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Abstract 
 
In this paper, we investigate the first integral method for solving the solutions of Maccari’s system. This idea 
can obtain some exact solutions of this system based on the theory of Commutative algebra. 
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1. Introduction 
 
The first integral method was first proposed for solving 
Burger-KdV equation [1] which is based on the ring 
theory of commutative algebra. This method was further 
developed by the same author in [2-10] and some other 
mathematicians [2,11,12,13]. The present paper investi-
gates for the first time the applicability and effectiveness 
of the first integral method on the Maccari’s. We consid-
er Maccari’s system:  

 2

= 0,

= 0.

t xx

t y
x

iQ Q QR

R R Q

 
  

            (1) 

For the first time, Maccari derived this system from 
the Kadomtsev-Petviashvili equation by using asymptoti- 
cally exact reduction method based Fourier expansion and 
spatiotemporal rescaling [14]. Maccari’s system is a kind 
of nonlinear evolution equations that are often presented 
to describe the motion of the isolated waves, localized in 
a small part of space, in many fields such as hydrody-
namic, plasma physics, nonlinear optic, etc. Zhang used 
Exp-function method for seeking exact solutions of 
Maccari’s system [15]. 

The remaining structure of this article is organized as 
follows: Section 2 is a brief introduction to the first in- 
tegral method. In Section 3, implementing the first inte- 
gral method, some new exact solutions for Maccari’s sy- 
stem are reported. This describes ability and reliability of 
the method. A conclusion and future directions for re-
search are all summarized in the last section. 
 
2. The First Integral Method 
 
Consider a general nonlinear PDE in the form  

 , , , , , , , , , , , = 0.t x y xx tt yy xt xy yt xxxP u u u u u u u u u u u   (2) 

Using the wave variable = 2x y kt    carries in-
to the following ODE:  

 , , , , = 0,Q U U U U            (3) 

where prime denotes the derivative with respect to the 
same variable  . 

Next, we introduce new independent variables =x u , 
=y u  which change to a system of ODEs  

 
=

= , .

x y

y f x y


 

               (4) 

According to the qualitative theory of differential equ-
ations [1], if one can find two first integrals to system (4) 
under the same conditions, then analytic solutions to (4) 
can be solved directly. However, in general, it is difficult 
to realize this even for a single first integral, because for a 
given plane autonomous system, there is no general theo- 
ry telling us how to find it’s first integrals in a systematic 
way. A key idea of our approach here to find first inte- 
gral is to utilize the division theorem. For convenience, 
first let us recall the division theorem for two variables in 
the complex domain   [4]. 

Theorem 2.1. Division theorem (see [14]) Suppose 
that  ,P x y  and  ,Q x y  are polynomials of two va- 
riables x and y in  ,x y  and  ,P x y  is irreducible 
in  ,x y . If  ,Q x y  vanishes at all zero points of 
 ,P x y , then there exists a polynomial  ,G x y  in 
 ,x y  such that      , = , , .Q x y P x y G x y  

 
3. Exact Solutions for Maccari’s System 
 
In order to seek exact solutions of system (1), we sup-
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pose  

     , , = , , exp ,Q x y t u x y t i kx y t l        (5) 

where ,k   and   are constants to be determined later, 
l  is an arbitrary constant. Substituting Equation (5) into 
system (1) and yields  

   
 

2

2

2 = 0,

= 0,

t x xx

t y x

i u ku u k u uR

R R u

     


 

    (6) 

Using the transformation  

   = , = , = 2 ,u u R R x y kt          (7) 

where   is a constant, system (6) become the follow-
ing 

 
   

2

2

= 0,

2 = 0,

u k u uR

k R u





    

   

          (8) 

where prime denotes the differential with respect to  . 
Integrating the second segment of Equation (8) with re-
spect to   and taking the integration constant as zero 
yields yields  

21
= .

2
R u

k



               (9) 

Substituting Equation (9) into the first segment of (8) 
yields  

 2 31
= 0.

2
u k u u

k



   


        (10) 

Next, we introduce new independent variables =x u , 
=y u  which change Equation (10) to a system of ODEs  

 2 3

=

1
= .

2

x y

y k x x
k






    

         (11) 

Now, we are applying the Division Theorem to seek 
the first integral to (9). Suppose that  =x x   and 

 =y y   are the nontrivial solutions to (9), and 

   
=0

, = ,
m

i
i

i

p x y a x y  

is an irreducible polynomial in  ,x y  such that  

         
=0

, = = 0,
m

i

i
i

p x y a x y        (12) 

where   = 0,1, ,ia x i m  are polynomials of x and 
all relatively prime in  ,x y ,   0ma x  . Equation 
(10) is also called the first integral to (9). We start our  

study by assuming = 1m  in (12). Note that 
dp

d
 is a  

polynomial in x and y, and    , = 0p x y     implies  

 11

= 0
dp

d
. By the Division Theorem, there exists a  

polynomial      , =H x y h x g x y  in  ,x y  such 
that  

   

     

      

11 11

1 1
1 1 2 3

=0 =0

1

=0

=

1
=

2

= ,

i i
i i

i i

i
i

i

dp p x p y

d x y

a x y ia x y k x x
k

h x g x y a x y

  




 

    
     

      
   
 

 



 

(13) 
where prime denotes differentiating with respect to the 
variable x. On equating the coefficients of  = 2,1,0iy i  
on both sides of (13), we have  

     1 1= ,a x g x a x              (14) 

         0 1 0= ,a x h x a x g x a x         (15) 

         2 3
1 0

1
= .

2
a x k x x h x a x

k



 

    
  (16) 

Since,  1a x  is a polynomial of x, from (12) we con-
clude that  1a x  is a constant and   = 0.g x  For sim-
plicity, we take  1 = 1a x , and balancing the degrees of 
 h x  and  0a x  we conclude that deg   = 1h x , only. 

Now suppose that   =h x Ax B , then From (13), we 
find  

  2
0

1
= ,

2
a x Ax Bx D   

where D  is an arbitrary integration constant. Substi-
tuting  0a x ,  1a x  and  h x  in (14) and setting all 
the coefficients of powers x  to be zero, we obtain a 
system of nonlinear algebraic equations and by solving it, 
we obtain the following solutions: 

 22 2
= , = 0, = 2 ,

22
A B D k k

k
 


 


  (17) 

and 

 22 2
= , = 0, = 2 .

22
A B D k k

k
 


   


 (18) 

Using (15) and (16) in (10), we obtain 

 2

2
2 22

= 0,
22 2

k k
y x

k

 



 
 


 

and 

 2

2
2 22

= 0,
22 2

k k
y x

k

 



 
 


 

respectively. Combining this equations with (9), we ob-
tain the exact solutions of Equation (10) as follows:  
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  2 2 2
1 1

2
= 2 tanh  2 ,

2
u k k i k k k c      

 
        

 
 

  2 2 2
2 1

2
= 2 tanh  2 ,

2
u k k i k k k c      

 
       

 
 

where 1c  is an arbitrary constant. Therefore, the exact solutions to (10) can be written as 

   2 2 2
1 1

2
, , = 2 tanh  2 2 ,

2
u x y t k k i k x y kt k k c     

 
          

 
 

   2 2 2
2 1

2
, , = 2 tanh  2 2 .

2
u x y t k k i k x y kt k k c     

 
         

 
 

Then exact solutions for system (1) are 

   

   

2 2 22
1 1

2 2 2
1 1

2
=  2 2 ,tanh

2

2
= 2 tanh  2 2 .

2
i kx y t l

R k i k x y kt k k c

Q e k k i k x y kt k k c 

    

       

  
             


             
 

          (19) 

and 

   

 

2 2 22
2 1

2 2 2
2 1

2
=  2 2 ,tanh

2

2
= 2 tanh  ( 2 ) 2 .

2
i kx y t l

R k i k x y kt k k c

Q e k k i k x y kt k k c 

    

       

  
            


            
 

           (20) 

Now we assume that m = 2 in (10). By the Division 
Theorem, there exists a polynomial  
     , =H x y h x g x y  in  ,x y  such that 

   

     

      

11 11

2 2
1 1 2 3

=0 =0

2

=0

=

1
=

2

= .

i i
i i

i i

i
i

i

dp p x p y

d x y

a x y ia x y k x x
k

h x g x y a x y

  




 

    
     

      
   
 

 



  

(21) 
On equating the coefficients of  = 3, 2,1,0iy i  on 

both sides of (21), we have 

     2 2= ,a x g x a x             (22) 

         1 2 1= ,a x h x a x g x a x         (23) 

       
       

2 3
0 2

1 0

1
= 2

2

,

a x a x k x x
k

h x a x g x a x




 
      

 

   (24) 

         2 3
1 0

1
= .

2
a x k x x h x a x

k



 

    
  (25) 

Since,  2a x  is a polynomial of x, from (20) we 
conclude that  2a x  is a constant and   = 0g x . For 

simplicity, we take  2 = 1a x , and balancing the de-
grees of   ,h x  0a x  and  1a x  we conclude that deg 
  = 1h x  or 0, therefore we have two cases: 
Case1: 
Suppose that deg   = 1h x  and   =h x Ax B , then 

from (21) we find  

  2
1

1
= ,

2
a x Ax Bx D   

where D is an arbitrary integration constant. From (22) 
we find 

   

  

2
4 3

0

2 2 2

1
=

8 2 2 2

1
2 ,

2

A AB
a x x x

k

AD B k x BDx E





 
    

       
 

 

where E is an arbitrary integration constant. Substituting 
 0a x ,  1a x  and  h x  in (25) and setting all the co- 

efficients of powers x to be zero, we obtain a system of 
nonlinear algebraic equations and by solving it, we obtain 

   

   

22

2

2
= , = 0,

2

= 2 2 ,

2 2
= ,

2

k k
E B

D k k

A
k

 

 



 

 



      (26) 
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and 

   

   

22

2

2
= ,

2
= 0,

= 2 2 ,

2 2
= .

2

k k
E

B

D k k

A
k

 

 



 

  




           (27) 

Using (26) and (25) in (10), we obtain  

 
 2

2
21

= 0,
22 2

k k
y x

k

 



 
 


 

and  

 
 2

2
21

= 0,
22 2

k k
y x

k

 



 
 


 

respectively. Combining this Equations with (11), we 
obtain two exact solutions to Equation (10) which was 
obtained in case m = 1, i.e. 

  2 2 2
1 1

2
= 2 tanh  2 ,

2
u k k i k k k c      

 
        

 
 

  2 2 2
2 1

2
= 2 tanh  2 .

2
u k k i k k k c      

 
       

 
 

where 1c  is an arbitrary constant. Therefore, the exact solutions to (10) can be written as 

   2 2 2
1 1

2
, , = 2 tanh  2 2 ,

2
u x y t k k i k x y kt k k c     

 
          

 
 

   2 2 2
2 1

2
, , = 2 tanh  2 2 .

2
u x y t k k i k x y kt k k c     

 
         

 
 

Then the exact solutions for system (1) are:  

   

   

2 2 22
1 1

2 2 2
1 1

2
=  2 2 ,tanh

2

2
= 2 tanh 2 2 .

2
i kx y t l

R k i k x y kt k k c

Q e k k i k x y kt k k c 

    

       

  
             


             
 

           (28) 

and  

   

   

2 2 22
2 1

2 2 2
2 1

2
= 2 2 ,tanh

2

2
= 2 tanh  2 2 .

2
i kx y t l

R k i k x y kt k k c

Q e k k i k x y kt k k c 

    

       

  
            


            
 

            (29) 

Case 2: 
In this case suppose that deg   = 0h x  and 
  =h x A , then from (21) we find  1 = ,a x Ax B  

where B  is an arbitrary integration constant. From (22) 
we find  

     
2

4 2 2
0

1
= ,

2 2 2

A
a x x k x ABx D

k



 

       
 

where D  is an arbitrary integration constant. Substi-
tuting  0a x ,  1a x  and  h x  in (23) and setting all 
the coefficients of powers x to be zero, we obtain a sys-
tem of nonlinear algebraic equations and by solving it, 
we obtain  

= 0, = 0.A B                (30) 

Using (28) in (10), we obtain  

   
2 2 2 41

= 0.
2 2

y k x x
k




  


 

Combining this equations with (9), we obtain the exact 
solutions to Equation (10) as follows:  
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where 1c  is an arbitrary constant. Then the exact solu-
tions to (10) can be written as: 
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Then solutions of system (1) are  
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                (31) 

and  
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4. Conclusions 
 
We described this method for finding some new exact 
solutions for the Maccari’s system. We have obtained 
four exact solutions to the Maccari’s system. The solu-
tions obtained are expressed by the hyperbolic and ex-
ponential functions. These new solutions may be impor-
tant for the explanation of some practical physical prob-
lems. This also suggests that one can find different solu-
tions by choosing different methods. 
 
5. Acknowledgements  
 
The support of Islamic Azad University of South Tehran 
Branch is gratefully acknowledged. 
 
6. References 
 
[1] Z. Feng, “On Explicit Exact Solutions to the Compound 

Burgers-KdV Equation,” Physics Letters A, Vol. 293, No. 
1, 2002, pp. 57-66. doi:10.1016/S0375-9601(01)00825-8 

[2] X. Deng, “Traveling Wave Solutions for the Generalized 
Burgers Huxley Equation,” Applied Mathematics and 
Computation, Vol. 204, No. 2, 2008, pp. 733-737.  
doi:10.1016/j.amc.2008.07.020 

[3] R. Z. Feng and G. Chenb, “Solitary Wave Solutions of 
the Compound Burgers-Korteweg-de Vries Equation,” 
Physica A, Vol. 352, No. 2-4, 2005, pp. 419-435.  
doi:10.1016/j.physa.2004.12.061 

[4] Z. Feng, “Traveling Wave Behavior for a Generalized 
Fisher Equation,” Chaos, Solitons & Fractals, Vol. 38, 
No. 2, 2008, pp. 481-488.  
doi:10.1016/j.chaos.2006.11.031 

[5] Z. Feng and Y. Li, “Complex Traveling Wave Solutions 
to the Fisher Equation,” Physica A, Vol. 366, 2006, pp. 
115-123. doi:10.1016/j.physa.2005.10.058 

[6] A. Z. Feng, “Exact Solution to an Approximate Sine- 
Gordon Equation in (n + 1)-Dimensional Space,” Physics 
Letters A, Vol. 302, No. 2-3, 2002, pp. 64-76.  
doi:10.1016/S0375-9601(02)01114-3 

[7] Z. Feng and X. Wang, “The First Integral Method to the 
Two-Dimensional Burgers-Korteweg-de Vries Equation,” 
Physics Letters A, Vol. 308, No. 2-3, 2003, pp. 173-178. 
doi:10.1016/S0375-9601(03)00016-1 

[8] Z. Feng and R. Knobel, “Traveling Waves to a Burgers- 
Korteweg-de Vries-Type Equation with Higher-Order 
Nonlinearities,” Journal of Mathematical Analysis and 
Applications, Vol. 328, No. 2, 2007, pp. 1435-1450.  
doi:10.1016/j.jmaa.2006.05.085 

[9] H. Li and Y. Guo, “New Exact Solutions to the Fitz-
hugh-Nagumo Equation,” Applied Mathematics and Com- 



D. ROSTAMY  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

263

putation, Vol. 180, No. 2, 2006, pp. 524- 528.  
doi:10.1016/j. amc.2005.12.035 

[10] B. Lu, H. Zhang and F. Xie, “Traveling Wave Solutions 
of Nonlinear Partial Equations by Using the First Integral 
Method,” Applied Mathematics and Computation, Vol. 
216, No. 4, 2010, pp. 1329-1336.  
doi:10.1016/j.amc.2010.02.028 

[11] A. Maccari, “The Kadomtsev-Petviashvili Equation as a 
Source of Integrable Model Equations,” Journal of Ma-
thematical Physics, Vol. 37, 1996, pp. 5897-6590.  
doi:10.\1063/1.531773 

[12] L. F. Tascan, A. Bekir and M. Koparan, “Travelling 
Wave Solutions of Nonlinear Evolution Equations by 

Using the First Integral Method,” Communications in 
Nonlinear Science and Numerical Simulation, Vol. 14, 
No. 5, 2009, pp. 1810-1815.  
doi:10.1016/j.cnsns.2008.07.009 

[13] Z. Feng, “On Explicit Exact Solutions to the Compound 
Burgers-KdV Equation,” Physics Letters A, Vol. 293, No. 
1-2, 2002, pp. 57-66.  
doi:10.1016/S0375-9601(01)00825-8 

[14] T S. Zhang, “Exp-Function Method for Solving Macca-
ri’s System, Physics Letters A, Vol. 371, No. 1-2, 2007, 
pp. 65-71. doi:10.1016/j.physleta.2007.05.091 

[15] T. R. Ding and C. Z. Li, “Ordinary Differential Equa-
tions,” Peking University Press, Peking, 1996. 

 


