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ABSTRACT 
 

The present study focuses on the non-linear stability in the transient rotary regime of the cooking 
process of gari. The process of cooking gari consists of a rotating rectangular cavity filled with 
grated cassava flour, pressed, retted and considered to be an anisotropic porous medium in a 
permeably saturated viscoelastic fluid. The cavity is heated from below to a constant temperature. 
The lower wall of the cavity is impermeable and the upper wall is permeable. Using a numerical 
method, we have established the transient expressions of the Nusselt number, the flow and 
temperature fields as a function of the anisotropy parameters of the porous medium and of the 
Taylor number. The results obtained showed that the anisotropy of the porous medium and the 
Taylor number greatly influenced the cooking of gari over time. 

 
Keywords: Anisotropic porous rotating medium; nonlinear instability; transient regime; Nusselt 

number. 
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NOMENCLATURES 
 

�: dynamic viscosity of the fluid saturating the porous medium; 

� = � ��⁄  : kinematic viscosity of the fluid; 
�⃗ : Gravity field vector; 
�� : Saturation vapor pressure; 

��⃗  (0, 0, �) : Vector speed of rotation of the enclosure;  
�⃗� : Position vector;  

�� : Third order permeability tensor; 
� : Thermal capacity ratio; 
� : thermal diffusivity of the porous medium; 

��⃗  : Vector fluid filtration speed in the porous medium; 

∆� = �� − �� : Temperature difference between the two surfaces; 

��; ���� �� : Respective components of the speed vector along the axes (�, �), (�, �) and (�, �) ; 

�� ���  �� : Numbers of waves describing the periodicity of the disturbance in the y and z directions 

respectively; 

��
� + ��

� = �� : Wave number; 

� : porosity; 

� : Orientation angle of the main directions of the permeability tensor; 

��, �� ��� �� : Permeabilities along the main directions; 

�∗ = �� ��⁄   : Anisotropy ratio of permeability in the horizontal plane; 
� = �� ��⁄  : Anisotropy ratio of permeability in the vertical direction; 
� ��� �� : the densities of the fluid respectively at temperatures T and  ��; 
�̂�;  �̂� ��� �̂� : Unit vectors in the principal directions; 

�� : the delay time constant; 

�� : the expansion or release time constant; 
�: thermal capacity ratio; (��� )� (���)�⁄ . 

 

1. INTRODUCTION 
 
The present study focuses on the non-linear 
stability in the transient rotary regime of the 
cooking process of gari. The process of cooking 
gari consists of a rotating rectangular cavity filled 
with grated cassava flour, pressed, retted and 
considered to be an anisotropic porous medium 
in a permeably saturated viscoelastic fluid. The 
study of viscoelastic fluids is of great interest in 
many areas of modern engineering sciences and 
technology such as materials processing, 
petroleum, chemistry and nuclear industries, 
geophysics, biology and of bio-mechanical 
engineering. 
 
Vadasz P [1]. Conducted three-dimensional 
analytical research on the flow of a fluid through 
a heterogeneous porous medium confined in a 
rotating rectangular cavity. The permeability of 
the porous medium varies in the vertical 
direction. The results of his work showed that for 
a pressure gradient applied to the lateral faces, 
there appears a main flow of the fluid in the 
horizontal direction. The analytical solution found 
remains valid for large numbers of Ekman (Ek), 

which confirms the conditions of practical 
applications. 
 
The same author also sought an analytical 
solution to the problem of natural convection 
generated by centrifugal force in a rotating 
porous medium heated from above. For having 
assumed the vertical component of the flow 
velocity and the temperature independence of 
the horizontal coordinate, he found that the 
domain of validity of this analytical solution must 
be restricted. The Nusselt number varies linearly 
with the modified Rayleigh number Raw for low 
values of the latter. It appears that apart from the 
heat flow associated with the flow of the fluid in 
the horizontal direction which remains important, 
there is a flow of heat in the vertical direction. 
 
Enock P. and Tyvand A. [2] on the basis of the 
Darcy-Boussinesq equations studied a porous 
medium in rotation and in a steady state. They 
have shown that this problem is equivalent to 
that of the anisotropic porous medium with 
respect to the parameter of mechanical 
anisotropy, characterizing the permeability ratio 
of the medium. According to the results they 



obtained, one can deduce basic results on 
thermal convection in a rotating porous layer 
from the analysis made on thermal convection in 
an anisotropic porous medium not set in 
rotational motion. 
 
Jong J.J. and Jian S. L. [3], made a study on 
thermal convection in transient regime in a 
porous layer whose free upper and lower 
surfaces, initially at the same temperature, are 
subjected to constant heating from below. They 
were also interested in the analytical and 
numerical study of the criteria for the appearance 
in permanent and transient conditions of two
dimensional thermal convection in a rotating 
porous medium. The anisotropic porous medium 
in permeability is such that its upper and lower 
limit boundaries are rigid. The lower rigid wall is 
heated at a constant rate so as to generate a 
linear distribution of temperature in the vertical 
direction. The instability related to the anisotropy 
in permeability of the porous medium, saturated 
with a fluid was analyzed by the technique of 
calculating the mean flow volume. They 
determined the critical Rayleigh numbers R
the critical wave numbers ac for the occurrence 
of convection in the anisotropic medium.
 
Govender S. [4] studied natural convection in a 
rotating anisotropic porous layer subjected to 
centrifugal force. He used Darcy's equation to 
describe the flow and found that convection is 
stabilized as the ratio of thermal parameters and 
mechanical anisotropies increases in amplitude.
 
Nield and Bejan [5] and Bejan [
established comprehensive reviews of the 
fundamentals of heat convection in porous 
media. 
 

Dègan G. [7] conducted a numerical and 
analytical investigation of natural convection in a 
rectangular cavity confined by an anisotropic 
porous medium in permeability and isothermally 

Fig. 1. Physical model: Rectangular cavity in rotation and coordinate axes, containing the 
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heated from the sides. The results showed that 
the permeability anisotropy ratio and the 
inclination angle of the major axes both had a 
great influence on the system. In particular, the 
maximum (minimum) heat transfer is obtained 
when the orientation of the main
anisotropic porous medium having the 
permeability is parallel (perpendicular) to the 
gravitational field. 
 
This review shows the authors did not address 
the effect of anisotropy in all directions. Also, 
they did not discuss the effects of the 
ratio in permeability in the horizontal 
and vertical directions. 
 
This study is part of the exploration of the effects 
of the orientation angle of the principal directions 
of permeability in the horizontal plane containing 
the porous medium by varying the angle of 
orientation. Also, the effects of the permeability 
anisotropy ratio and the effects of 
mechanical anisotropy on the transient behavior 
of the Nusselt number, flow and 
temperature fields over time are investigated.
 
The application of the present study is to perform 
a cooking modeling of gari based on the 
influence of anisotropy on the permeability of 
flour retted in the horizontal and vertical 
directions. 

 
2. MATERIALS AND METHODS
 
2.1 Description of the Physical Model
 
The physical model considered in Fig. 1 is that of 
a parallelepipedal enclosure with flat walls. The 
lower horizontal wall is the one                       
symbolizing the pan which is heated from below 
to a constant temperature TH while the upper 
face is at the constant temperature T
(TH > TC). 

 

 
 

Fig. 1. Physical model: Rectangular cavity in rotation and coordinate axes, containing the 
anisotropic porous medium 

 
 
 
 

; Article no.AJOPACS.66020 
 
 

from the sides. The results showed that 
the permeability anisotropy ratio and the 
inclination angle of the major axes both had a 
great influence on the system. In particular, the 
maximum (minimum) heat transfer is obtained 
when the orientation of the main axis of the 
anisotropic porous medium having the 
permeability is parallel (perpendicular) to the 

This review shows the authors did not address 
the effect of anisotropy in all directions. Also, 
they did not discuss the effects of the anisotropy 
ratio in permeability in the horizontal                              
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2. MATERIALS AND METHODS 

2.1 Description of the Physical Model 

The physical model considered in Fig. 1 is that of 
allelepipedal enclosure with flat walls. The 

lower horizontal wall is the one                       
symbolizing the pan which is heated from below 
to a constant temperature TH while the upper 
face is at the constant temperature TC, such as 

Fig. 1. Physical model: Rectangular cavity in rotation and coordinate axes, containing the 
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The cassava paste contained in the enclosure 
constitutes a porous medium saturated with 
starch which can be assimilated to a                
viscoelastic fluid. 
 

The porous medium is anisotropic in 
permeability, the directions of which are oriented 
obliquely with respect to the vertical                            
axis at an angle φ. 

The porous medium-enclosure system is 
subjected to a sustained rotational                    
movement, of constant frequency N. 

 

From initiation, the anisotropic porous medium is 
the site of unsteady thermo-convective 
phenomena that we will study. 

 
2.2 Governing Equations 
 
The equations governing our system are written: 
 

∇. ��⃗ = 0                                                                                                                                                                              (1) 
 

�1 + ��

�

��
� �

��

�

���⃗

��
+

2��

�
���⃗  ˄��⃗ �� + �����

��

�1 + ��

�

��
� ��⃗ = �1 + ��

�

��
� �−∇��⃗ � + ��⃗�                           (2) 

 

��
�

��
+ ��⃗ . ∇��⃗ � � = �∇�T                                                                                                                                                  (3) 

 

With       �� = �

������� + ������� (�� − ��)���� ���� 0

(�� − ��)���� ���� ������� + ������� 0
0 0 ��

� 

 

2.3 The Equations in the Disturbance State 
 
At the start of cooking (basic or resting state) characterized by pure conduction, we have: 
 
 

�

��  = ��  = �� = 0 

                    � = ��(�)

                    � = ��(�)⎭
⎪
⎬

⎪
⎫

                                                                                                                              (4) 

 
The initial state of equations (2) and (3) are : 
 

�

����

���
= 0

���

��
= −���

                   �ℎ���  �� = �� −
∆�

�
�⎭

⎪
⎪
⎬

⎪
⎪
⎫

                                                                                                       (5) 

 
The experiment of the stability of the thermo-convective phenomenon consists in disturbing the basic 
solution and in observing under which conditions the imposed disturbance increases in amplitude [8]. 
Thus, by substituting the system of equations below (6) in equations (1), (2) and (3), we obtain the 
following equations in the disturbed state: 
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�(�, �, �, �)  =

�(�, �, �, �)  =

�(�, �, �, �)  =

�(�, �, �, �) =

�(�, �, �)     =���������

��(�) + 
0      +

  0       +  
0      +
��(�) +�������

 � ′�� ′,�′,� ′,� ′�

 � ′�� ′,�′,� ′,� ′�

 �′�� ′,�′,� ′,� ′�

� ′�� ′,�′,� ′,� ′�

�′�� ′, � ′, �′��������

                                                                                                  (6) 

                       
Transient    base     disturbance 
 

∇��⃗ . ��⃗ ′

= 0                                                                                                                                                                                        (7) 
 

�1 + ��

�

�� ′
� �

��

�

���⃗ ′

�� ′
+

2��

�
���⃗  ˄��⃗ ′�� + �����

��

�1 + ��

�

�� ′
� ��⃗ ′

= �1 + ��

�

�� ′
� �−∇��⃗ �′ + ���� ′�⃗�                                                                                                (8) 

 

��
�

��′
+ ��⃗ ′. ∇��⃗ � � ′ + �′

���

��
= �∇�T′                                                                                                                             (9) 

 

2.4 A Dimensionnalisation of the Equations 
 
By introducing the following dimensionless variables: 
 

�

(�∗, �∗, �∗) =
�� ′, � ′, � ′�

� 
;  �∗ =

�

��
� ′

(�∗, �∗, �∗) = ��′, � ′, � ′�
�

�
; �∗ =

� ′

∆�

�∗ =  
��

��
�′;  ��

∗ =
�

��
��; ��

∗ =
�

��
��⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                                                                                                  (10) 

 
in equations (6), (7) and (8), we get the following: 
 

∇��⃗ . ��⃗ ∗ = 0                                                                                                                                                                          (11) 
 

�1 + ��
∗ �

��∗
� �

1

���

���⃗ ∗

��∗
+ √����̂� ˄��⃗ ∗�� + ������

��

�1 + ��
∗ �

��∗
� ��⃗ ∗

= − �1 + ��
∗ �

��∗
� �∇��⃗ �∗ − ���∗�̂��                                                                                                                                 (12) 

 

��
�

��∗
+ ��⃗ ∗. ∇��⃗ � �∗ − � ∗= ∇��∗                                                                                                                               (13) 

 

With 
 

����
��

=
1

��

⎣
⎢
⎢
⎢
⎡

�

�
−

�

�
0

−
�

�

�

�
0

0 0 1⎦
⎥
⎥
⎥
⎤

                                                                                                                                       (14) 

 

From the above,  �∗ = �� ��⁄  denotes the 
anisotropy ratio of permeability in the horizontal 
plane, � = �� ��⁄  denotes the anisotropy ratio in 

the vertical direction, , �� = �� ��⁄ denotes the 
Darcy number, �� = (2��� ��⁄ )� denotes the 
Taylor number, �� = ����∆�� ��⁄  denotes the 
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Rayleigh number, �� = � �⁄  denotes the Prandtl 
number and ��� = ��� ��⁄   indicate the number 
of Vadasz. 

By eliminating the pressure terms in equation 
(12) through rotating this equation, we obtain the 
system of equations (14): 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �1 + ��

∗ �

��∗
� �

1

���

���∗

��∗
− √��

��∗

��∗
� + �1 + ��

∗ �

��∗
� �

��∗

��∗
+

�

�

��∗

��∗
−

�

�

��∗

��∗
� = �1 + ��

∗ �

��∗
� ��

��∗

��∗

�1 + ��
∗ �

��∗
� �

1

���

���∗

��∗
− √��

��∗

��∗
� − �1 + ��

∗ �

��∗
� �

��∗

��∗
−

�

�

��∗

��∗
+

�

�

��∗

��∗
� = − �1 + ��

∗ �

��∗
� ��

��∗

��∗

�1 + ��
∗ �

��∗
� �

1

���

���∗

��∗
− √��

��∗

��∗
� + �1 + ��

∗ �

��∗
� �

�

�

��∗

��∗
−

�

�

��∗

��∗
−

�

�

��∗

��∗
+

�

�

��∗

��∗
� = 0                    

�               (15) 

 
Equations (16), (17) and (18) becomes: 
 

�
�

�
�1 + ��

∗ �

��∗
� − �1 + ��

∗ �

��∗
� √���

���∗

��∗� −
�

�
�1 + ��

∗ �

��∗
�

��∗

��∗

= 0                                                                                                                                                                                (19) 
 

�
�

�
�1 + ��

∗ �

��∗
� + �1 + ��

∗ �

��∗
� √���

��∗

��∗
− �1 + ��

∗ �

��∗
� �

��

��∗� +
�

�

��

��∗�� �∗ − �1 + ��
∗ �

��∗
� ��

��∗

��∗

=  0 (20) 
 

��∗

��∗
+ �

��∗

��∗

��∗

��∗
−

��∗

��∗

��∗

��∗
� +

��∗

��∗
= �

��

��∗� +
��

��∗� +
��

��∗�� �∗                                                               (21) 

 
2.5 Analysis of Non-Linear Stability in Transitional Regime 
 
2.5.1 The transient equations 
 
Considering the minimum Fourier series expressed in the directions where thermoconvective motion 
is preponderant, the current function �∗, the temperature fields �∗and the component �∗of the speed 
are defined by [9]: 
 

⎩
⎪
⎨

⎪
⎧

�∗ = ��(�∗) sin(��∗) sin(��∗)                                      

�∗ = ��(�∗) cos(��∗) sin(��∗) + ��(�∗) s ��(2��∗)

�∗ = ��(�∗) sin(��∗) cos(��∗) + ��(�∗) s ��(2��∗)

�                                                                                   (22) 

 
where  ��(�∗),  ��(�∗),  ��(�∗) and ��(�∗)  are the amplitudes of these series and depend on time. By 
introducing the system of equations (21) into equations (18), (19) and (20), we obtain the following 
equations (22), (23) and (24): 
 

−�� �
�

�
���(�∗) + ��

∗ ���(�∗)

��∗
� + ���(�∗) + ��

∗ ���(�∗)

��∗
� √��� +

�

�
���(�∗) + ��

∗ ���(�∗)

��∗
�

= 0                                                                                                                                                 (23) 
 

−� �
�

�
���(�∗) + ��

∗ ���(�∗)

��∗
� + ��� + ��

∗ ���(�∗)

��∗
� √���                                                             

+
�

�
���(�∗) + ��

∗ ���(�∗)

��∗
� ��� +

�

�
��� + ���(�∗) + ��

∗ ���(�∗)

��∗
� ��. �

= 0                                                                                                                                                 (24) 
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�
���(�∗)

��
+ ��(�∗)(��� + ��) + ���(�∗) + 2��(�∗). ��(�∗). ��� �����∗  

− 4��(�∗). ��(�∗)��������∗�����∗

+ � 2
���(�∗)

��∗
+ 8����(�∗) − ��(�∗). ��(�∗)��� ����� 

= 0                                                                                                                                                  (25) 
 
From equations (23), (24) and (25) we obtain the following equations: 
 

���(�∗)

��∗
= � ���� �

�

�
− √��� ���

∗� + ���
∗√��� − ���

∗ ��� +
�

�
��� + ��. �. ��. ��

∗. ��
∗� ��(�∗)

− ��. �. �. ��
∗[1 − ��

∗(�� + ��)]��(�∗) + 2���. ���. ��
∗. ��

∗. ��(�∗). ��(�∗)

+ �� ���
∗ �

�

�
+ √���

− ���
∗ �

�
+ ��

∗√���� ��(�∗)�                                                                                                   (26) 

 
���(�∗)

��∗

= −���(�∗) − (�� + ��)��(�∗)
− 2����(�∗). ��(�∗)                                                                                                                                                    (27) 

 
���(�∗)

��∗

=
�

2
���(�∗)��(�∗)

− 4����(�∗)                                                                                                                                                                  (28) 
 

���(�∗)

��∗
=

�

���
∗ ���

∗ �

�
− ��

∗
√���

���(�∗)

��∗
+

��

���
∗ �

�

�
− √��� ��(�∗)

−
1

��
∗ ��(�∗)                                                                                                                                                                          (29) 

 
With 
 

� =
1

�� ���
∗�

��� − ��
∗�

��� + ���
∗�

��� +
�
�

���
                                                                                                                    (30) 

 
The initial conditions are : 
 

�

��(0) = 0;  ��(0) = ���; ��(0) = 0 

��(0) =
−��. �. �. ��

∗[1 − ��
∗(�� + ��)]��(0)

�� ���
∗ �

�
�

+ √��� − ���
∗ �

�
+ ��

∗
√����

⎭
⎪⎪
⎬

⎪⎪
⎫

                                                                                                                 (31) 

 

The boundary conditions : 
 

�

     � = 0,
��∗

��
= 0

� = 1,
���∗

�����
= 0⎭

⎪
⎬

⎪
⎫

                                                                                                                                                                    (32) 

 
and 
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�

� = 0,
��

��
= 0

� = 1,
��

��
= 0⎭

⎪
⎬

⎪
⎫

                                                                                                                                            (33) 

 

Equations (26), (27), (28) and (29) will be solved numerically by "Mathcad version 15.0". 
 

2.5.2 Expression of the Nusselt number in transient regime 
 

If H denotes the rate of heat transported per unit area, we have [10]: 
 

� = −��⟨
��������

��∗
⟩���                                                                                                                                        (34) 

 

Where the term between square brackets represents the horizontal mean and ������  has the 
expression: 
 

������ = �� − ∆�
�

�
+ �(�, �, �)                                                                                                                        (35) 

 

The expression of H therefore becomes: 
 

� = ��

∆�

�
[1 − 2���(�∗)]                                                                                                                              (36) 

 
The Nusselt Nu number is defined by: 
 

�� =
�

��
∆�
�

= [1 − 2���(�∗)] 

 

�� = [1 − 2���(�∗)]                                                                                                                                      (37) 
 

3. RESULTS AND DISCUSSION 
 
To illustrate the evolution of the cooking of gari 
as a function of time, we have in general 
distinguished two cases of anisotropy in 
permeability, namely the first, anisotropy in 
permeability in the vertical direction (essentially 
controlled by the parameter �) and the second, 
the dynamic anisotropy in the direction of the 
horizontal plane (mainly controlled by the 
parameters K* and �). 
 

The behavior in unsteady state of the heat 
transfer generated by the phenomenon of 
cooking of gari, is analyzed by numerically 
solving the system of nonlinear ordinary 
differential equations, by the calculation software 
"MATLAB version 15.0". Using the initial 
conditions and the appropriate boundary 
conditions, the heat transfer predicted by the 
Nusselt number Nu was calculated as a function 
of time t. 
 

Considering the case of anisotropy in dominant 
permeability in the vertical direction, that is to 

say, when (� < K*<1), Fig. 2.a illustrates the 
effects of the Taylor number Ta on the transfer of 
Nu heat as a function of time t, for different 
values of the control parameters K* = 0.9, � = 15 
°, ξ = 0.6, Ra = 400, λ1* = 0.8 and λ2* = 0.2. We 
observe from this figure that Nu initially oscillates 
with time to reach the steady state as gradually 
increases. In addition, it is observed that, when 
Ta increases, the Nusselt number Nu therefore 
decreases the heat transfer gradually decreases 
to dampen the convection. 
 

Then, the effects of the Rayleigh number Ra on 
the transient behavior of the heat transfer are 
shown in Fig. 2.b for the same values of the 
control parameters as before and for Ta = 25. It 
is noted that, apart from of the oscillatory 
character of Nu during the initial                             
cooking times to reach the steady state, it 
increases with increase in Ra, therefore with the 
increase in the rate of heat transfer. 
 

Similarly, dealing with the case of anisotropy in 
dominant permeability in the horizontal plane, 
that is to say, when (1 < K* <�), we distinguish 
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Fig. 3.a and 3.b respectively illustrating the 
effects of the Taylor number Ta, the Rayleigh 
number Ra on the rate of heat transfer as a 
function of time. As already noted in the previous 
case, the Nusselt number oscillates at the start of 
cooking gari over time and gradually reaches a 
steady state as the time gets higher and higher. 
In Fig. 3.a, the variation of Nu as a function of t 
for different values of Ta and for K* = 1.3, � = 60 
°, � = 1.6, Ra = 1200, ��

∗ = 0.8 and ��
∗ = 0.2, 

showed that the heat transferred by convection 
decreases with the increase in the Taylor 
number, as was noted previously in the case of 

anisotropy previously studied. The difference 
observed here in this case of anisotropy lies in 
the flattening of the peaks of the curves in 
general; which results in the fact that the 
hydrodynamic anisotropy occurs                             
mainly in the horizontal direction. 

 

As for Fig. 3.b illustrating the evolution of Nu as a 
function of t for different values of Ra and for K*  
= 1.3, � = 60 °, � = 1.6, Ta = 25, ��

∗ = 0.8 and 
��

∗= 0.2, the heat transfer rate increases as the 
number of Ra decreases. 

 

 
 

Fig.2 Effect of dimensionless quantities (a) Effect of Taylor number on anisotropy in the 
vertical direction 

(� < K* < 1) with K*= 0.9 ; �= 0.6 ; Ra = 400 ; � = 15° ; ��
∗= 0.8 ; ��

∗= 0.2 (b) Effect of Taylor number on 
anisotropy in the vertical direction (� < K* < 1) with K*= 0.9 ; �= 0.6 ; Ra = 400 ; � = 15° ; 

 ��
∗= 0.8 ; ��

∗= 0.2 
 

 
 

Fig.3 Effect of dimensionless quantities (a) Effect of the Taylor number Ta on anisotropy in the 
horizontal plane 

(1 < K* < �) with � = 1.6 ; Ra =1200 ; K*= 1.3 ;  ��
∗= 0.8 ; ��

∗= 0.2 ; � = 60° (b) Effect of Rayleigh number Ra on 
anisotropy in the horizontal plane (1 < K* < �) with � = 1.6; Ta = 25 ; K*= 1.3 ; ��

∗= 0.8 ; ��
∗= 0.2 ; � = 60° 
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4. CONCLUSION 
 
The study of the non-linear stability in a transient 
rotating regime of an anisotropic porous medium 
saturated with a viscoelastic fluid was carried 
out. We have in general distinguished two cases 
of anisotropy in permeability, namely the first, the 
anisotropy in permeability in the vertical direction 
(controlled mainly by the parameter �) and the 
second, the dynamic anisotropy in the direction 
of the horizontal plane (mainly controlled by 
parameters  K*  and  � ). Two salient points 
emerge from this study : 
 
 In both cases of anisotropy, it is observed 

that, when the Taylor number Ta 
increases, the Nusselt number Nu 
therefore decreases the heat transfer rate 
gradually decreases to dampen the 
convection. We can therefore                    
conclude that the heat transfer rate 
decreases with the speed of rotation of the 
cavity. 

 
 The Nusselt Nu number increases with an 

increase in the Rayleigh Ra number, so 
increasing Ra increases the rate of heat 
transfer in the case of permeability 
anisotropy in the vertical direction. On the 
other hand, in the case of dynamic 
anisotropy in the direction of the                   
horizontal plane we observed the opposite 
effect, that is to say that the heat                 
transfer rate increases when the                 
Rayleigh number Ra decreases. 
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