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ABSTRACT 
 

Background: Several models have been developed for inflow forecasting in reservoirs based on 
local parameters which may not include an implicit system characteristic like seasonality. 
Autoregressive integrated moving average (ARIMA) models can be developed to cater for the 
presence of seasonal and non-seasonal behavior of natural water systems.   
Aims: The present study aims to estimate Volumetric Inflow in a Hydropower Dam using 
Autoregressive Integrated Moving Average (ARIMA) Modelling and Altimetric Lake Levels.  
Study Design: The study was conducted in the Kainji reservoir, West Africa located along the Niger 
River. This study combines satellite-altimetry-based rating curves with reservoir inflow models that 
capture the seasonality of upstream characteristics.  
Results and Discussion: Seasonal multiplicative ARIMA models were developed based on 27-
year inflow records and used to forecast seven subsequent years. Reservoir levels measured by 
satellite radar altimeters were matched with actual inflows to generate rating curves from which 
future inflows may then be estimated. The model with the best forecasts relative to actual inflow - a 
seasonal multiplicative ARIMA (2,1,1) x (2,1,2)12 model – was adopted.  
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Conclusion: Strong agreements between all three inflow series (actual, model-based, and satellite-
based rating curve) suggest that reservoir inflow models can be combined with satellite altimetric for 
reservoir inflow estimation. 

 
 
Keywords: Inflow modelling; ARIMA; satellite altimetry; Kainji dam; Niger River. 
 

1. INTRODUCTION 
  

A wide variety of modelling techniques have 
been used for predicting hydrological parameters 
in natural water resources systems [1-3]. Where 
regional or local water systems are of interest, 
smaller-scale models have been created which 
better represent the behavior of the systems they 
were created for [4,5]. Sometimes, the model or 
methodology may not be admissible beyond a 
specified region or guiding assumptions, quickly 
lose validity under changing climatic conditions, 
or need frequent revalidation when changes 
arise in the hydrology of an adjoining region 
which directly impacts it. This is the case in the 
proposed study area, the Kainji-Jebba dual 
reservoir system (Fig. 1) in West Africa which is 
heavily impacted by dams upstream [6-9]. 
Flooding and droughts are prevalent due to 
anthropogenic factors like poor operational 
policies and speculative information about 
upstream usage, and natural factors like climate 
change and shrinking water levels [10,11]. 
Therefore, a reliable means of predicting inflow 

will be beneficial for planning by stakeholders in 
this heavily dammed transboundary river. 

 
Some work on river and reservoir inflow 
modelling and prediction have either substantially 
depended on mathematical models or some 
combination of the system’s hydrological 
parameters with a mathematical model [3,12-14]. 
Other studies have been done specifically in 
reservoirs with similar geographical, climatic and 
hydrological conditions as the study area [15,16]. 
But this study relies on and combines field data 
with autoregressive integrated moving average 
(ARIMA) inflow models that capture the seasonal 
behavior of the water system. Water levels from 
satellite altimetry were then correlated with actual 
inflows to generate rating curves from which 
futuristic estimates of inflow can be made. 
Although ARIMA models have been used to 
predict hydro-meteorological parameters [17-19], 
this study specifically created and compared 
ARIMA inflow model results with satellite-
altimetry-based rating curves for possible use in 
remotely determining reservoir inflows. 

  

 
 

Fig. 1. Niger River Basin showing Kainji reservoir and other dam sites as red triangles [6] 
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1.1 Study Area 
 
The study area is the Kainji reservoir (Table 1) in 
West Africa. It is located along the Niger River. 
The 4,200 km river flows northeast, then 
southeast, and drains into the Atlantic [20,21]. 
Along the length of the river are other dams (Fig. 
1) used for hydropower, flood control, water 
supply, and irrigation [22,23]. Monthly storage 
depends mainly on river inflow as contribution 
from its catchment accounts for less than 10% of 
direct inflow [20]. Outflow from the Kainji 
reservoir is the primary inflow to the Jebba 
reservoir (Fig. 1) located downstream of the 
Kainji dam [21,22].  
 

Table 1. Characteristics of Kainji Reservoir 
 

Characteristics of Kainji Reservoir 
Latitude 9

o
50’ N 

Longitude 4o40’E 
Maximum Capacity (km

3
) 15 

Minimum Capacity (km3) 3.5 
Maximum surface area (km

2
) 1270 

Length (km) 135 
Maximum Width (km) 30 
Maximum Elevation (m.a.s.l.) 141.9 

 

2. METHODOLOGY 
 
In situ inflow selection and rating curve 
generation: Reservoir inflow volumes and 
average daily river discharge were collected for a 
27-year period (1970-1996) from multiple 
gauging stations. The station chosen for this 
study is at the inlet of the reservoir and 
coincident with the coordinates of satellite 
altimeter tracks over the reservoir (Fig. 3). This 
allowed for spatial and temporal comparison of in 
situ, model-based, and rating-curve-based flows.  
 
Inflow modeling: A basic ARIMA (p, d, q) model 
(Box et al., 2007) was used in forecasting. This 
may be written as:  
 

�� =  ������ +  ������ + ⋯ + ������ +∝�−

������ − ������ − ⋯ ������                       (1) 

 
A seasonal ARIMA model was then used to 
combine both seasonal and non-seasonal 
patterns in reservoir inflow into one single 
multiplicative model that may be summarily 
expressed as ARIMA (p, d, q) × (P, D, Q)s. This 
is a basic ARIMA (p,d,q) model whose residuals 
were further modelled by an ARIMA(P,D,Q)s 
structure with linear operators (P,D,Q). Here, p = 
non-seasonal AR (or autoregressive) order, d = 

non-seasonal differencing, q = non-seasonal MA 
(or moving average) order, P = seasonal AR 
order, D = seasonal differencing, Q = seasonal 
MA order, and S or s = time span of repeating 
seasonal pattern. A seasonal multiplicative 
model provides the benefit of catering for 
seasonality in reservoir inflows given that typical 
inflow and storage series for this reservoir 
suggest a return to about the same level yearly 
[11,20,23]. Seasonality in a time series refers to 
a regular, repetitive pattern of changes over a 
given time of S or s periods. The term s is the 
number of time periods before which the pattern 
is seen again. Time series of inflow (Figure 3) for 
this reservoir appear to exhibit some seasonal 
patterns in monthly datasets where high values 
occur in rainy months and lower values occur in 
other dry months. Therefore s = 12, that is, the 
period of seasonal behavior of inflows to the 
reservoir. Without differencing operations, the 
seasonal multiplicative ARIMA model used for 
the inflow time series [24] was expressed as 
follows: 
 

Seasonal AR:  φ(BS) = 1 - φ1BS - ... - φPBPS  

(2) 
 
Seasonal MA:  θ(BS) = 1 + θ1BS + ... + θQBQS   

(3) 
 
While the inflows follow a given pattern yearly, 
the random presence of high inflows in some 
years suggests some non-seasonality which is 
better investigated by a different method of de-
seasonalizing and modeling using differencing 
techniques [1]. Non-seasonal behavior of the 
system was then modeled thus: 

 
AR:  φ(B) = 1 - φ1B - ... – φpBp              

 (4) 
 
MA:  θ(B) = 1 + θ1B + ... + θqBq               (5) 

 
The trends of autocorrelation functions (ACF) 
and partial autocorrelation functions (PACF) 
were used to determine the significance of non-
seasonal behavior on the series [24]. Steps for 
determining the most appropriate multiplicative 
model were performed. This involved the 
determination of model parameters and an 
iterative process of fitting, forecasting, and 
comparing different model results.  
 

3. RESULTS AND DISCUSSION 
 
Three multiplicative ARIMA (p,d,q) x (P,D,Q) 
models appeared most suitable for inflow volume 
prediction based on relative errors between 



measured and forecasted flows. These were 
ARIMA (101) x (011)12,

 
ARIMA (111) x (212)

and ARIMA (2,1,1) x (2,1,2)
multiplicative models (Fig. 4 and Ta
 

 
Fig. 2. Actual vs. predicted inflow volume for 

ARIMA (2,1,1) x (2,1,2)12 model
 

Possible reasons for such differences lie in the 
varied ability of each model to capture true 
seasonal behavior of the system and in the 

Fig. 3. Left (Satellite image of reservoir inlet, usda.gov) and Right (Reservoir inlet rating curve)

Fig. 4. Time series of reservoir inflow volume

R
2
 = 0.88 
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measured and forecasted flows. These were 
ARIMA (111) x (212)12, 

(2,1,1) x (2,1,2)12 seasonal 
4 and Table 2).  

 

Actual vs. predicted inflow volume for 
model 

Possible reasons for such differences lie in the 
varied ability of each model to capture true 

of the system and in the 

comparison of only monthly average values in 
Table 2. The ARIMA (2,1,1) x (2,1,2)
lowest relative errors and highest determination 
coefficient (Fig. 2 and Table 2) for the seven
forecasted period. Supplementary analysis of 
these model results was done using a rating 
curve developed for the inlet of the reservoir. The 
ACFs and PACFs also showed evidence of 
randomness about zero and decay within th
five lags. A rating curve generated for the inlet of 
the reservoir (Fig. 3) resulted in a high 
determination coefficient of 0.98. Inflows 
estimated using this rating curve showed low 
relative errors (Table 2). The in-situ inflow data 
used for this study (1970 – 2003)
period made available by the local government. 
Therefore, the models were partly 
data and compared with modelled results for the 
last seven years (1997-2003) of actual data. The 
model’s validity beyond the stated period may 
then be investigated when additional inflow 
records are made available.  
 

 

 
Left (Satellite image of reservoir inlet, usda.gov) and Right (Reservoir inlet rating curve)

 

 
Time series of reservoir inflow volume 
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comparison of only monthly average values in 
he ARIMA (2,1,1) x (2,1,2)12 gave the 

lowest relative errors and highest determination 
2 and Table 2) for the seven-year 

forecasted period. Supplementary analysis of 
these model results was done using a rating 
curve developed for the inlet of the reservoir. The 
ACFs and PACFs also showed evidence of 
randomness about zero and decay within the first 

A rating curve generated for the inlet of 
3) resulted in a high 

determination coefficient of 0.98. Inflows 
estimated using this rating curve showed low 

situ inflow data 
2003) was the only 

period made available by the local government. 
partly based on this 

with modelled results for the 
actual data. The 
ted period may 

be investigated when additional inflow 
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Table 2. Monthly average reservoir inflow over the seven-year period tested (1997-2003) 
 

 
 

4. CONCLUSION 
 

The in-situ inflow data used for this study (1970 – 
2003) and the modeling exercise yielded results 
that demonstrate their suitability for forecasting 
reservoir inflows. This suggests that the seasonal 
behavior of the system was adequately 
represented by the models for the period 
evaluated. The potential also exists for applying 
other predictive tools like artificial neural 
networking and support vector machines for 
forecasting hydrological parameters of such 
natural water systems for use in making water 
management decisions. 
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