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Abstract 
 

In this paper the study of unsteady hydromagnectic free flow of viscoelastic fluid (Walter’s B) 
past an infinite vertical plate through porous medium was conducted. The temperature is 
assumed to be oscillating with time, also the effects of hall-current is taken in to account. The 
solution of velocity, temperature and concentration profiles have been obtained. The effects of 
various parameters on temperature, concentration primary and secondary velocity profiles were 
presented graphically. 

 

Keywords: Hall current, Mhd fluid, radiative heatflux and porous medium. 
 

1 Introduction 
 
The effects of hall current in hydromagnetic fluid have attracted the attention of large number of 
scholars, particularly in the field of fluid dynamics. This may be as a result of wider range of its 
applications in this era of modern science, technology and vast industrialisation. The flow of an 
electrically conducting fluid has important applications in many branches of engineering science 
such as magneto hydrodynamics (MHD) generators, plasma studies, nuclear reactors, geothermal 
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energy extraction, electromagnetic propulsion and the boundary layer control in the field of 
aerodynamics. Magneto hydrodynamics is currently undergoing a period of great enlargement and 
differentiation of subject matter [1]. 
 
In addition to this, the relevance of fluid flow in the health sector can never be overemphasised. As 
we all know, the cardiovascular system is sensitive to changes in the environment, and flow 
characteristics of blood are modified to satisfy changing demands of the organisms. In addition to 
transporting of oxygen, metabolites, and other dissolved substances to and from the tissues, blood 
flow alters heat transfer within the body [2]. 
 
Hydro magnetic flow and heat transfer between two horizontal, the lower plate being a stretching 
sheet had been studied by [3]. [4] made similarity analysis in magneto hydrodynamics, Hall effects 
on forced convective heat and mass transfer of non Newtonian power law fluids past semi infinite 
vertical flat plate. Heat and mass transfer in elastico-viscous fluid past an impulsively started 
infinite vertical plate with hall effects was examined by [5].  [6] investigated the effects of  chemical 
reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow 
past semi infinite vertical moving plate embedded in a porous medium. [7] analysed the radiation 
and mass transfer effects on MHD free convection flow past an exponentially accelerated vertical 
plate with variable temperature. [8], described the effects of heat transfer to MHD oscillatory flow in 
a channel filled with porous medium. [9] investigated the thermal radiation and buoyancy effects on 
MHD free convective heat generating flow over an accelerating permeable surface with 
temperature dependent viscosity. Heat and mass transfer effects on unsteady MHD free 
convection flow near moving vertical plate in porous medium had been studied by [10]. The 
demonstration of effects of unsteady two dimensional hydro magnetic flow and heat transfer of a 
fluid [2]. This shows that an external magnetic field has the same effects on the flow as 
viscoelasticity. [7] analysed the radiation and mass transfer effects on MHD free convectional flow 
past an exponentially accelerated vertical plate with variable temperature. Kumar and Chand [11] 
illustrated the effects of slip condition and hall current on unsteady MHD flow of a visco-elastic fluid 
past an infinite porous vertical plate through porous medium. [11] further illustrated hall effects on 
heat and mass transfer in the flow of oscillating viscoelastic fluid through porous medium with slip 
condition. 
   
This paper aimed to extend the study of heat and mass transfer for an electrically conducting 
incompressible fluid past a continuously moving plate to include hall current, radiative flux, heat 
source, mass flux and viscoelasticity through a porous medium in the presence of magnetic field.  
 

2 Problem Formulation 
 
We consider the unsteady flow of a viscous incompressible and electrically conducting viscoelastic 
fluid with oscillating temperature. The flow occurs over an infinite vertical porous plate. The x

*   
axis 

is assumed to be oriented vertically upward along the plate and y*axis taken normal to the plane of 
the plate. It is assumed that the plate is electrically none conducting and a uniform magnetic field 
of strength B0 is applied normal to the plate. The induced magnetic field is assumed to be 

negligible so that  0,0, 0B B


. The plate is subjected to a constant suction velocity V0.. 

 
Since the plate is infinite in extend all physical quantities are functions of y

*
 and t

*
 only. Thus the 

governing equations of the flow under the usual Boussinesq approximation are: 
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The Momentum Equations: 
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Energy Equation: 
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Concentration Equation: 
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The initial boundary conditions are : 
 

      ' 0,u            ' 0w  ,   1 i te            ' 1 tiC e   ,               y=0                              (5)                                                                                                                          

          ' 0u  ,          ' 0w  ,  ' 'T T  ,        ' 'C C                      y
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Where,   volumetric coefficient of the thermal expansion, v  the kinematic viscosity,  is density,   

  the coefficient of viscosity,  
* is volumetric coefficient of expansion with concentration,  0u the 

velocity of the plate, y the coordinate axis normal to the plate, g  acceleration due to gravity,  rq

the radiation heat flux in the y direction, Cp is specific heat at constant pressure, C’ is specific 

concentration in the fluid, 'C   the concentration in the fluid far away from the plate, 'WC  the 

concentration on the plate, D the mass diffusion coefficient, t’ is time, T the temperature of the fluid 
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near the plate, WT  the temperature of the plate, T the temperature of the fluid far away from the 

plate. M the Hartmann number, Km viscoelastic parameter,  , is the frequency of oscillation.  

 

Let the assumed solutions be, 

 

0 1' ' ' i tu u u e  
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                                                                                                               (7) 
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Substituting equation (7) in (1) above 

 

Equations (1) to (4) using (6) and (7) reduced to 
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The corresponding boundary conditions are: 

 

  0 1' ' 0U U  ,  0 1' ' 0w w 
  

 ,
0 1' ' 1   ,   

0 1' ' 0C C 
   

0at y   

 1' 0U  ,         
0' 0w  ,      

0' 0U        1' 0w           
0' 0  ,   
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as y 

                                        (16)  
 

3 Method of Solution 
 

Introducing
 

0 0( ),F u iw 
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 equation (8) to (11) transformed 

to 
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Equations (17) and (18) are third order differential equations due to the presence of viscoelasticity. 
Therefore, F0 and H0 are expanded using [12] in terms of Km 
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Zeroth –order 
 

''' '' '
00 01 01 01 0F F F NF   

                                                                                               (19) 
 

 
'' ' '''

01 01 01 00F F NF F  
                                                                                                (20) 

 
''' '' '

11 12 11 12 0H EH H NnH   
                                                                                       (21) 

 
'' ' '''

12 12 12 11EH H NnH H  
                                                                                          (22) 

 
The corresponding boundary condition transformed to 
 

00 01

00 01

0 : 0

: 0

Y F F

Y F F

  

  
    

 

 

 Similarly, 
 

00 01

00 01

0: 0

: 0

Y H H

Y H H

  

                                                                                                     (23) 



 
 
 

Ahmed et al.; BJMCS, 6(3): 233-246, 2015; Article no.BJMCS.2015.075 
 
 
 

238 
 
 

Solving equations (19) to (22) under the boundary condition (23) to obtained  
 
The primary velocity is given by, 
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The secondary velocity is also given by 
 

     
 
The temperature expression  
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4. Results and Discussion  
 
In order to illustrate the influence of various parameters which include Grashof number Gr, mass 
Grashof number Gc, magnetic number M, chemical reaction parameter R, Schmits number Sc, 
Prandtl number Pr, radiation parameter R, heat source s, hall current parameter m and viscoelastic 
parameter Km on velocity, temperature and concentration profiles. Computations were carried out 
using Gr=2, Gc=2, Pr=0.71, Sc=0.6, R=0.4, M=5, s=0.2, m=0.2Km=0.05 various values based on 
physical quantities are computed and presented in Figs. 1-16. The appendix in the paper 
contained the letters represented by equations to ease the computations. 
 

5. Conclusions 
 
The hall current effects on unsteady MHD fluid flow with radiative heat flux and heat source over a 
porous medium is investigated by transforming the governing partial differential equations into 
ordinary differential equations which are then solved using perturbation techniques. The result of 
the flow variables indicates that the fluid temperature is reduced by increasing Prandtl number (Pr) 
and radiation parameter (R). Concentration is reduced with increase in Schmidt number (Sc) and 
chemical reaction parameter (K). The primary velocity decrease with increasing prandtl (Pr), 
radiation parameter and hall-current while the opposite trend is observed in secondary velocity. 
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The primary velocity increases with increase in mass Grashoof number (Gr) and thermal 
Grasshoof number (Gc) also the reverse is the case in secondary velocity. The primary velocity 
decreases with increase in M, s and Sc. 
  

5.1 Temperature Profiles 
 
Fig.1 illustrates the effects of Prandt number on temperature field. It is noticed that as the Prandt 
number increases the temperature decreases. The effects of Radiation parameter have been 
illustrated in Fig. 2 Increase in radiation parameter R is accompanied with increase in temperature 
profile. 

 
 

Fig. 1. Effects of Pr on temperature profile 

 
 

Fig. 2. Effects of R radiation parameter on temperature 
 

5.2 Concentration Profiles 
 
Fig. 3 Shows the effects of Schmidt number on concentration profile with fixed values of t=0.2, K= 
0.22 . The graph shows that, increase in the values of Schmidt number Sc results in increase in 
the concentration profile. Fig. 4 demonstrates the effects of chemical reaction parameter K, on 
concentration field. It also exhibits the same behaviour as Schmidt number. 
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Fig. 3. Effects of Sc on concentration profile 

 
 

Fig. 4. Effects of K on concentration profile 
 

5.3 Velocity Profiles 
 
Fig. 5 and Fig. 6, demonstrate the effects of primary velocity on Gr and Gc, while Fig. 7 and    Fig. 
8 show the effects of secondary velocity on Gr and Gc, in the former two cases the velocity 
decrease with increase in the values of both Gr and Gc. In the later two cases the velocity is 
directly proportional to the values of both Gr and Gc. 
 
Fig. 9 and 10 described the effects of Hartmann number (M), on primary and secondary velocity 
respectively. Increase in the value of M increases the primary velocity profile. Likewise decrease in 
M results increase in profile of W. Fig. 11 and 12 illustrate the effects of heat source (s) on both 
primary and secondary velocity. Increase in heat source increases the primary velocity, while 
decrease in s accompanied with increases secondary velocity. Fig. 13 and 14 demonstrates the 
effects of Km on both primary and secondary velocities. Km exhibit the same behaviour in both 
primary and secondary velocity as Gr and Gc. Increase in the values of Km accompanies with 
decrease in primary velocity and increase secondary velocity. Fig. 15 and 16 illustrated the effects 
of hall current on both primary and secondary velocity. Increase in hall current parameter results to 
decrease in primary velocity and vice versa in secondary velocity as it is expected.  
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Fig. 5. Effects of Thermal Grashof number Gr on Primary velocity 
 

                          

Fig. 6. Effects of Mass Grashof numberGc on Primary velocity 

 
 

Fig. 7. Effects of Thermal Grashof number Gr on secondary velocity    
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Fig. 8. Effects of Gc on secondary velocity 

 
 

Fig. 9. Effects of Magnetic field M on primary velocity 
 

 
 

Fig. 10.  Effects of Magnetic field M on secondary velocity 
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Fig. 11. Effects of heat source s on primary velocity 

 
                       

Fig. 12. Effects of heat source s on secondary velocity 

 
 

Fig. 13. Effects of Km on primary velocity 
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Fig. 14. Effects of Km on secondary velocity 
 

 
Fig. 15. Effects of hall current m on primary velocity 

 
 

Fig. 16. Effects of hall current (m) on secondary velocity 
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