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Abstract

Restoration of communication in people with complete motor paralysis—a condition called

complete locked-in state (CLIS)—is one of the greatest challenges of brain-computer inter-

face (BCI) research. New findings have recently been presented that bring us one step

closer to this goal. However, the validity of the evidence has been questioned: independent

reanalysis of the same data yielded significantly different results. Reasons for the failure

to replicate the findings must be of a methodological nature. What is the best practice to

ensure that results are stringent and conclusive and analyses replicable? Confirmation bias

and the counterintuitive nature of probability may lead to an overly optimistic interpretation

of new evidence. Lack of detail complicates replicability.

Brain-computer interface (BCI) technology translates brain activity pattern into messages

(please refer to [1–7] for details). For persons with severe physical disability who cannot use

conventional human–computer interaction devices, BCIs represent a promising strategy for

maintaining or restoring communication with family and friends. Hence, when successfully

implemented, BCI technology has a significant impact on the life of people; all the more for

persons in a complete locked-in state (CLIS) condition.

Interfacing brain and machine

BCIs translate patterns of brain signals, such as electroencephalogram (EEG) or functional

near infrared spectroscopy (fNIRS), into messages by use of predictive statistical pattern–rec-

ognition models. Patterns are composed by features extracted from brain signals. Selection of

informative features is crucial. If features do not contain useful information, pattern recogni-

tion will not work either ("garbage in, garbage out" principle). Features of different kinds are

extracted from individual or multiple brain signals and combined to form a multivariate fea-

ture vector. Different cognitive and emotional processes (e.g., performing a specific mental

task or attending a sensory stimulus) have different effects on feature vectors. Pattern recogni-

tion models are trained to automatically recognize these effects. Classification models assign

feature vectors to a discrete category (class label), which is translated into action (e.g., move

the cursor on the screen to the left). Regression models map feature vectors to real-valued
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quantity that is translated (e.g., to the horizontal position of the cursor on the screen). Brain

signals are recorded from a user prior to BCI use, and this data is used to train the pattern rec-

ognition model. Machine-learning algorithms are applied to optimize model parameters to

maximize prediction. Machine learning is also used to select informative features or to tune

hyperparameters of the pattern recognition–learning algorithm. Hyperparameters are proper-

ties of the learning algorithm that cannot be learned from data. They have to be selected

prior to training. Please refer to [8–10] for more details on statistical pattern recognition and

machine learning.

Current BCI technology relies heavily on data-driven analysis and statistical pattern recog-

nition. The reason is that comprehensive neuroscientific models that describe causal relation-

ships between cognitive (emotional) processing and signal features are not available yet.

Causality is essential. Correlation alone is not sufficient. Two issues that impact the perfor-

mance of statistical pattern recognition methods are the nonstationary and the inherent vari-

ability of brain signals. Feature vectors extracted from data recorded on different days or from

data recorded at different times on the same day may exhibit significant differences. Good

practice is to regularly reapply machine-learning algorithms to new data collected from a user

during BCI use and to adapt parameters accordingly. This strategy enables the brain and the

machine to mutually coadapt.

Significant progress has been achieved in the field in the past decade. Translation of results

into real-world applications was not so successful [11]. One reason for this may be that proof-

of-concept prototypes have been mainly developed in the laboratory with healthy participants.

Only a fraction of studies involve participants with disability and only very few in CLIS. Rea-

sons for the low number of studies in persons with disability are first the limited access and

second the fact that BCI experiments are time and cost intensive. Consequently, studies in

persons with disability performed in real-world environments and over the period of several

weeks provide very valuable insights.

In a recent PLOS Biology article, Chaudhary and colleagues (2017) [12] reported that com-

munication in persons with Amyotrophic Lateral Sclerosis (ALS) in CLIS was successfully

established. Authors used fNIRS, a linear support vector machine classification model, and

an implicit attentional processing procedure. Typically, subjects are asked to perform spe-

cific mental tasks such as motor imagery (kinestethic mental imagination of body limb

movements) or mental calculation. Instead, authors proposed the use of overlearned "auto-

matic" questions. Participants are not required to actively imagine performing mental tasks

but to effortlessly think "yes" or "no" in response to a question. Since the answers to the ques-

tions are known, the performance of correct "yes/no" recognition could be evaluated. After

working with participants over several weeks, binary classification accuracies of about 70%

were obtained.

Spüler [13], in a commentary published in this issue of PLOS Biology, questions the results

presented in Chaudhary and colleagues (2017) [12]. Spüler reanalyzed fNIRS data made avail-

able by Chaudhary and colleagues (2017) but failed to reproduce the reported results. A debate

about methods started. Chaudhary and colleagues’ response [14] to Spüler’s commentary is

also published in this issue of PLOS Biology. The origin of the debate can be reduced to lack of

detail. If information is missing, then it is challenging—or impossible—to reproduce analyses.

Replicability of studies is a general issue in science [15–17], not only in BCI. The debate raises

important questions: how to provide meaningful evidence that results are significant and

valid? What is the best practice when reporting results? Due to the impact that BCIs can have

on the life of persons and their environment, careful assessment and evaluation of results is

sensitive.
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Model complexity, model evaluation, and hyperparameters

One fundamental challenge in BCI is limited data. As already mentioned, data collection is

tedious and time-consuming. However, model training relies on statistics. Robust estimation

of statistical measures (e.g., covariance) requires adequate amounts of data. Choice of model

complexity (see Fig 1a) plays a role here. Linear models need less data than more complex non-

linear models to generalize well. Generalization refers to the capability of a pattern recognition

model to perform well on new data. Models that underfit the data oversimplify the representa-

tion of the patterns (see decision boundary and regression curves in Fig 1a). These models

have high bias and low variance. Bias refers to the error made due to erroneous model assump-

tions. Variance is the error caused by variations in the training data. Models that overfit the

data memorize the pattern. They have low bias and high variance. In both cases, models will

perform poorly on unseen data.

Preventing overfitting is critical when working with nonstationary and noisy brain signals.

Methods such as regularization and shrinkage optimize model complexity by imposing restric-

tions for smoothness on the decision boundary [19]. Smoother decision boundaries mean less

complex models. Regularization is a method that constrains the coefficients that describe the

decision boundary. Shrinkage aims to shrink the coefficients toward zero. Cross-validation

(aka jackknife) and bootstrapping techniques ensure that data used for training is different

and independent from data used for testing [9]. Using the same data for training and testing

obviously results in a very optimistic performance interpretation. N-fold cross-validation

divides the available data into N complementary subsets (default N = 5, N = 10). The i-th subset

is used for testing (i = 1. . .N). The remaining N − 1 subsets are used for model optimization

and training. For each test set, a performance metric is computed. Generalization is estimated

by calculating the average of the N independent performance metrics. M-times N-fold cross-

validation further reduces the variance of generalization estimates by applying N-fold cross-

validation independently to M permutations of the original data samples (default M = 5,

M = 10). Note that it is essential that optimization and training are performed independently

in each fold, i.e., a new model has to be trained for each fold. Also note that the random selec-

tion of test and training data explains small deviations in the calculated results. Brain signals

are nonstationary and inherently variable. When assessing the performance, it is consequently

worth considering to keep the time line of the data intact. This means that data is chronologi-

cally split into two parts. The first part is used for optimization and training by cross-valida-

tion. The second independent and temporally correct part of the data is used to evaluate the

performance of trained models. This corresponds to real-world scenarios and allows most real-

istic estimation of generalization.

A topic that should get more attention when reporting results is hyperparameters. Different

selection criteria of the hyperparameter C for support vector machines is likely one main rea-

son why Chaudhary and colleagues’ and Spüler’s results are different. As stated above, hyper-

parameters define the behavior of learning algorithms. Different values are optimal for

different patterns. Hence, it is critical to report hyperparameter values and selection criteria,

including, if applicable, a description of the machine-learning algorithms used for hyperpara-

meter selection.

Performance metrics and randomness

The confusion matrix provides the most accurate insight into performance. The confusion

matrix is a table that summarizes true positive (TP), false positive (FP), false negative (FN),

and true negative (TN) recognitions. There is a number of performance metrics that can be

derived from the confusion matrix [20]. Most commonly reported is the accuracy, which is the

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000190 April 8, 2019 3 / 7

https://doi.org/10.1371/journal.pbio.3000190


Fig 1. Model complexity and random accuracy. (a) The plots in the upper part depict examples of a binary classification task.

The "x" and "o" symbols represent feature vectors of individual data samples of two different classes (categories). Classifier models

with linear, quadratic, and higher order polynomial decision boundaries are shown. The decision boundary splits the feature

space in two parts. The first characterizes the "o" (highlighted in gray) and the second the "x" pattern. The plots in the middle part

illustrate examples of prediction by regression. The “x” symbols represent feature vectors. Linear, quadratic, and higher order
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percentage share of all patterns that were correctly recognized (for two patterns, Accuracy =

[TP + TN]/[TP + FP + FN + TN]). Essential when reporting accuracy is the question of

whether or not computed accuracy is better than random. Chance performance depends on

the number of patterns (classes) and their frequency of occurrence. Assume we have two pat-

terns. If each pattern occurs the same number of times (e.g., 40 times), then the expected

chance level is 50%. If we have 20 trials of pattern one and 60 trials of pattern two, then the

expected chance level is 75%. That can be seen best when assuming the model, independently

of the input, always outputs pattern two. High accuracy therefore does not necessarily mean

good performance. When data is imbalanced, corrected accuracy is often computed by giving

each pattern the same weight.

Above, only the mean value of the expected chance accuracy is considered. In order to

make an informed decision on whether or not computed accuracy is better than random, the

confidence interval around the expected mean chance performance has to be computed. This

can be achieved analytically by using, for example, binomial statistics [18] or empirically by

computing permutation tests [21]. Upper and lower boundaries of the confidence interval also

depend on the chosen significance level α that has to be selected before the analysis (default

α = 5%, α = 1%). Accuracies that exceed the upper boundary are considered to be better than

random. Fig 1b shows chance level performance as function of size of the training data set.

The curve shows that accuracies <80% (α = 5%) are likely random when only 10 trials per

class are available for evaluation.

Offline simulation versus online use

Careful performance evaluation and calculation of high offline simulation accuracy does not

guarantee that the BCI user can operate the BCI online. Noise and nonstationarity—among

other factors—can have adverse effects and can shift the optimal settings. Reports on users that

operate BCIs in real-world environments are therefore most meaningful. To assess online per-

formance, researchers design evaluation tasks and report to which extend BCI user succeeded

in completing the tasks. However, interpretation of task performance can be challenging. For

example, [22] implemented evidence accumulation to reduce incorrect selections. Users were

asked to repeatedly confirm a selection before it was accepted by the BCI. To evaluate the

approach, users had the task of selecting target items by row–column scanning. It turns out

that some target items have a high probability of correct selection despite random BCI perfor-

mance. This example illustrates that it is essential to carefully design evaluation protocols and

to critically question results. Please refer to [11, 23] for more details on how to avoid common

errors in BCI research.

Clear communication is hard

BCI research is interdisciplinary and is at the intersection of natural science, social science,

engineering science, and medicine. Clear and simple communication is essential. Lack of detail

can lead to confusion. Confirmation bias has an influence on the interpretation of results. This

is nothing new, but one has to keep it in mind. To enhance clarity of communication, reports

should (i) be written in simple language; (ii) methods should be clear, precise, and include a

polynomial regression curves are shown. The plot in the lower part summarizes the relationship between model complexity and

the training and test error rates. Overly simple models underfit and too complex models overfit the data. Optimal models have

low training and low test error. The difference between test and training error is the optimism. (b) Upper confidence limits of

chance performance for a binary classification task for significance level of α = 0.05 (solid line) and α = 0.05 (dashed line). The

samples for both classes are balanced. Modified from [18].

https://doi.org/10.1371/journal.pbio.3000190.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000190 April 8, 2019 5 / 7

https://doi.org/10.1371/journal.pbio.3000190.g001
https://doi.org/10.1371/journal.pbio.3000190


level of detail that ensures analyzes can be replicated (sharing of source code and data); and

(iii) interpretation of results should be objective and realistic—in itself a hard task.
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