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ABSTRACT

In present paper we introduce the concepts of mixed g-monotone property and ∆g-symmetric
property, where g is single valued mapping, for multi-valued mapping under any number of
variables and use it to obtain some existence and uniqueness fixed points for hybrid pair of
mappings under general contractive conditions in partially ordered metric spaces. Our results are
generalizations of several results in this direction. We equipped this paper with examples in order
to illustrate the effectiveness of our generalizations.
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1 INTRODUCTION
The study of fixed points for multi-valued
contraction mappings using the Hausdorff metric
was initiated by Nadler [1] and Markin [2].
Later many authors developed the existence of
fixed points for various multi-valued contractive
mappings under different conditions. For details,
we refer the reader to [3, 4, 5, 6, 7, 8, 9] and
the references therein. The theory of multi-
valued mappings has applications in control
theory, convex optimization, differential inclusion
and economics.

Let (X, d) be a metric space. We denote by
CB(X) the family of all nonempty closed and
bounded subsets of X and CL(X) the set of all
nonempty closed subsets of X.

For A,B ∈ CB(X) and x ∈ X, we denote

D(x,A) = inf
a∈A

d(x, a)

Let H be the Hausdorff metric in CB(X) induced
by the metric d on X, that is

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(A, b)}.

For any A,B ∈ CB(X) and a ∈ A, we have

D(a,B) ≤ sup
a∈A

D(a,B) ≤ H(A,B).

Remark 1.1. [1] Let A,B ∈ CB(X) and a ∈ A.
If η > 0, then it is a simple consequence of the
definition of H(A,B) that there exists b ∈ B such
that d(a, b) ≤ H(A,B) + η.

Lemma 1.1. [1] Let A,B ∈ CB(X) and α > 1.
Then for every a ∈ A, there exists b ∈ B such
that d(a, b) ≤ αH(A,B).

Definition 1.1. [1] An element x ∈ X is said to
be a fixed point of a set valued mapping T : X →
CB(X) if and only if x ∈ Tx.

In 1969, Nadler [1] extended the famous Banach
contraction principle from single-valued mapping
to multi-valued mapping and prove the following
theorem.

Theorem 1.2. [1] Let (X, d) be a complete metric
space and let T be a mapping from X into
CB(X). Assume that there exists c ∈ [0, 1] such
that

H
(
Tx, Ty

)
≤ cd(x, y),

for all x, y ∈ X. Then T has a fixed point.

In [10] Bhaskar and Lakshmikantham proved
the existence of coupled fixed point for a
single valued mapping F : X × X → X
under weak contractive conditions and as an
application they proved the existence of a unique
solution of a boundary value problem associated
with a first order ordinary differential equation.
Then, Lakshmikantham and Ćirić [11] obtained a
coupled coincidence and coupled common fixed
point of two single valued mappings F : X×X →
X and g : X → X in the frame work of ordered
complete metric space.

The concept of coupled fixed point for multi
valued mapping F : X × X → CB(X) was
introduced by Beg and Butt [12] who followed
the technique of Bhaskar and Lakshmikantham
to define the mixed monotone property for F and
give sufficient conditions for the existence of its
coupled fixed point (not necessarily unique) in
an ordered space (X, d,�). On the other hand,
Samet and Vetro [13] established two coupled
fixed point theorems for multi valued nonlinear
contraction mapping F : X × X → CL(X)
with ∆-symmetric property in partially ordered
metric spaces. Later several authors proved
coupled (tripled) coincidence and common fixed
point theorems for hybrid pairs in partially ordered
metric spaces and other spaces, we refer to
[14, 15, 16, 17, 18, 19, 20].

Definition 1.2. [15] Let X be a nonempty set,
F : X × X → 2X (collection of all nonempty
subsets of X) and g : X → X. An element
(x, y) ∈ X ×X is called

(i) coupled fixed point of F if x ∈ F (x, y) and
y ∈ F (y, x)

(ii) coupled coincidence point of a hybrid pair
F, g if g(x) ∈ F (x, y) and g(y) ∈ F (y, x)
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(iii) common coupled fixed point of a hybrid pair
F, g if x = g(x) ∈ F (x, y) and y = g(y) ∈
F (y, x).

We denote the set of coupled coincidence point
of mappings F and g by C(F, g). Note that if
(x, y) ∈ C(F, g), then (y, x) is also in C(F, g).

Definition 1.3. [15] Let F : X × X → 2X be a
multi valued mapping and g be a self mapping on
X. The hybrid pair F, g is called w-compatible
if g(F (x, y)) ⊆ F (gx, gy) whenever (x, y) ∈
C(F, g).

The following is the main results of Beg and Butt
[12].

Definition 1.4. Let X be a partially ordered set
and F : X × X → CB(X) be a set valued
mapping. F is said to be a mixed monotone
mapping if F is order-preserving in x and order-
reversing in y i.e., x1 � x2, y2 � y1, xi, yi ∈
X(i = 1, 2) implies for all u1 ∈ F (x1, y1) there
exists u2 ∈ F (x2, y2) such that u1 � u2 and for
all v1 ∈ F (y1, x1) there exists v2 ∈ F (y2, x2) such
that v2 � v1.

If � is the relation defined on the set X we can
define the partial order on the product space
X ×X as

(u, v) � (x, y)⇔ u � x and

v � y ∀(u, v), (x, y) ∈ X ×X.
The product metric on X ×X is defined as

d((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2),

for all xi, yi ∈ X and (i = 1, 2).

Theorem 1.3. [12] Let (X, d,�) be a partially
ordered complete metric space and F : X×X →
CB(X) be a set valued mapping with non empty
closed bounded values satisfying:
(1) There exists κ ∈ (0, 1) with

H(F (x, y), F (u, v)) ≤ κ

2
d
(
(x, y), (u, v)

)
,

for all (x, y) � (u, v).

(2) Given xi, yi ∈ X, (i = 1, 2) with x1 � x2
and y2 � y1 then for all u1 ∈ F (x1, y1)
there exists u2 ∈ F (x2, y2) with u1 � u2

and for all v1 ∈ F (y1, x1) there exists
v2 ∈ F (y2, x2) with v2 � v1 provided
d
(
(u1, v1), (u2, v2)

)
< 1.

(3) There exists x0, y0 ∈ X and some x1 ∈
F (x0, y0), y1 ∈ F (y0, x0) with x0 � x1 and
y0 � y1 such that d

(
(x0, y0), (x1, y1)

)
<

1− κ.

(4) If a nondecreasing sequence {xn} → x ∈
X then xn � x, for all n and if a
nonincreasing sequence yn → y ∈ X
then yn � y, for all n.

Then F has a coupled fixed point.

Roldán et al. [21] introduced the concepts of
coincidence and common fixed points between
two single valued mappings in any number of
variable and gave the following definitions.

Definition 1.5. [21] Let g : X → X be mapping
and (X, d,�) be an ordered metric space, then
X is said to have the sequential g-monotone
property if it verifies the following properties:

(i) If {xm}m≥0 is a non-decreasing sequence in
X and limm→∞ xm = x, then gxm � gx
for all m ≥ 0,

(ii) If {ym}m≥0 is a non-increasing sequence in
X and limm→∞ ym = y, then gym � gy
for all m ≥ 0.

If g is the identity mapping, then X is said to have
the sequential monotone property.

Definition 1.6. [21] We say that F and g are
commuting if gF (x1, . . . , xn) = F (gx1, . . . , gxn)
for all x1, . . . , xn ∈ X, and they are weakly
compatible if they commute at their coincidence
points.

Fix a partition {A,B} of the set Λn = {1, 2, . . . , n}, that is, A∪B = Λn and A∩B = ∅, we will denote

ΩA,B = {σ : Λn → Λn : σ(A) ⊆ A and σ(B) ⊆ B}

and
ΏA,B = {σ : Λn → Λn : σ(A) ⊆ B and σ(B) ⊆ A}.
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If (X,�) is a partially ordered space, x, y ∈ X and i ∈ Λn, we will use the following notation

x �i y ⇔
{
x � y, i ∈ A,
x � y, i ∈ B.

Definition 1.7. [21] Let (X,�) be a partially ordered set and F : X4 → X be a mapping. We say
that F has the mixed g-monotone property if F is g-monotone non-decreasing in arguments of A and
g-monotone non-increasing in arguments of B, that is, for all x1, x2, . . . , xn, y, z,X and all i, i.e., for
all i ∈ Λn.

gy � gz ⇒ F (x1, . . . , xi−1, y, xi+1, . . . , xn) �i F (x1, . . . , xi−1, z, xi+1, . . . , xn).

Henceforth, let σ1, . . . , σn, τ : Λn → Λn be n+1 mappings and let φ be the (n+1)-tuple (σ1, . . . , σn, τ).

Definition 1.8. [21] A point (x1, x2, . . . , xn) ∈ Xn is called a φ-coincidence point of the mappings F
and g if

F (xσi(1), . . . , xσi(n)) = gxτ(i) for all i.

If g is the identity mapping on X, then (x1, . . . , xn) ∈ Xn is called a φ− fixed point of the mappings
F .

Definition 1.9. A point (x1, x2, . . . , xn) ∈ Xn is called a common φ-fixed point of the mappings F
and g if

F (xσi(1), . . . , xσi(n)) = gxτ(i) = xτ(i) for all i.

Theorem 1.4. [21] Let (X, d,�) be a complete ordered metric space. Let φ = (σ1, σ2, . . . , σn, τ) be
a (n + 1)-tuple of mappings from {1, 2, . . . , n} into itself such that τ ∈ ΩA,B is a permutation and
verifying that σi ∈ ΩA,B if i ∈ A and σi ∈ ´ΩA,B if i ∈ B. Let F : Xn → X and g : X → X be two
mappings such that F has the mixed g-monotone property on X, F (Xn) ⊆ g(X) and g commutes
with F . Assume that there exists k ∈ [0, 1) verifying

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ k max
1≤i≤n

d(gxi, gyi)

for which gxi �i gyi for all i. Suppose either F is continuous or X has the sequential g-monotone
property. If there exist x10, . . . .xn0 ∈ X verifying

gx
τ(i)
0 �i F (x

σi(1)
0 , x

σi(2)
0 , . . . , x

σi(n)
0 ) for all i.

Then F and g have, at least, one φ-coincidence point.

By using ∆-symmetric property Samet and Vetro [13] established two coupled fixed point theorems
for set valued mapping F : X × X → CL(X) by considering metric spaces endowed with partial
order as a generalization and extension of the recent result of Ćirić [4].

Let (X, d) be a metric space endowed with a partial order. We recall some of results that we use it in
second section.

Definition 1.10. [13] A function f : X ×X → R is called lower semi-continuous if and only if for any
{xn} ⊂ X, {yn} ⊂ X and (x, y) ∈ X ×X, we have

lim
n→∞

(xn, yn) = (x, y)⇒ f(x, y) ≤ lim inf
n→∞

f(xn, yn).

Let G : X → X be a given mapping. We define the set ∆ ⊆ X ×X by ∆ = {(x, y) ∈ X ×X|G(x) �
G(y)}.
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Definition 1.11. [13] Let F : X ×X → CL(X) be a given mapping. We say that F is a ∆-symmetric
mapping if and only if

(x, y) ∈ ∆⇒ F (x, y)× F (y, x) ⊆ ∆.

Definition 1.12. [13] Let F : X ×X → CL(X) be a given mapping. We say that (x, y) ∈ X ×X is a
coupled fixed point of F if and only if

x ∈ F (x, y) and y ∈ F (y, x).

Theorem 1.5. [13] Let (X, d) be a complete metric space endowed with a partial order �. We
assume that ∆ 6= ∅, i.e., there exists (x0, y0) ∈ ∆. Let F : X × X → CL(X) be a ∆-symmetric
mapping. Suppose that the function f : X ×X → [0,∞) defined by

f(x, y) = D(x, F (x, y)) +D(y, F (y, x)) for all x, y ∈ X,

is lower semi-continuous and that there exists a function φ : [0,∞)→ [a, 1), 0 < a < 1, satisfying

lim sup
r→t+

φ(r) < 1 for each t ∈ [0,∞).

Assume that for any (x, y) ∈ ∆ there exist u ∈ F (x, y) and v ∈ F (y, x) satisfying√
φ(f(x, y))

[
d(x, u) + d(y, v)

]
≤ f(x, y)

such that
f(u, v) ≤ φ

(
f(x, y)

)[
d(x, u) + d(y, v)

]
.

Then F admits a coupled fixed point, i.e., there exists z = (z1, z2) ∈ X ×X such that z1 ∈ F (z1, z2)
and z2 ∈ F (z2, z1).

The main results of this paper are presented in sections two and three. Section 2 is devoted to prove
a N -coincidence point theorems for hybrid pair of mappings in partially ordered metric space via
mixed monotone property without appeal to the completeness or closeness of the underlying space
or the continuity of the mappings involved therein. Section 3 is devoted to prove N -coincidence
point for hybrid pair of nonlinear contractions in partially ordered metric space by using ∆g-symmetric
property instead of mixed g-monotone property. Examples are given to support our results.

2 N -COINCIDENCE POINTS FOR HYBRID PAIR OF
MAPPINGS VIA MIXED MONOTONE PROPERTY

Now, we define mixed g-monotone property for multi-valued mapping F with n-variable and apply this
to obtain the existence of N -coincidence point of these mappings.

Definition 2.1. Consider A,B ⊆ X, we can define the following relations on the power set of X

• A �1 B if for any a ∈ A we can find b ∈ B such that a � b,

• A �2 B if for any b ∈ B we can find a ∈ A such that a � b,

• A �3 B if A �1 B and A �2 B.

Definition 2.2. Let (X,�) be a partially ordered set, F : Xn → CL(X) be multi-valued mapping
with n-variable and g : X → X be single valued mapping. We say that F has the mixed g-
monotone property if F (x, y, z, w) is g-monotone non-decreasing in argument of A and g-monotone
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non-increasing in argument of B, that is, for any x1, x2, . . . , xi−1, xi, xi+1, . . . , xn, y and z ∈ X we
have

gy � gz ⇒ F (x1, . . . , xi−1, y, xi+1, . . . , xn) �τ(i)i F (x1, . . . , xi−1, z, xi+1, . . . , xn)

⇒
{
F (x1, . . . , xi−1, y, xi+1, . . . , xn) �τ(i) F (x1, . . . , xi−1, z, xi+1, . . . , xn), i ∈ A;
F (x1, . . . , xi−1, y, xi+1, . . . , xn) �τ(i) F (x1, . . . , xi−1, z, xi+1, . . . , xn), i ∈ B,

where,

τ(i) =

{
1, i ∈ A;
2, i ∈ B.

Theorem 2.1. Let (X,�, d) be an ordered metric space and φ = (σ1, . . . , σn) be a (n)-tuple of
mappings from Λn = {1, 2, . . . , n} into itself such that, σi ∈ ΩA,B if i ∈ A and σi ∈ ´ΩA,B if i ∈ B.
Let F : Xn → CL(X) and g : X → X be hybrid pair of mappings such that F has the mixed g-
monotone property, F (Xn) ⊆ g(X) and g(X) is a complete subspace of X. Assume that there exist
ai ∈ R, i ∈ Λn verifying

∑n
i=1 ai < 1 and

H
(
F (x1, . . . , xn), F (y1, . . . , yn)

)
≤

n∑
j=1

ajd(gxj , gyj) (2.1)

for which gxi �i gyi. If there exist x10, . . . .xn0 ∈ X such that

{g(xi0)} �τ(i)i F (x
σi(1)
0 , . . . , x

σi(n)
0 ), for all i ∈ Λn (2.2)

and X has the sequential g-monotone property. Then F and g have, at least, one N -coincidence
point or φ-coincidence point as mentioned of Definition 1.8 of Roldán et al. [21].

Proof. By (4.2), F (Xn) ⊆ g(X) and F (x
σi(1)
0 , . . . , x

σi(n)
0 ) is well defined and nonempty for all i ∈ Λn

and for any (x10, . . . , x
n
0 ) ∈ Xn, we can find (x11, . . . , x

n
1 ) ∈ Xn such that

gxi1 ∈ F (x
σi(1)
0 , . . . , x

σi(n)
0 ) (2.3)

and
gxi0 �i gxi1, for all i ∈ Λn. (2.4)

If a1 = . . . = an = 0 then

D
(
gxi1, F (x

σi(1)
1 , . . . , x

σi(n)
1 )

)
≤ H

(
F (x

σi(1)
0 , . . . , x

σi(n)
0 ), F (x

σi(1)
1 , . . . , x

σi(n)
1 )

)
≤

n∑
j=1

ajd(gx
σi(j)
0 , gx

σi(j)
1 ) = 0

⇒ gxi1 ∈ F (x
σi(1)
1 , . . . , x

σi(n)
1 ) = F (x

σi(1)
1 , . . . , x

σi(n)
1 ).

Hence (x11, . . . , x
n
1 ) is N -coincidence point for F and g. Now assume that ai > 0 for some i ∈ Λn.

For the point (x11, . . . , x
n
1 ), we can find another point (x12, . . . , x

n
2 ) ∈ Xn such that

gxi2 ∈ F (x
σi(1)
1 , . . . , x

σi(n)
1 ), for all i ∈ Λn.

Continuing this process we can construct sequences {x1m}m≥0, . . . , {xnm}m≥0 such that

gxim+1 ∈ F (xσi(1)m , . . . , xσi(n)m ), for all m ≥ 0 and i ∈ Λn.

By induction methodology for m ≥ 0, we shall prove that

gxim �i gxim+1, for all i ∈ Λn. (2.5)
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Indeed, from equations (2.3) and (2.4), we have

gxi0 �i gxi1 ∈ F (x
σi(1)
0 , . . . , x

σi(n)
0 ),

Suppose that (2.5) is true for some m ≥ 0 and we are going to prove it for m + 1. Now we have to
distinguish between wether i ∈ A or i ∈ B,

(Case 1) Suppose that i ∈ A (σi ∈ ΩA,B).
gxim+1 ∈ F (x

σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) for this argument xσi(j)m , we have two subcases,

(I) If j ∈ A (where F is g-monotone non-decreasing), σi(j) ∈ A (i.e., gxσi(j)m � gxσi(j)m+1 ). Thus,
F (x

σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) �τ(i)=1 F (x

σi(1)
m , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m ).

(II) j ∈ B (where F is g-monotone non-increasing), σi(j) ∈ B (i.e., gxσi(j)m � gx
σi(j)
m+1 ). Thus,

F (x
σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) �1 F (x

σi(1)
m , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m ).

That is,

F (xσi(1)m , . . . , xσi(j)m , . . . , xσi(n)m ) �1 F (xσi(1)m , . . . , x
σi(j)
m+1 , . . . , x

σi(n)
m ) ∀ i ∈ A, j ∈ Λn

and

F (xσi(1)m , . . . , xσi(j)m , . . . , xσi(n)m ) �1 F (x
σi(1)
m+1 , . . . , x

σi(j)
m , . . . , xσi(n)m )

...

�1 F (x
σi(1)
m+1 , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m )

...

�1 F (x
σi(1)
m+1 , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m+1 ).

Therefore, for gxim+1 ∈ F (x
σi(1)
m , . . . , x

σi(n)
m ) there exist gxim+2 ∈ F (x

σi(1)
m+1 , . . . , x

σi(n)
m+1 )

gxim+1 � gxim+2, i ∈ A. (2.6)

(Case 2) If i ∈ B (σi ∈ ´ΩA,B).
gx

τ(i)
m+1 = F (x

σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) for this argument xσi(j)m , we have two subcases,

(I) If j ∈ A (Place where F is g-monotone non-decreasing), σi(j) ∈ B (i.e., gxσi(j)m � gxσi(j)m+1 ).
Thus, F (x

σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) �τ(i)=2 F (x

σi(1)
m , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m ).

(II) j ∈ B (where F is g-monotone non-increasing), σi(j) ∈ A (i.e., gxσi(j)m � gx
σi(j)
m+1 ). Thus,

F (x
σi(1)
m , . . . , x

σi(j)
m , . . . , x

σi(n)
m ) �2 F (x

σi(1)
m , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m ).

We conclude that

F (xσi(1)m , . . . , xσi(j)m , . . . , xσi(n)m ) �2 F (xσi(1)m , . . . , x
σi(j)
m+1 , . . . , x

σi(n)
m ) ∀ i ∈ B, j ∈ Λn

and

F (xσi(1)m , . . . , xσi(j)m , . . . , xσi(n)m ) �2 F (x
σi(1)
m+1 , . . . , x

σi(j)
m+1 , . . . , x

σi(n)
m+1 ).

Therefore, for gxim+1 ∈ F (x
σi(1)
m , . . . , x

σi(n)
m ) there exist gxim+2 ∈ F (x

σi(1)
m+1 , . . . , x

σi(n)
m+1 ) such

that
gxim+1 � gxim+2, i ∈ B. (2.7)

7
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From inequalities (2.6) and (2.7), we get

gxim+1 �i gxim+2.

Thus, inequality (2.5) is true for any i ∈ Λn and m ≥ 0. Note that the inequality (2.5) implies
(gxσi(j)m−1 �j gx

σi(j)
m , if i ∈ A, or gxσi(j)m−1 �j gx

σi(j)
m , if i ∈ B).

Then we use the previous fact, the contraction condition (4.1) and Remark 1.1 to assert that the
sequences {gxim}m≥0 are Cauchy for all i ∈ Λn as follows:

d(gxim, gx
i
m+1) ≤ H

(
F (x

σi(1)
m−1 , . . . , x

σi(n)
m−1 ), F (xσi(1)m , . . . , xσi(n)m )

)
+ hm ≤

n∑
j=1

ajd(gx
σi(j)
m−1 , gx

σi(j)
m ) + hm

≤
n∑
j=1

aj max
1≤i≤n

d(gxim−1, gx
i
m) + hm, for all i and h < 1.

Consider max1≤i≤n d(gxim, gx
i
m+1) = d(gxkm, gx

k
m+1) = δm for some k ∈ Λn and since the above

inequality hold for any element in Λn then we have,

d(gxkm, gx
k
m+1) ≤

n∑
j=1

aj max
1≤i≤n

d(gxim−1, gx
i
m) + hm

δm ≤
n∑
j=1

ajδm−1 + hm

≤ λδm−1 + hm, λ =

n∑
j=1

aj < 1

≤ λ(λδm−2 + hm−1) + hm

≤ λ2(λδm−3 + hm−2) + λhm−1 + hm

≤ λ3δm−3 + λ2hm−2 + λhm−1 + hm

...

≤ λmδ0 + (λm−1h+ λm−2h2 + · · ·+ λhm−1 + hm)

≤ λmδ0 +mηm, η = max{λ, h} < 1

⇒ d(gxim, gx
i
m+1) ≤ δm ≤ λmδ0 +mηm. (2.8)

For a fixed i we use the triangle inequality and (2.8) to obtain:

d(gxim, gx
i
m+p) ≤ d(gxim, gx

i
m+1) + d(gxim+1, gx

i
m+2) + · · ·+ d(gxim+p−1, gx

i
m+p)

≤
(
λm + λm+1 + · · ·+ λm+p−1)δ0 +

(
mηm + (m+ 1)ηm+1 + · · ·+ (m+ p− 1)ηm+p−1)

≤ λm
(
1 + λ+ · · ·+ λp−1)δ0 +

m+p−1∑
i=m

iηi

≤ λm 1− λp

1− λ δ0 +

m+p−1∑
i=m

iηi → 0 as m→∞.

Therefore, {gxim}m≥0 are Cauchy sequences (for all i ∈ Λn) in g(X). By the completeness of g(X),
there exist {gx1, . . . , gxn} ∈ g(X), such that

gxim → gxi, as n→∞ for all i ∈ Λn. (2.9)

8
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Finally, we claim that the point (x1, . . . , xn) is N -coincidence point of F and g. Suppose that X
has the sequential g-monotone property, by (2.5) and (2.9) we have gxim �i gxim+1 and gxim →
gxi, as m→∞ for all i ∈ Λn, implying gxim �i gxi and(

gxσi(j)m �j gxσi(j) or gxσi(j)m �j gxσi(j)
)
.

Now consider

D
(
F (xσi(1), . . . , xσi(n)), gxi

)
≤ H

(
F (xσi(1), . . . , xσi(n)), F (xσi(1)m , . . . , xσi(n)m )

)
+ d(gxim+1, gx

i)

≤
n∑
j=1

ajd(gxσi(j)m , gxσi(j)) + d(gxim+1, gx
i).

(2.10)

This can be done because,

D
(
F (xσi(1), . . . , xσi(n)), gxi

)
= inf
ξ∈F (xσi(1),...,xσi(n))

d(ξ, gxi)

≤ inf
ξ∈F (xσi(1),...,xσi(n))

{
d(ξ, gxim+1) + d(gxim+1, gx

i)
}

= inf
ξ∈F (xσi(1),...,xσi(n))

d(ξ, gxim+1) + d(gxim+1, gx
i)

= D
(
F (xσi(1), . . . , xσi(n)), gxim+1

)
+ d(gxim+1, gx

i)

≤ H
(
F (xσi(1), . . . , xσi(n)), F (xσi(1)m , . . . , xσi(n)m )

)
+ d(gxim+1, gx

i)

By (2.9), there exist m0,m1, . . . ,mn ∈ N such that

d(gxim+1, gx
i) <

ε

2
∀ m ≥ m0, for ε > 0

and
d(gxσi(j)m , gxσi(j)) <

ε

2naj
∀ m ≥ mj , j ∈ Λn.

Taking m ≥ µ = max{m0,m1, . . . ,mn} and using (2.10), we get

D
(
F (xσi(1), . . . , xσi(n)), gxi

)
≤
(
a1d(gxσi(1)m , gxσi(1)) + · · ·+ and(gxσi(n)m , gxσi(n))

)
+ d(gxim+1, gx

i)

≤
(
a1

ε

2na1
+ · · ·+ an

ε

2nan

)
+
ε

2
≤ ε

2
+
ε

2
= ε.

Since ε is an arbitrary, then F (xσi(1), . . . , xσi(n)) = gxi. That is, (x1, . . . , xn) is a N -coincidence point
of F and g.

Example 2.2. Let X = [0, 1] with the Euclidean metric and the usual order contains a partially
ordered complete metric space. Define F : Xn → CL(X) and g : X → X as

F
(
x1, . . . , xn

)
=

[
0,

sinx1 − sinx2 + sinx3 − . . .+ sinxn
4n

]
and

g
(
x
)

=
x

2
.

9
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Note that sinxi < 1for any xi ∈ [0, 1], then
[

sin x1−sin x2+sin x3−...+sin xn
4n

]
<

n
2
4n

< 1. Consider

σ1, σ2, . . . , σn : Λn → Λn defined as the following form

τ = σ1 =

(
1 2 3 . . . n
1 2 3 . . . n

)
σ2 =

(
1 2 3 . . . n
2 1 2 . . . n− 1

)
...

σi =

(
1 2 3 . . . i . . . n
i i− 1 i− 2 . . . 1 . . . n− i+ 1

)
...

σn =

(
1 2 3 . . . n
n n− 1 n− 2 . . . 1

)
.

Let A be the set of odd numbers and B be the set of even numbers in Λn.

We have, g(X) = X is complete,
⋃
F
(
x1, . . . , xn

)
⊆ g(X) and X has the sequential monotone

property. Also, we have for all (x1, . . . , xn), (u1, . . . , un) ∈ Xn and gxi ≤i gui

H

(
F
(
x1, . . . , xn

)
, F
(
u1, . . . , un

))
=

∣∣∣∣ sinx1 − sinx2 + . . .+ sinxn
4n

− sinu1 − sinu2 + . . .+ sinun
4n

∣∣∣∣
=

1

4n

∣∣∣∣( sinx1 − sinu1

)
+
(

sinu2 − sinx2
)

+ . . .+
(

sinxn − sinun
)∣∣∣∣

≤ 1

4n

[∣∣ sinx1 − sinu1

∣∣+
∣∣ sinx2 − sinu2

∣∣+ . . .+
∣∣ sinxn − sinun

∣∣]
≤ 1

4n

[∣∣x1 − u1

∣∣+ . . .+
∣∣xn − un∣∣]

=
1

4n

n∑
i=1

∣∣xi − ui∣∣
=

1

2n

n∑
i=1

∣∣xi
2
− ui

2

∣∣
=

1

2n

n∑
i=1

∣∣gxi − gui∣∣
=

1

2n

n∑
i=1

d
(
gxi, gui

)
Hence F and g satisfy the contraction condition (4.1) for ai = 1

2n
and

∑n
i=1 ai =

∑n
i=1

1
2n

= n
2n

=
1
2
< 1. Also F is g-monotone mapping. To claim this we have to consider two cases under the

condition gx � gy

• if i ∈ A, then F (a1, a2, . . . , ai−1, x, ai+1, . . . , an) =

[
0,

sin a1−sin a2+...−sin ai−1+sin x−sin ai+1+...+sin an
4n

]
≤1

[
0,

sin a1−sin a2+...−sin ai−1+sin y−sin ai+1+...+sin an
4n

]
= F (a1, a2, . . . , ai−1, y, ai+1, . . . , an),

• if i ∈ B, then F (a1, a2, . . . , ai−1, x, ai+1, . . . , an) =

[
0,

sin a1−sin a2+...+sin ai−1−sin x+sin ai+1+...+sin an
4n

]

10
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≥2

[
0,

sin a1−sin a2+...+sin ai−1−sin y+sin ai+1+...+sin an
4n

]
= F (a1, a2, . . . , ai−1, y, ai+1, . . . , an).

Thus all conditions of Theorem 2.1 hold and then F and g have one coincidence point (0, . . . , 0).

3 N -COINCIDENCE POINTS FOR HYBRID PAIR OF
MAPPINGS VIA ∆g-SYMMETRIC PROPERTY

Let (X, d) be a metric space endowed with a partial order �. We recall the following definitions.

Definition 3.1. A function f : X ×X × . . .×X → R is called lower semi-continuous if and only if for
any sequences {x1m}m≥0, . . ., {xnm}m≥0 ⊆ X and (x1, . . . , xn) ∈ Xn, we have

lim
n→∞

(x1m, . . . , x
n
m) = (x1, . . . , xn)⇒ f(x1, . . . , xn) ≤ lim inf

n→∞
f(x1m, . . . , x

n
m).

Let T : X → X be a given mapping. We define the set ∆T ⊂ Xn by

∆T = {(x1, x2, . . . , xn) ∈ Xn : Txi � Txj , for all i ∈ Λn = {1, . . . , n} and j ≥ i.

Definition 3.2. Let F : Xn → CL(X) be multi-valued with n-variable. We say that F is a ∆T -
symmetric mapping if there exist mappings σ1, . . . , σn : Λn → Λn with

(x1, . . . , xn) ∈ ∆T ⇒ F (xσi(1), . . . , xσi(n)) � F (xσj(1), . . . , xσj(n)), for all i ∈ Λn and j ≥ i,

where, A � B for A,B ⊆ X means that for any element a ∈ A there exist b ∈ B such that a � b

Example 3.1. Let X = R, the set of real numbers, with the usual order and metric, i.e., (X,≤, d),
contain an ordered metric space. Define the mappings F : X3 → CL(X) and T : X → X by

F (x1, x2, x3) = {x
1

x2
,
x2

x3
,
x1

x3
}

T (x) = lnx.

Consider {σ1, σ2, σ3} be a three permutations from Λ3 = {1, 2, 3} into itself in the form:

σ1 =

(
1 2 3
1 2 3

)
, σ2 =

(
1 2 3
2 3 1

)
and σ3 =

(
1 2 3
3 1 2

)
.

Since, Txi � Txj , implies xi

xj
� xj

xi
(for, lnxi � lnxj ⇒ xi � xj ⇒ (xi)2 � (xj)2 ⇒ 2 lnxi �

2 lnxj ⇒ lnxi−lnxj � lnxj−lnxi, i.e., ln xi

xj
� ln xj

xi
), then we have F (x1, x2, x3) = {x

1

x2
, x

2

x3
, x

1

x3
} �

F (x2, x3, x1) = {x
2

x3
, x

3

x1
, x

2

x1
} and F (x1, x2, x3) = {x

1

x2
, x

2

x3
, x

1

x3
} � F (x3, x1, x2) = {x

3

x1
, x

1

x2
, x

3

x2
}.

Also, the inequalities x2

x3
� x3

x2
, x3

x1
� x3

x1
and x2

x1
� x3

x1
implies F (x2, x3, x1) = {x

2

x3
, x

3

x1
, x

2

x1
} �

F (x3, x1, x2) = {x
3

x1
, x

1

x2
, x

3

x2
}. Consequently the mapping F is ∆T− symmetric.

Remark 3.1. Notice that the relation defined on the collection of all closed subsets of X is reflexive
and transitive but not anti symmetric, for example consider X = R, A = {0, 2} ⊆ CL(R) and B =
{1, 2} ⊆ CL(R), we have A � B and B � A but A 6= B. If we consider that this relation is also anti
symmetric, i.e., A � B means that any element a ∈ A is related with all elements in B , then we can
prove the following theorem.
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Theorem 3.2. Let (X, d) be a metric space endowed with a partial order. Suppose that F : Xn →
CL(X) and g : X → X contain a hybrid pair of single valued mapping with one variable and
set valued mapping with n-variables, F has a ∆g-symmetric property, g(X) is complete, ∆g 6= ∅,
σ1, . . . , σn are any (n) mappings from Λn into itself, the function f :

[
(g(X)

]n → [0,∞) defined for all
x1, x2, . . . , xn ∈ X by

f(gx1, . . . , gxn) =

n∑
i=1

D(gxi, F (xσi(1), . . . , xσi(n))) (3.1)

is lower semi-continuous and there exists a function φ : [0,∞)→ [a, 1), 0 < a < 1, satisfying

lim sup
r→t+

φ(r) < 1, for each t ∈ [0,∞). (3.2)

Assume that for any (x1, . . . , xn) ∈ ∆g, there exist gu1, . . . , gun ∈ g(X) with gui ∈ F (xσi(1), . . . , xσi(n)),
for all i ∈ Λn satisfying√

φ
(
f(gx1, . . . , gxn)

)[ n∑
i=1

d(gxi, gui)

]
≤ f(gx1, . . . , gxn) (3.3)

and

f(gu1, . . . , gun) ≤ φ
(
f(gx1, . . . , gxn)

)[ n∑
i=1

d(gxi, gui)

]
. (3.4)

Then F and g have a N -coincidence point, i.e., there exist (gξ1, . . . , gξn) ∈
[
g(X)

]n such that gξi ∈
F (ξσi(1), . . . , ξσi(n)).

Proof. Since F (xσi(1), . . . , xσi(n)) are well defined and nonempty for all i ∈ Λn and for any (x1, . . . , xn) ∈
Xn and φ

(
f(gx1, . . . , gxn)

)
< 1, by the definition of φ, it implies that for (x1, . . . , xn) ∈ Xn we can

find (u1, . . . , un) ∈ Xn with ui ∈ F (xσi(1), . . . , xσi(n)) and√
φ
(
f(gx1, . . . , gxn)

)
d(gxi, ui) ≤ D

(
gxi, F (xσi(1), . . . , xσi(n))

)
for all i ∈ Λn. By adding the above inequality over all i ∈ Λn and using (3.1), one can say that for
any (x1, . . . , xn) ∈ Xn, there exist ui ∈ F (xσi(1), . . . , xσi(n)) for all i satisfying√

φ
(
f(gx1, . . . , gxn)

)[ n∑
i=1

d(gxi, ui)

]
≤ f(gx1, . . . , gxn).

Let (x10, . . . , x
n
0 ) ∈ ∆g be arbitrary and fixed, this can be done for ∆g 6= ∅. Then there exist gxi1 ∈

F (x
σi(1)
0 , . . . , x

σi(n)
0 ), ∀ i such that√

φ
(
f(gx10, . . . , gx

n
0 )
)[ n∑

i=1

d(gxi0, gx
i
1)

]
≤ f(gx10, . . . , gx

n
0 ) (3.5)

and

f(gx11, . . . , gx
n
1 ) ≤ φ

(
f(gx10, . . . , gx

n
0 )
)[ n∑

i=1

d(gxi0, gx
i
1)

]
. (3.6)

From (3.5) and (3.6), we can get

f(gx11, . . . , gx
n
1 ) ≤

√
φ
(
f(gx10, . . . , gx

n
0 )
)(√

φ
(
f(gx10, . . . , gx

n
0 )
)[ n∑

i=1

d(gxi0, gx
i
1)

])
≤
√
φ
(
f(gx10, . . . , gx

n
0 )
)
f(gx10, . . . , gx

n
0 ).
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Since F is ∆g-symmetric mapping and (x10, . . . , x
n
0 ) ∈ ∆g then we have

F (x
σi(1)
0 , . . . , x

σi(n)
0 ) � F (x

σj(1)

0 , . . . , x
σj(n)

0 ), for all i ∈ Λn and j ≥ i.

Thus
gxi1 � gxj1, for all i ∈ Λn and j ≥ i⇒ (x11, . . . , x

n
1 ) ∈ ∆g.

Again by (3.3)and (3.4), we can find (x12, . . . , x
n
2 ) ∈ Xn, gxi2 ∈ F (x

σ1
i

1 , . . . , x
σni
1 ) for all i such that√

φ
(
f(gx11, . . . , gx

n
1 )
)[ n∑

i=1

d(gxi1, gx
i
2)

]
≤ f(gx11, . . . , gx

n
1 )

and

f(gx12, . . . , gx
n
2 ) ≤ φ

(
f(gx11, . . . , gx

n
1 )
)[ n∑

i=1

d(gxi1, gx
i
2)

]
.

Hence, we get

f(gx12, . . . , gx
n
2 ) ≤

√
φ
(
f(gx11, . . . , gx

n
1 )
)
f(gx11, . . . , gx

n
1 ), with (x12, . . . , x

n
2 ) ∈ ∆g.

Continuing this process we can construct sequences {x1m}m≥0, . . . , {xnm}m≥0 ∈ X, such that

(x1m, . . . , x
n
m) ∈ ∆g, gxim+1 ∈ F (x

σ1
i
m , . . . , x

σni
m ) ∀ i,m,√

φ
(
f(gx1m, . . . , gxnm)

)[ n∑
i=1

d(gxim, gx
i
m+1)

]
≤ f(gx1m, . . . , gx

n
m) (3.7)

and

f(gx1m+1, . . . , gx
n
m+1) ≤

√
φ
(
f(gx1m, . . . , gxnm)

)
f(gx1m, . . . , gx

n
m), with (x1m+1, . . . , x

n
m+1) ∈ ∆g.

(3.8)
Now, we shall show that f(gx1m, . . . , gx

n
m) → 0, as m → ∞. If f(gx1m, . . . , gx

n
m) = 0 for some m

then we have
∑n
i=1D(gxim, F (x

σi(1)
m , . . . , x

σi(n)
m )) = 0 ⇒ D(gxim, F (x

σi(1)
m , . . . , x

σi(n)
m )) = 0 for all i,

which implies that gxim ∈ F (x
σi(1)
m , . . . , x

σi(n)
m ) or gxim ∈ F (x

σi(1)
m , . . . , x

σi(n)
m ) = F (x

σi(1)
m , . . . , x

σi(n)
m )

for all i, i.e., (gx1m, . . . , gx
n
m) is a N -coincidence point of F and g and the proof is completed. So, we

shall assume that f(gx1m, . . . , gx
n
m) > 0 for all m ≥ 0.

By (3.8) and φ(t) < 1, we conclude that
{
f(gx1m, . . . , gx

n
m)
}

is strictly decreasing sequence of
positive real numbers then we can find δ ≥ 0 such that

lim
m→∞

f(gx1m, . . . , gx
n
m) = δ.

Now, we shall prove that δ = 0. On contrary, assume that δ > 0. Letting m → ∞ in (3.8) and using
(3.2) yield

δ ≤ lim sup
f(gx1m,...,gx

n
m)→δ+

√
φ
(
f(gx1m, . . . , gxnm)

)
δ < δ.

But this is a contradiction. Hence δ = 0 and limm→∞ f(gx1m, . . . , gx
n
m) = 0.

Then, we will prove that {gxim}m≥0 are cauchy sequences for all i ∈ Λn. Suppose that

α = lim sup
m→∞

√
φ
(
f(gx1m, . . . , gxnm)

)
< 1.

Let, k be such that α < k < 1, then there exist m0 ∈ N such that√
φ
(
f(gx1m, . . . , gxnm)

)
< k, for all m ≥ m0.

13
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Therefore

f(gx1m+1, . . . , gx
n
m+1) ≤

√
φ
(
f(gx1m, . . . , gxnm)

)
f(gx1m, . . . , gx

n
m)

≤ kf(gx1m, . . . , gx
n
m)

≤ k2f(gx1m−1, . . . , gx
n
m−1)

...

≤ km+1−m0f(gx1m0
, . . . , gxnm0

).

(3.9)

Since φ(t) ≥ a > 0 for all t ≥ 0, from (3.7) and (3.9), we obtain[ n∑
i=1

d(gxim, gx
i
m+1)

]
<

1√
a
km−m0f(gx1m0

, . . . , gxnm0
), ∀ m > m0.

Now, let use consider the following for fixed i

n∑
i=1

d(gxim, gx
i
m+p) ≤

n∑
i=1

[
d(gxim, gx

i
m+1) + d(gxim+1, gx

i
m+2) + . . .+ d(gxim+p−1, gx

i
m+p)

]
≤ 1√

a
km−m0f(gx1m0

, . . . , gxnm0
)

+
1√
a
km+1−m0f(gx1m0

, . . . , gxnm0
)

...

+
1√
a
km+p−1−m0f(gx1m0

, . . . , gxnm0
)

≤ 1√
a

[km−m0 + km+1−m0 + . . .+ km+p−1−m0 ]f(gx1m0
, . . . , gxnm0

)

≤ 1√
a

km−m0(1− kp)
1− k f(gx1m0

, . . . , gxnm0
)

≤ 1√
a

km−m0

1− k f(gx1m0
, . . . , gxnm0

)→ 0 as m→∞,

which yields that {{gxim}, 1 ≤ i ≤ n} are Cauchy sequences in g(X), which is complete then there
exist (u1, . . . , un) ∈ g(X) gxim → ui = gξi for all i ∈ Λn.

Finally, we show that (gξ1, . . . , gξn) is a N -coincidence point for F and g. Using the lower semi-
continuity of f we get

0 ≤ f(gξ1, . . . , gξn) =
n∑
i=1

D(gξi, F (ξσi(1), . . . , σi(n)))

≤ lim inf
m→∞

f(gx1m, . . . , gx
n
m) = 0.

Hence, D(gξi, F (ξσi(1), . . . , σi(n))) = 0 and gξi ∈ F (ξσi(1), . . . , σi(n)) for all i, i.e., (ξi)ni=1 is N -
coincidence point for F and g.

Theorem 3.3. Let (X, d) be a metric space endowed with a partial order. Suppose that F : Xn →
CL(X) and g : X → X contain a hybrid pair of single valued mapping with one variable and
set valued mapping with n-variables, F has a ∆g-symmetric property, g(X) is complete, ∆g 6= ∅,
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σ1, . . . , σn are any (n) mappings from Λn into itself, the function f
[
(g(X)

]n → [0,∞) defined for all
x1, x2, . . . , xn ∈ X by

f(gx1, . . . , gxn) =

n∑
i=1

D(gxi, F (xσi(1), . . . , xσi(n))) (3.10)

is lower semi-continuous and there exists a function φ : [0,∞)→ [a, 1), 0 < a < 1, satisfying

lim sup
r→t+

φ(r) < 1, for each t ∈ [0,∞). (3.11)

Assume that for any (x1, . . . , xn) ∈ ∆g there exist (gu1, . . . , gun) ∈
[
g(X)

]n with gui ∈ F (xσi(1),

. . . , xσi(n)), for all i ∈ Λn satisfying√√√√φ

( n∑
i=1

d(gxi, gui)

)[ n∑
i=1

d(gxi, gui)

]
≤ f(gx1, . . . , gxn) (3.12)

and

f(gu1, . . . , gun) ≤ φ
( n∑
i=1

d(gxi, gui)

)[ n∑
i=1

d(gxi, gui)

]
. (3.13)

Then F and g have a N -coincidence point, i.e., there exist (gξ1, . . . , gξn) ∈
[
g(X)

]n such that gξi ∈
F (ξσi(1), . . . , ξσi(n)).

Proof. Let (x10, . . . , x
n
0 ) ∈ ∆g as in Theorem 3.2, we can find gxi1 ∈ F (x

σi(1)
0 , . . . , x

σi(n)
0 ), ∀ i such

that √
φ
(
40

)
40 ≤ f(gx10, . . . , gx

n
0 ) (3.14)

and
f(gx11, . . . , gx

n
1 ) ≤ φ

(
40

)
40, (3.15)

where, 40 =
∑n
i=1 d(gxi0, gx

i
1). From (3.14) and (3.15), we can get

f(gx11, . . . , gx
n
1 ) ≤

√
φ
(
40

)(√
φ
(
40

)
40

)
≤
√
φ
(
40

)
f(gx10, . . . , gx

n
0 )

and using the ∆g-symmetric property of F implies (x11, . . . , x
n
1 ) ∈ ∆g.

Consequently, we can construct sequences {x1m}m≥0, . . . , {xnm}m≥0 ∈ X such that

(x1m, . . . , x
n
m) ∈ ∆g, gxim+1 ∈ F (x

σ1
i
m , . . . , x

σni
m ) ∀ i,m,√

φ
(
4m

)
4m ≤ f(gx1m, . . . , gx

n
m) (3.16)

and

f(gx1m+1, . . . , gx
n
m+1) ≤

√
φ
(
4m

)
f(gx1m, . . . , gx

n
m), with (x1m+1, . . . , x

n
m+1) ∈ ∆g, (3.17)

where,4m =
∑n
i=1 d(gxim, gx

i
m+1). By (3.17) and φ(t) < 1, we conclude that

{
f(gx1m, . . . , gx

n
m)
}

is
strictly decreasing sequence of positive real numbers then we can find δ ≥ 0 such that

lim
m→∞

f(gx1m, . . . , gx
n
m) = δ. (3.18)

15
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To prove that δ = 0 we have to show that {4m}m≥0 admits a subsequence converging to θ+ for some
θ ≥ 0. From φ(t) ≥ a > 0 for all t ∈ [0,∞) and (3.16), we obtain

0 ≤ 4m ≤
1√
a
f(gx1m, . . . , gx

n
m) ≤ 1√

a
f(gx10, . . . , gx

n
0 ). (3.19)

It is obvious that 4m is bounded sequence of non-negative real numbers. Since each bounded
sequence 4m of real numbers has a monotone subsequence which is also bounded and every
bounded sequence is convergent, then this is guarantee the existence of subsequence that converge.
Therefore, we know the collection E of all subsequential limits (limits of all convergent subsequences)
is non-empty, i.e., the lower limit lim infm→∞4m = inf E and the upper limit lim supm→∞4m =
supE exist. Thus, there exist θ ≥ 0 with

lim inf
m→∞

4m = θ. (3.20)

Since gxim+1 ∈ F (x
σi(1)
m , . . . , x

σi(n)
m ), we have

4m =

n∑
i=1

d(gxim, gx
i
m+1) ≥

n∑
i=1

D(gxim, F (xσi(1)m , . . . , xσi(n)m )) = f(gx1m, . . . , gx
n
m). (3.21)

Taking the upper limit as m tends to infinity in Equation (3.21) and using (3.18) and (3.20) yields

lim inf
m→∞

4m ≥ lim inf
m→∞

f(gx1m, . . . , gx
n
m)

θ ≥ δ.

Now, we shall show that θ = δ. If δ = 0, by (3.18), (3.19) and (3.20), we obtain

0 ≤ lim inf
m→∞

4m ≤
1√
a

lim
m→∞

f(gx1m, . . . , gx
n
m)

0 ≤ θ ≤ 1√
a
δ = 0

⇒ θ = 0.

Consider δ > 0 and we want to claim that θ = δ. On contrary assume that θ > δ and θ − δ > 0.
From (3.18), for any ε = θ−δ

4
there exist a positive integer m1, such that

|f(gx1m, . . . , gx
n
m)− δ| < ε for all m > m1

Also from (3.20), for the same ε > 0, we can find m2 ∈ N such that

θ − ε < 4m for all m > m2.

Hence we have

f(gx1m, . . . , gx
n
m) < δ +

θ − δ
4

and

θ − θ − δ
4

< 4m for all m > m0 = max{m1,m2}.

Using (3.16) √
φ
(
4m

)(
θ − θ − δ

4

)
<
√
φ
(
4m

)
4m ≤ f(gx1m, . . . , gx

n
m) < δ +

θ − δ
4

.
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Therefore √
φ
(
4m

)
<
θ + 3δ

δ + 3θ
, for all m > m0. (3.22)

Putting h = θ+3δ
δ+3θ

< 1 in (3.22) and using (3.17) imply

f(gx1m+1, . . . , gx
n
m+1) ≤

√
φ
(
4m

)
f(gx1m, . . . , gx

n
m)

< hf(gx1m, . . . , gx
n
m)

< h2f(gx1m−1, . . . , gx
n
m−1)

...

< hm+1−m0f(gx1m0
, . . . , gxnm0

) for all m > m0.

Therefore for m = m0 + k0, we have

δ ≤ f(gx1m0+k0 , . . . , gx
n
m0+k0) < hk0f(gx1m0

, . . . , gxnm0
)

< δ.

That is a contradiction, then θ = δ.

θ = δ ≤ f(gx1m, . . . , gx
n
m) ≤ 4m

⇒ θ ≤ 4m for all m ≥ 0.

Then, we rewrite
lim inf
m→∞

4m = θ+.

That means, the sequence {4m}m≥0 contains a subsequence, say {4mk}k≥0, that converge to θ+.
By (3.11), we have

lim sup
4mk→θ

+

√
φ(4mk ) < 1. (3.23)

and from (3.17)

f(gx1mk+1, . . . , gx
n
mk+1) ≤

√
φ
(
4mk

)
f(gx1mk , . . . , gx

n
mk ).

Now, we want to show that δ = 0. Assume on contrary that δ > 0. By taking the upper limit above as
k →∞, we can obtain a contradiction and then we conclude that δ = 0 as follows

δ = lim sup
k→∞

f(gx1mk+1, . . . , gx
n
mk+1) ≤ lim sup

4mk→θ
+

√
φ
(
4mk

)
lim sup
k→∞

f(gx1mk , . . . , gx
n
mk ) < 1.δ.

Hence δ = 0 and limm→∞ f(gx1m, . . . , gx
n
m) = 0.

Then, we will prove that {gxim}m≥0 are cauchy sequences for all i ∈ Λn. Suppose that

α = lim sup
4mk→0+

√
φ
(
4mk

)
< 1.

Consider k be such that α < k < 1, then there exist finitely many
√
φ
(
4mk

)
, say {

√
φ
(
4mk1

)
, . . . ,√

φ
(
4mkn

)
}, such that

√
φ
(
4mk

)
≥ k . That means, we can find m0 = mkn+1 ∈ N with

√
φ
(
4mk

)
< k, for all mk ≥ m0.
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For simplify, we set mk = p.

f(gx1p+1, . . . , gx
n
p+1) ≤

√
φ
(
4p
)
f(gx1p, . . . , gx

n
p )

≤ kf(gx1p, . . . , gx
n
p )

≤ k2f(gx1p−1, . . . , gx
n
p−1)

...

≤ kp+1−m0f(gx1m0
, . . . , gxnm0

).

(3.24)

Since φ(t) ≥ a > 0 for all t ≥ 0, from (3.16) and (3.24), we obtain[ n∑
i=1

d(gxip, gx
i
p+1)

]
<

1√
a
kp−m0f(gx1m0

, . . . , gxnm0
), ∀ m > m0.

Now, let use consider the following for fixed i

n∑
i=1

d(gxip, gx
i
p+q) ≤

n∑
i=1

[
d(gxip, gx

i
p+1) + d(gxip+1, gx

i
p+2) + . . .+ d(gxip+q−1, gx

i
p+q)

]
≤ 1√

a
kp−m0f(gx1m0

, . . . , gxnm0
)

+
1√
a
kp+1−m0f(gx1m0

, . . . , gxnm0
)

...

+
1√
a
kp+q−1−m0f(gx1m0

, . . . , gxnm0
)

≤ 1√
a

[kp−m0 + kp+1−m0 + . . .+ kp+q−1−m0 ]f(gx1m0
, . . . , gxnm0

)

≤ 1√
a

kp−m0(1− kq)
1− k f(gx1m0

, . . . , gxnm0
)

≤ 1√
a

kp−m0

1− k f(gx1m0
, . . . , gxnm0

)→ 0 as p→∞.

Which yields that {{gxim}, 1 ≤ i ≤ n} are Cauchy sequences in g(X), which is complete then there
exist (u1, . . . , un) ∈ g(X) gxim → ui = gξi for all i ∈ Λn.

Finally, we show that (gξ1, . . . , gξn) is a n-coincidence point for F and g. Using the lower semi-
continuity of f , we get

0 ≤ f(gξ1, . . . , gξn) =
n∑
i=1

D(gξi, F (ξσi(1), . . . , σi(n)))

≤ lim inf
m→∞

f(gx1m, . . . , gx
n
m) = 0.

Hence, D(gξi, F (ξσi(1), . . . , σi(n))) = 0 and gξi ∈ F (ξσi(1), . . . , σi(n)) for all i, i.e., (ξi)ni=1 is N -
coincidence point for F and g.
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4 CONCLUSION

This Paper aimed to study three coincidence
point theorems for hybrid pair of mappings one
of them single-valued mapping g : X → X
and another one is multi-valued mapping with
n-variable F : Xn → CL(X) in partially
ordered metric spaces (X, d,�), not necessarily
complete. As special case of Theorem 2.1
, if we consider that the mapping F is single
valued instead of multi-valued, we will obtain the
following corollary.

Corollary 4.1. Let (X,�, d) be an ordered metric
space and φ = (σ1, . . . , σn) be a (n)-tuple of
mappings from Λn = {1, 2, . . . , n} into itself such
that, σi ∈ ΩA,B if i ∈ A and σi ∈ ´ΩA,B if
i ∈ B. Let F : Xn → X and g : X → X
be two mappings such that F has the mixed g-
monotone property, F (Xn) ⊆ g(X) and g(X) is
a complete subspace of X. Assume that there
exist ai ∈ R, i ∈ Λn verifying

∑n
i=1 ai < 1 and

d
(
F (x1, . . . , xn), F (y1, . . . , yn)

)
≤

n∑
j=1

ajd(gxj , gyj)

(4.1)
for which gxi �i gyi. If there exist x10, . . . .xn0 ∈ X
such that

g(xi0) �i F (x
σi(1)
0 , . . . , x

σi(n)
0 ), for all i ∈ Λn

(4.2)
and X has the sequential g-monotone property.
Then F and g have, at least, one N -coincidence
point.

Also in section three we used ∆g- symmetric
property to extend the main result of Samet and
vetro to any number of variables and obtain the
corresponding N- coincidence point theorem.
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