated throughout

the two different processes connecting the same initial 1 and final 0 states is:  01 UU 
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   01 UUUU XX  which is   WQWQQW XXX 001 and does not

comply with the equality   QW constituting the initial assumption.

(ii) Isovolumic reversible process, from state 1 to state 0 of Fig. 1A, which may be
accomplished by a sequence of adiabatic-isobaric reversible processes (1X-X0):

equivalence requires that  WQ where  01 UUQ  from state 1 to state 0 along

the isovolumic process 10, while W may be calculated by the contributions along the
adiabatic-isobaric process (1X-X0) between the same states 1 and 0.

As regard the adiabatic process 1X from state 1 to state X,  XX UUW  11 .

As regard the isobaric process X0 from state X to state 0     000 XXX QWUU .

The comparison between useful work and useful heat contributions leads to:  01 UU 

   01 UUUU XX  ; substituting the differences of internal energy with interactions

quantities it is obtained that:   001 XXX QWWQ and considering that

    WQUU 01 it follows that   QQWQ X 0 that again does not comply

with the  WQ equality constituting the initial assumption.

Fig. 1A. Reversible adiabatic and isovolumic processes

In order to resolve the non-compliance demonstrated above, it may be posited that both
useful work and useful heat undergo conversion into the other form of assumed equivalent
interactions; hence, if a generic process is accomplished by means of a sequence of useful
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work and useful heat, a linear combination of thermal exergy and mechanical exergy is
suitable to expresses the equivalence of heat and work interactions by means of the
combination of heat-to-work and work-to-heat conversions throughout the whole process
from initial to final states. The definition of physical exergy is thusbased on the combination
of useful work and useful heat as equivalent and inter-convertible forms of interaction
between the system and a thermo-mechanical reservoir [6]. This definition can consist of the
sum of thermal exergy, as per Equation (1a), and the mechanical exergy by the following
Equation (1b), relating to (inverse) cyclic work-to-heat conversion; this Equation (1b) is
derived from the Carnot inverse cycle efficiency [8]:

USEFUL HEAT = HP
HT

LT
HPRINVM W

Q
Q

W
T
TQEX 





















 11

LTHTLPHP QQWW  (1b)

It is should be noted that the canonical expression of physical exergy based on Carnot ideal
cycle efficiency in Equation (1a) reported in the literature, requires the processes to be

reversible and the state equation for ideal systems here adopted TRnPV  to be valid.
Therefore this state equation will be considered to argue that the performance of both the
Carnot and Joule cycles is correlated to the formulation of the physical exergy property as
illustrated in the following sections.

4. EFFICIENCY OF THE CARNOT AND JOULE CYCLES

The efficiency of the Carnot cycle is expressed by means of the extreme temperature ratio
just as the efficiency of the Joule cycle depends on the extreme pressure ratio.The role of
temperature and pressure can be inverted by expressing the efficiency of the Carnot cycle
as a function of pressure instead of temperature, and the efficiency of the Joule cycle as a
function of temperature instead of pressure. With reference to Fig. 1B, the point X is
correlated to ADIABATICISOVOLUMIC TT  equality which determines the thermodynamic
equivalence of the Carnot and Joule cycles. Indeed, using the temperature and pressure
ratios in an adiabatic reversible process [9,10]:

DIRCARNOT
id

X

R
K
K

RDIRJOULE
id T

T
P
P 



 









  11

1

(2)

This result may also be obtained starting from the expression of the Carnot ideal cycle.
Indeed, using the pressure and temperature ratios in an isovolumic reversible process, the
following is obtained:

DIRJOULE
id

K
K

RYDIRCARNOT
id P

P
T
T 



 









 

1

11 (3)

which is identical to Equation (2). Both Equation (2) and Equation (3) express the equality of
the efficiency of the two cycles under specific temperature conditions. In fact, with reference
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to Joule cycle 1J-2J-3J-4J, Equation (2) is valid if the Carnot cycle operates between XT
and RT while Equation (3) is valid if the Carnot cycle operates between T and YT .

Nowhere is made reference to the efficiency of the Carnot cycle operating between XT and

YT since, in such a case, its efficiency would never be equal to the efficiency of the 1J-2J-
3J-4J Joule cycle. The proof of this equivalence between Equation (2) and Equation (3) of
the two Carnot cycles is that the isovolumic processes 1C-X and Y-3C operate between
temperatures with the same ratio since the respective extreme isothermal processes (1C-2J
and 4J-3C) are connected by the adiabatic reversible processes operating between the
same pressures P and RP : therefore, XR TT equals TTY deriving from the ratio RPP
which is constant. The equality between the two thermodynamic efficiencies expresses the
bi-univocalrelationship between the extreme temperature ratio of the Carnot cycle and the
extreme pressure ratio of the Joule cycle. This relationship also establishes the equivalence
of the heat-to-work conversion process at constant temperature (and variable pressure),
along the isothermal curves, at higher and lower temperature, of the Carnot cycle and to its
“dual” process at constant pressure (and variable temperature), along the isobaric curves, at
higher and lower pressure, of the Joule cycle. In other words, the process of direct
conversion into work, when heat is transmitted at constant temperature and variable
pressure (decreasing) or at constant pressure and variable temperature (increasing), is
equivalent under the above condition corresponding to the point X in Fig. 1B.

Fig. 1B. Carnot and Joule cycle relationship

The comparison of the two cycles confirms that the ideal Carnot cycle performs the
maximum efficiency between two (thermal) reservoirs at constant temperature considering
the ideal Joule cycle inscribed inside the Carnot cycle as depicted in Fig. 1B.

The proof of this property is based on the fact that the isothermal process between the
states 2C and 3C of the Carnot cycle (considering that JC PP 33  ) requires the following

condition by virtue of the state equation TRnPV  :

C

CC
JCCCC V

VPPVPVP
3

22
32233  (4)
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and a reversible adiabatic process between states 3J and 4J of the Joule cycle:

1

4

3
34

1

4

3

4

3

























K
K

J

J
JJ

K
K

J

J

J

J

T
TPP

T
T

P
P

(5)

substituting the former in the last equation:

1

4

3

3

2
24














K
K

J

J

C

C
CJ T

T
V
VPP (6)

Assuming JT3 and CV2 as constant, the Joule cycle can then reach the maximum efficiency
in the particular case where it degenerates in the 1C-2C portion of the reversible adiabatic
process limited by the higher and lower temperatures that define (maximum) Carnot
efficiency; furthermore, the higher the volume, the lower the pressure ratio and hence Joule
cycle efficiency.

On the other side, if the Carnot cycle is inscribed inside the Joule cycle, it can be proved that
the Joule cycle reaches the maximum efficiency between two (mechanical) reservoirs at
constant pressure. In fact, considering the reversible adiabatic process between states 1J
and 2J of the Joule cycle:

K
K

J

J

J

J

P
P

T
T

1

1

2

1

2











 = constant by assumption (7)

K
K

J

J
JJ P
PTT













1

1

2
21 (8)

Isobaric process of the Joule cycle between points 1J and 4J:

J

J
JJ

J

J

J

J

V
VTT

V
V

T
T

1

4
14

1

4

1

4  (9)

Upon combining the two above Equations (8) and (9):





















J

J
K
K

J

J
JJ V

V
P
PTT

1

4

1

1

2
24 (10)
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the condition JJ VV 14  represents the special case where the Carnot cycle degenerates

into the 1J-2J reversible adiabatic process and efficiency is at a maximum since
J

J

T
T
2

1 is the

minimum value. For all other values of JJ VV 14  , the efficiency of the Carnot cycle is lower
than the efficiency of Joule cycle.

To conclude, the above highlights the fact that the ideal Joule cycle constitutes the cyclic
process performing at maximum efficiency in converting heat to work at constant pressure.
This result corresponds to the similar fundamental theorem relating to the ideal Carnot cycle
performing at maximum efficiency in converting heat to work at constant temperature. These
properties suggest a classification of the energy conversion process assuming that the
Carnot and Joule cycles are symmetric being constituted by two pair of same polytropic
processes. The two cycles represent two different classes of conversion cycle which may be
defined as “isothermal conversion” and “isobaric conversion” respectively, no matter the
polytropic processes connecting the two isothermal or isobaric processes, and thus may
identify “classes of thermodynamically equivalent cycles”.

5. SPECIFIC WORK OF THE JOULE AND CARNOT CYCLES

Specific work is the result of heat and work contributions determined by the interactions
between the system and the reservoir throughout whatever cyclic process and constitutes
net useful work in the sense of the definition of the exergy property as per Equations.(1a)
and (1b). The procedure leading to a description of the mathematical function of specific
work depending on temperature and pressure is described below for ideal Joule and Carnot
direct cycles. The same conclusions remain valid if reference is made to net useful heat
representing the specific heat resulting from the inverse cycles by inverting the direction of
all the sequential processes that constitute the two conversion cycles.

6. SPECIFIC WORK OF THE JOULE CYCLE

As far as the Joule ideal cycle is concerned, specific work over the whole cycle can be
calculated by means of the following expression [11] which makes reference to Figs. 2A and
2B; the overall work balance is calculated by the contribution throughout the isobaric
processes at higher and lower pressures (the two adiabatic processes give no contribution):

LTHT QQW  )()( 1423 TTCTTC PP  (11)

to render this expression non-dimensional, it is divided by 1TCP :

1
1

4

1

2

1

3

1


T
T

T
T

T
T

TC
W
P

11

1

2

1

31

1

2

1

3 


















 



K
K

K
K

P
P

T
T

P
P

T
T

(12)

and adopting the symbolic convention:
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K
K

P
P

T
T 1;;

1

2

1

3 
  (13)

the above can be rewritten as:





 1

1TC
W
P

(14)

This expression of specific work depends on the extreme temperatures and extreme
pressures of the Joule cycle. It shows that, for the same higher and lower pressures of the
cycle, specific work always increases if 3T increases (and or 1T decreases), as shown in
Fig. 2A.

Fig. 2A. Joule cycle: constant extreme pressures and variable higher temperature

To confirm this behaviour, the existence of a minimum or maximum value of specific work
function can be investigated by means of the derivation of the analytical non-dimensional
specific work function with respect to  as follows:


























1

1 d
d

TC
W

d
d

P




 



111 

 (15)

equalizing to zero:












010

1







 TC
W

d
d

P

(16)

11    (17)

from which it can be deduced that specific work achieves its maximum value, at extreme
higher and lower temperature variations, if the cycle’s extreme higher and lower pressures
are equal. This implies that the cycle degenerates into an isobaric process occurring in two
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opposite directions. Hence no maximum or minimum values exist for the above Equation
(14) which is thus monotone.

Vice-versa, if 1T and 2T (or  ) are fixed and 1P and/or 2P (or  ) change in the direction
of increasing or decreasing volume, as described in Fig. 2B, the specific work function in
Equation (14), is no longer monotone. Indeed, if 21 PP  then 1 and the specific work
is null.

Fig. 2B. Joule cycle: constant extreme temperatures and variable higher pressure

At the same time, if
1

3

1

1

2

T
T

P
P K

K











or if    which can be written as 
1

 the

specific work is once again null. The Rolle’s mathematical theorem is here applied: “a real-
valued differentiable function which attains equal values at two distinct points must have a
point somewhere between them where the first derivative (the slope of the tangent line to the
graph of the function) is zero”. By virtue of Rolle’s theorem relating to a continuous and
derivable function, a relative maximum or minimum value is located in between the two end
points where the function itself is null; this value satisfies the following condition:




























1

1 d
d

TC
W

d
d

P

  2
1

11 0   (18)

It is noteworthy that if 1 then 1 necessarily and this implies that the cycle
degenerates into one single point.

Fig. 2B shows how the geometry of the Joule cycle changes with a variation of extreme
higher pressure while extreme temperatures of the cycle itself remain constant.

7. SPECIFIC WORK OF THE CARNOT CYCLE

With regard to the Carnot ideal cycle, specific work is now analyzed according to the same
procedure, beginning with Equation (11), adopted for the Joule ideal cycle. In this case, the
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overall work balance is calculated on the contribution throughout the isothermal processes at
higher and lower temperatures (the two adiabatic processes give no contribution). With
reference to Figs. 2C and 2D:











4

1
44

3

2
33 lnln

P
PVP

P
PVPQQW LTHT (19)

The validity of state equation TRnPV  is inherent in the definition of physical exergy in
Eq. (1a) and therefore can be used to obtain the following:











4

1
4

3

2
3 lnln

P
PTRn

P
PTRnW (20)

which, upon dividing the entire expression by 1TRn to render the above function non-

dimensional and since 41 TT  , the said Equation (20) becomes:

4

1

3

2

1

3

1

lnln
P
P

P
P

T
T

TRn
W

 (21)

and multiplying the two arguments of the logarithm by
4

4

P
P

and
2

2

P
P

respectively, the

following is obtained:
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1
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P
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P
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P

T
T

TRn
W

 (22)

Considering that, for the reversible adiabatic process:
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Being 41 TT  and 32 TT  respectively, then:
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Assuming that
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the previous equation can be simplified in the form:
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(26)

Although this expression of specific work calculated for the Carnot cycle differs from the one
calculated for the Joule cycle, it again depends on both extreme temperatures and
pressures. This expression demonstrates that, if the extreme cycle temperatures are equal,
specific work always increases if 3P increases and or 1P decreases as shown in Fig. 2C.

Fig. 2C. Carnot cycle: constant extreme temperatures and variable higher pressure

This behavior can be confirmed by calculating the value of the cycle’s extreme pressures
determining the maximum value of specific work for the Carnot cycle. The result is:
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equalizing to zero:



British Journal of Applied Science & Technology, 4(2): 261-278, 2014

274









0

1TRn
W

d
d


(28)

101



 



(29)

It can be deduced that, with respect to the Joule cycle, swapping temperature with pressure
implies that the Carnot cycle is characterized by a maximum value of specific work if and
only if the cycle’s extreme temperatures are equal and the cycle itself therefore degenerates
into an isothermal process executed in the two directions.

Vice-versa, if the Carnot cycle’s extreme pressures are fixed so that  is constant and the
cycle’s extreme temperatures change by means of ratio  as shown in Fig. 2D, it is possible
to investigate what value of  will maximize specific work.

Fig. 2D. Carnot cycle: constant extreme pressures and variable higher temperature

Assuming that 0
1


TRn
W

the following is obtained:

 
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lnln
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 (30)

which is verified if 1 or if 1
1



 or if   or if 

1

 and, as will be noted, this
last expression equals the corresponding one derived from the Joule cycle.

The equality of the two expressions proves the symmetry of the effect due to temperature
ratios and pressure ratios that render null the specific work of the Carnot cycle and Joule
cycle respectively and hence the role of temperature and pressure in the two cycles.

Furthermore, also in the Carnot cycle, if specific work is null for two different values of
property  then, by virtue of the Rolle’s theorem, there must be at least one value of 
where the specific work function is maximum. This value can be calculated by deriving the
non-dimensional expression of specific work, with respect to  :
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which becomes, after calculating the derivative:
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This expression provides, for any fixed value of  , the corresponding value of  to
determine the specific work of the Carnot cycle that gives the maximum value of its function.
If 1 , consequently 1 in the previous Equation (32); this implies, similarly to the
conclusion deduced for the Joule cycle, that the Carnot cycle degenerates into one single
point.

Fig. 2D shows the change Carnot ideal cycle geometry for the variation in extreme
temperatures while extreme pressures remain constant.

In particular, whatever the Carnot cycle between two constant extreme pressures, work
HT
ISOTHERMALdW , for an infinitesimal cycle, is characterized by (maximum) specific work that

tends to decrease if the adiabatic process of this infinitesimal cycle is adjusted in the
direction of the highest or lowest volume range with a consequent the specific work
decrease in both cases on the basis of the conclusions reached in the previous sections.
Thus, a Joule cycle can be accomplished through an infinite series of infinitesimal Carnot
cycle with the result that Joule cycle maximum specific work remains constant if isobaric
processes are finite. Vice versa, whatever the Joule cycle between two constant extreme
temperatures, the same conclusion is validated for the Carnot cycle.

As a result of the above remarks on performance optimization of the Carnot and Joule
cycles, it may be inferred that efficiency and specific work or heat trends, even in the special
case of ideal system and reversible processes, are determined by system temperatures and
pressures with opposite roles in the two cycles.

8. ISOTHERMAL AND ISOBARIC RESERVOIR

The thermal reservoir and mechanical reservoir [7,12], used to accomplish the lower
temperature isothermal process of the Carnot cycle and the lower pressure isobaric process
of the Joule cycle respectively, may be constituted by different and independent physical
bodies characterized by finite masses undergoing processes while interacting with the
system. This implies that the (constant) temperature of the thermal reservoir RT (at variable
pressure) can, as a rule, be different from the (variable) temperature of the mechanical
reservoir (at constant pressure); similarly, the constant pressure of mechanical reservoir RP
(at variable temperature) can, as a rule, be different from the variable pressure of the
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thermal reservoir (at constant temperature). Hence, the thermal reservoir may be regarded
as an isothermal reservoir undergoing an isothermal process at constant temperature and
variable pressure and the mechanical reservoir as an isobaric reservoir undergoing an
isobaric process at constant pressure and variable temperature.

The Carnot ideal cycle is symmetric [13] and operates between two constant extreme
temperatures. In particular, the lower temperature is kept constant by means of an
isothermal reservoir at constant temperature RT . The system pressure, undergoing the
lower isothermal process, contributes entirely to the work interaction transmitted to the
external system. However, if the system undergoes the additional effect of constant pressure

RP due to interaction with an isobaric reservoir, then the cycle processes are affected by

RP and the efficiency and specific work depend on pressure as well as temperature. In fact,
the property of symmetry [13] implies that:

423142314231 ;; TTTTPPPPVVVV  (33a)

but, taking into account RP , equality 4231 PPPP  becomes:

       RRRR PPPPPPPP  4231 (33b)

so that the property of symmetry is no longer valid. Consequently, the efficiency of the
Carnot cycle also depends on the pressure difference, in addition to the temperature
difference, between system and reservoir.

On the other side, theJoule ideal cycle, which depends on extreme pressures only,
constitutes the pressure-dependent cycle capable of providing the maximum efficiency and
maximum specific work with respect to the mechanical reservoir at constant pressure as
proved in the previous section. Nevertheless, since the property of symmetry (33a) is no
longer valid if the temperature of reservoir RT is not null and taking into account RT ,

equality 4231 TTTT  becomes:

       RRRR TTTTTTTT  4231 (33c)

so that the property of symmetry is no longer valid and the Joule cycle depends on pressure
and temperature as well. The consequence is that, even in this case, if the system
undergoes the additional effect of constant temperature RT due to an isothermal reservoir,

then the cycle processes are affected by RT and the efficiency of the Joule cycle now
depends on temperature as well as pressure. Since the property of symmetry is no longer
valid if the temperature of reservoir RT is not null, then the result is that the Joule cycle
efficiency depends on the temperature difference, in addition to the pressure difference,
between system and reservoir. The result, and the novelty proposed, is that physical exergy
may be regarded as a temperature-and-pressure-dependent property in the general case of
any system interacting with two independent isothermal and isobaric reservoirs.
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9. CONCLUSIONS

The first result achieved by the present study is that the Joule ideal cycle produces
maximum efficiency between two constant extreme pressures as does the Carnot ideal cycle
between two constant extreme temperatures provided that the two cycles operate under the
ideal conditions on which the definition of the exergy property is based. Furthermore, the
procedure developed above demonstrates that the Carnot and Joule cycles achieve a
maximum of specific work (direct cycle) corresponding to maximum net useful work or a
maximum of specific heat (inverse cycle) corresponding to maximum net useful heat. The
second result is that, if interacting with the system, isothermal reservoir temperature RT and

isobaric reservoir pressure RP affect the properties of these two symmetric cycles so that
Carnot cycle efficiency depends on both temperature and pressure and, similarly, Joule
cycle efficiency depends on both pressure and temperature. These arguments constitute the
rationale for adopting the Carnot (direct) ideal cycle to express thermal exergy and the Joule
(inverse) ideal cycle to express mechanical exergy as contributions to physical exergy.
Indeed, thermal exergy is the maximum net useful work converted from heat withdrawn from
a system interacting with an isothermal reservoir and mechanical exergy is the maximum net
useful heat converted from work withdrawn from a system interacting with an isobaric
reservoir. The result is general and applicable to any cyclic or non-cyclic process.

Considering the equivalence and inter-convertibility of useful work and useful heat, it makes
sense to seek a formulation of the exergy property that also takes into account the pressure
of the system and isobaric reservoir in addition to the temperature of the system and
isothermal reservoir to express physical exergy in a generalized equation related to, and
constituted by, thermal and mechanical contributions:

M
REV

T
REV

PHYSICAL EXEXEX  (34)

This definition, relating to the Carnot and Joule cycles, may be extended and applied to
systems characterized by arbitrary equation of state [14,15,16], and interacting with multiple
reservoirs, representing the basis for future research and the outset of further development
leading to a generalization of the concept of physical exergy property.
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