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We consider the t-extension of the p-Fibonacci Pascal matrix. First, we study the k-th power of the t-extension of the p-Fibonacci
lower and upper triangular Pascal matrix. Then, we obtain a new code which is named the ¢-extension of the p-Fibonacci Pascal

matrix coding/decoding by using them.

1. Introduction

The Fibonacci sequence is defined by the recurrence relation
fo=fu1 + > n>3, with the initial values f =f,=1.
Recently, there are many papers devoted to the study of
the Fibonacci and generalized Fibonacci sequences; for
example, see [1, 2]. Such the generalization, which will be
used in this paper, is the t-extension of the p-Fibonacci
sequence.

Definition 1. For constants ¢ > 1 and p > 0, the t-extension of

the p-Fibonacci sequence {f*(t,n)},o, is given with the
following recurrence relation (see [3, 4]):

tff(t,n-1)+fP(t,n-p-1), n>1.

For example, for t =3 and p =2, we have f>(3, n) = 3f*

(3,n—1)+f*(3,n—3) and

{f2(3,”)}i0m:{""0’ 1,3,9-}. (2)

In [4-13], the authors studied the properties of the
Pascal matrix. We recall the following definition from [5].

Definition 2. The n x n lower triangular Pascal matrix L, =
[1;] is defined as

i
. ifiz],
lij= <J> (3)

0, otherwise,

and the nxn upper triangular matrix U, =[u;] is

defined as
i
, ifj>i,
u;;= j (4)

0, otherwise.

The nx n, t-extension of the p-Fibonacci lower trian-
gular Pascal matrix, denoted by LP(t,n), is defined as
follows:

flti=j+1), ifizj+120,
P(t,n) = [fi,j]ijzl o { 0

ifi—-j+1<0,

(5)
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and the inverse of the t-extension of the p-Fibonacci lower

triangular Pascal matrix, (L?(t,n))"" = [li’j]ijzl .. »isgivenas
1, ifi=j,
-t, ifj=i-1,
I, ! (6)
“1, ifj=i-(p+1),

0, otherwise.

See [14] for more details.
For example, we have

[fi51 O 0 0 1 0 0 0
f3,2 f3,1 0 0 3 1 0 0
L'(3,4)= - ,
f3,3 f32 f3,1 0 10 3 1 0
L34 f35 fio fan 33 10 3 1
10 0 0 1 0 0 0
-+ 1 0 0] |-3 1 0 0
L'(3,4)" = _
-1 —t 1 0 1 3 1 0
L0 -1 -t 1 0 -1 -3 1

Now, we define the t-extension of the p-Fibonacci upper
triangular Pascal matrix, denoted by U?(t, n), as follows:

fPtj—i+l), ifj—i+1>0,

0, if j—i+1<0.

(8)

1
1 0

(i)LM(t,2)F = l
kt 1

kt

(L' (t,4)) =

b (£ +1) + k(£ +2t) +

kt

k
<>t2+k(t2+1) kt 1
2

<z>t2+k(t2+1)
_ ;<<i>t2+i(t2+1)>t <z>t2+k(t2+l) kt 1_
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The inverse of the t-extension of the p-Fibonacci upper

triangular Pascal matrix denoted by UP(t,n)™" is defined as
follows:

1, ifi=j,
-t, ifi=j-1,
UP(t,n) ' = {mu} B iti=j
| <1, ifi=j- (p+ 1),

0, otherwise.

)

An application of the Fibonacci matrix and its generali-
zation is in coding theory (see [15-22]). In this paper, using
the t-extension of the p-Fibonacci lower and upper triangu-
lar Pascal matrix, we present a new code matrix.

The rest of the paper is organized as follows: in Section 2,
we obtain the k-th power of the t-extension of the p-Fibo-
nacci lower triangular matrix and upper triangular Pascal
matrix. Also, we give the inverse of them (2 < n < 4). Section
3 is devoted to obtaining a coding and decoding on the
t-extension of the p-Fibonacci Pascal matrix.

2. The k-th Power of the t-Extension of the
p-Fibonacci

In this section, we calculate the k-th power of the ¢-extension
of the p-Fibonacci lower triangular Pascal matrix, the ¢-
extension of the p-Fibonacci upper triangular Pascal matrix,
and their inverse matrices. First, we denote the k-th power

of IP(t,n) and UP(t,n) by (LP(t,n))* and (UP(t,n)),
respectively.

Theorem 3. For p=1 and t, k> 1, we have

0 0

1 0

>

0 0 07
(10)

1 0 0

kt 1 0
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where b, =0, b,=2, and b, =b,_, + (k- 1) for k> 3.

k
1 kt <>t2+k(t2+l)
2

(1 kt
(i) U (t, 2)F = , UNt,3)F = ,
0 1 0 1 kt
0 0 1
- K . ; -
1tk Prk(P+1) b(P+t)+k(F+2t)+ ) E+i(f+1) |t (11)
2 i=2 2
1 k k
(U'(t,4)) =]0 1 tk , £ +k(+1) ,
0 0 1 tk
0 0 0 1 |
where b, =0, b,=2, and b, =b,_, + (k- 1),k>3. oo 0 0 o
t 1 00
Proof. x
roof. £+l t 10
(i) Since the proof of the result for n =2, 3, and 4 is sim- LP+2t £#+1 ¢ 1
ilar, we prove the result by induction on k for n = 4. I 1 0 0 0]
Let k = 1. Then, by relation (3), we have (1+1)t 1 0 0
I+1 ) R
_fl(tyl) 0 0 0 = < , >t+(l+l)(t+1) It 1 0],
Ll(t,4): fl(t’z) 0 0 _ u (lzl)tz+(l+l)(t2+1) (1+ 1)t 1_
fie3) fib) fis1) o (13)
1 1 1 1
e ey fe fenl
M1 0 0 0
u=by, (£ +1t)+1(£ +2t)
t 1 0 0 ! i I+1
= + £+i(f+1) |t £ 14
£+1  t 10 §<<2> ( >> ( 2 ) e
[£+2t £2+1 ¢ 1 +(1+1) (£ +1)
(12)
(if) The proof is similar to the proof of the proposition
Suppose the result holds for k = I. Therefore, we have (i) and then is omitted
L em)™ U
= (LMt ) x (L' (6, m))
i ’ 0 0 o Example 1. For n=4 and k =3, we have
It 1 00 1 0 0.0
N, o 3t 1 0 0
i <2)t HE) " b (ea) = 3 +3(£ +1) 3t 1 ol
e ! 4P +1)+3(F+20) + (P +2(F+ 1))t 32 +3(F+1) 3t 1
(£ + 1) +1(F +21) + (( >t2+i(t2+l)>t < >t2+l(t2+l) It 1
L i=\\2 2 i (15)
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Similar to the proof of Theorem 3, we can prove the
following theorems.

Theorem 4. For n=4, p=2, and t > I, we have

r 1 0 0 07
kt 1 0 0
k
(i)(Lz(t,n))k: << >+k>t2 kt 1 0],
2
k i-1 k
<4+Z<< >+2i—1>>t3+k << >+k>t2+k(t2+l) kt 1
L i=3 2 2 J
[ k k i—1 i (16)
1tk (( >+k>t2 <4+Z<< >+2i—1>>t3+k
2 i=3 2
L k
(ii) (U*(tn)) = |0 1 tk << >+k>t2
2
0 0 1 tk
0 0 0 1 |
Theorem 5. For n=4, p>3, and t > 1, we have
i 1 0 0 07
kt 1 0 0
k
() (LP (1, n))* = (( >+k>t2 kt 1 0],
2
k i-1 k
<4+Z<< >+2i—1>>t3 (( >+k>t2+k(t2+1) kt 1
L i=3 2 2 i
i ] (17)

k k i—1

1tk (( >+k>t2 <4+Z<< >+2i—1>>t3
2 i=3 2

(i)(UP () =0 1 tk <<z>+k>t2
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We denote the inverse of (LP(t, n))* and (UP(t,n))* by
(L2(t, n)) ™ and (UP(t,n)) 7, respectively. Now, we have the

following theorem.

Theorem 6. For n=4 and p=1,

(OL(t,2)* =

where ¢, =0, ¢, =2t, and

ck=ck_1+(k—1)t—i((i;1>t2_(i—l)>t, (19)

for k=>3.

(Ul(t, n))7 =

where ¢, =0, ¢, =2t, and

=y + (k= 1)t - i((i_;)tz—(i—l))t,kz&

0 07
0o 0
1 0

0 0
1o
-kt 1
(18)

(20)

(21)

Proof.

(i) It is sufficient to show that the result holds for n =4.
For this, we use the induction method on k. Let k= 1.

Then, by relation (4), we have

0 0
0 0
1 0
-t 1

Suppose the statement holds for k = I. Then, we have

(Ll (t, n))f(Hl)
-1 -1
= (L'(t,n)) " x (L'(t,n))
o1 0 0 07
—It 1 0 0
)
= -1 -t 1 0
2
)
¢ -1 -t 1
L 2 J
1 0 0 O
-t 1 0 0
-1 -t 1 0
0 -1 -t 1
i 1 0 0
~(I+ 1)t 1 0
I+1
= £ —(l+1) —(I+1)t 1
2
1 I+1
o+ £-1)t+lt -1 —(+1)t
L 2 2

we have result.

(23)



The proof (ii) is similar to the proof of the proposition
(i). So, we omit it.

Example 2. For n=4 and t =5, we have

1 0 0 0
(L) _Szt 1 0 0
-10£2 -5 —5¢ 1 0

- (£ -2)t— (3% -3)t— (62 —4)t —10£ -5 -5t 1

By induction on k, we can prove the following theorems
and therefore we will omit their proofs.
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Theorem 8. For n=4 and p >3,

1 0 0 0

(i) (LP (1, m)) ™ =

- k
Theorem 7. For n=4 and p=2, (@)U (L) =0 1 —tk <2> t?
i ! 0 0 0] 0 0 1 —tk
:k 1 0 0 0 o 0 ; |
(6 4) "= (2) ¢ k10 (27)
_Zk: i-1 B_k k 2 itk 1 Lemma 9. For m,s,p € N and n =4, we get
L i=3 2 2 ]
_ <k> i o () (LP(t:n))" x (LP(t,m))" = (LP(t, )" x (LP(t, m))"
1 —tk T < >t3 k = (LP(tn))™
2 =3\ 2 ( ( n)) (28)
) ) k (i) (UP(t,n))" x (UP(t,m))" = (UP(t,m))" x (U (£, m))"
(ll)(UP(t,n)) = 0 1 —tk <2)t2 _ (Up(t,n))WHS
0 0 1 —tk
o 0o o0 I _ Proof
(26) (i) By Theorem 3 for p =1, we have
1 0 0 0
mt 1 0 0
m
(L't n))" x (L' (t,n))" = ( >t2+m(t2+1) mt 1 0
2
bm(t3+t)+m(t3+2t)+§:<<Z>t2+i(tz+l)>t <m>t2+m(t2+1) mt 1
i=2 2 2
r 1 0 0 0]
st 1 0 0
x (S)t2+s(t2+l) st 1 0 (29)
2
bs(t3+t)+s(t3+2t)+i<<l>tz+i(t2+l)>t (S>t2+s(t2+1) kt 1
L i=2 2 2 J
1 0 0 0
(m+s)t 1 0 0

2

a

- <m+s>t2+(m+s)(t2+1) (m+3)t 1 0

= (L't m)™™,

b (m+s)t 1
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where

a=b,, (£ +1t)+(m+s) (£’ +2t)

+ r§$<<i>t2+i(t2+ 1)>t,
=\\2 (30)

m+s
b=< >t2+(m+s)(t2+1).

2

In a similar way, one can prove the remaining cases.
O

3. Coding and Decoding on k-th Power the
t-Extension of the p-Fibonacci Pascal Matrix

In the present section, first, we introduce a coding and
decoding on the t-extension of the p-Fibonacci Pascal matrix
and get its error detection and correction.

For 2 < n <4 and an initial message M,,,,,, we will name a

transformation E = (LP(t, n))* x M x (U?(t,n))* as the t-
extension of the p-Fibonacci Pascal coding and a transforma-
tion M = (L (t,n)) * x Ex (UP(t, n)) " as the t-extension of
the p-Fibonacci Pascal decoding. Note that the matrix E is
as a code matrix and all of the elements of M are positive.

Lemma 10. For 2<n<4 and k,p € N, det (E) = det (M).

Proof. Since E = (L?(t, n))E x M x (UP(t, n))*, we have

det (E) = det (L7 (£, n))* x M x UP(t, n)>k>

= det (U(t, n))k) x det (M) x det (L(t, n))k)
=1xdet (M) x1=det (M).
(31)
O

Now, we obtain a relation for elements of the code
matrix E. We study three cases. The rest cases are similar.

Case 1. Let n=2 and p = 1. For the matrix M,,,, we have

E=(L'(£,2)) x M x (U'(,2))"

1 0][m, m,][1 tk
_Lk 1] lmS my [0 1] (32)

™y tkmy + m,
thm, +my £k my + th(ms + my) +my

On the other hand, we get

M= (L'(1,2)) “Ex (U'(t,2))
(1 07[e €]l -tk
|-tk 1]|le; e |[0 1
[ e —tke, + e, (33)
| —tke, +e; t*kPe, —th(e, +e5) +e,
[m, m,
LMy 1y
We obtain
m;=e 20,
m, = —tke, + e, >0,
(34)
my = —tke, +e; >0,
my=t'k’e, — tk(e, + e;) + e, > 0.
So, we have
ﬁgi’ e_lgi, e_lgi (35)
e, tk’ ey tk’ e, T £2k?
Case 2. Suppose that p=1 and n = 3. For M,,
M= (L'(t,3))  xEx (L'(1,3))™
1 0 o]
€ & &
—tk 1 0
= €, e €,
<k> i 4 5 6
t"—k -tk 1
5 L€7 € &
. -
1 -tk < >t2 —k
2
0 1 ~tk
0 0 1]
e —tke, + e, a
—tke, + e, (—tke, +e,)(—tk) + (—tkey +e5) b

B ,
(( )tz—k>el—tke4+e7 c d
2

(36)

where

k
a= << >t2—k>el—tkez+e3,
2



k
b= < ) - k) (—tke, +e,) + (—tke, + e5)(—tk)
+

(—tkes + e5),

k
c=<<< >t2—k>el—tke4+e7>(—tk)
2
k
—k | e, — thes + e,
(2> ) (37)

{
(A
(s
(G

So,

my=e; 20,

m, = —tke, + e, >0,

k
my = (( >t2—k>el—tkez+e320,
2

my = —tke, + e, >0,

ms = (—tke, +e,)( (—tke, + e5) >0,

( > > (—tke, +e,) +
(—tke; +eg) =0,

k
m, = t*—k |e, —the, +e, >0,
2
k
mg = t* —k |e, —the, +e; | (~tk)
2
k
+ 2 —k |e, - thes + eg >0,
2

(R (e
(G

(38)

(—tke, + e5)(—tk)
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Therefore, we get

e, 1 e, 1
e, tk e o k 2k (39)
2
e, 1 e 1
-4 4
e, tk es 2k (40)
e, 1 e 1
o 3 2 T 2 )
3k kt? —k*t 2k 22—k
2 2
(41)
e _ 1 a 1
- > - 2
’ ) o kt? ® 2Kk + k- £
2 2
(42)

Case 3. Let p=2 and n =4, we obtain

M= (I(,4)) “xEx (I(1,4))

3

€ & & &

8]
~—
-
[N}
|
-
=~
—
L

¢ & & &
€ € € €

Leiz €y €5 €6

k k [k
1 -tk £ o=y £k
2 =3\ 2
k
0 1 -tk 5
2
0 0 1 —tk
0 0 0 1
k
e —tke, + e, te, —they +e;
2
= | ~tke, +es (—tke, +e5)(—tk) + (—tke, + ¢g) h, hy |,
hy hs hs h;
hy hq hag by,
(43)
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k
)el + (( >t2>e2—tke3+e4,
2
k
h, = (—tke, + es5) 2 | + (~tke, + e5)(—tk) — tke; + e,
2

k [k k
hy = (~tke, + e5) (—Z £ —k> + (—tke, + eg) (( >t2>
i=3 2

where

k k
) t*e, — tkes + eg) (—tk) + ( > t’e, — tkeg + ;9

2 2
k k

t2e, — tkes + ¢, t*
2 2

k k

— theg + ey | (—tk) + t?e; — the, + ey,

2 2

k k [k
—tkes +ey | | — Z -k
=3\ 2

k
t?e, — theg + ey £
2
k
ey —tke, + ey | (~tk) + t’e, — theg + e,
k

=

w

1]
/—\/_\/_\
/N =

/\
/
&)

2
> tes — tkey + e,
k

(%(Zk t3k>el+<2k>t S—tkeg+e13>>(_tk)
(AL ) ()
hw:((_i(: t3_k>el+(z)tzes_tk€9+el3>><;€>tz

— tkeyy + ey

k
- k) e + ( >t265 — tkeg + 313>
2 2
k k [k
CRL) ) (20
=3\ 2 =3\ 2

9
k k
+ t2es — theyy +e1,) t*
2 2
k [k k
+ |- z £ ke, + tle, — tke,, + €5 | (~tk)
=3\ 2 2
k [k k
+ |- Z —-k)e, + tPey —they, + e
=3\ 2 2
(44)
So,
my=e; 20,

m, =—tke, + e, >0,

k
m3:<< )tz—k>el—tkez+e320,
2
k [k k
my = —Z £ —k|e + t* |e,——tke; + e, >0,
i=3 \ 2 2

ms = —tke, + e5 >0,

mg = (—tke, + es)(—tk) + (—tke, + e5) 2 0,

k
m, = (—tke, +e;) (( ) t2> + (—tke, + eg)(—tk)
2

—tkey + e, >

k [k k
mg = (~tke, + e) ( D ) ) tkez+eﬁ)< >t2
i=3 2

+ (—tkes + ;) (—tk) + (—tkey + eg) > 0,

k
m9:< )tzel—tkes+e920,
2

k k
m, = tPe, — tkes +eq | (—tk) + t’e,
2 2

—tkeg + €, >0,

k k
my, = t?e, — thes + ey £
(e ()7
k k
+ (( )1‘2e2 — tkeg + ew) (—tk) + ( >t263
2 2

—tke; + e, 20,

e (o)
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()
(e e

k [k k
My = —Z £~k |e + tPes — they + e, = 0,
=3\ 2 2

(S (o)
s

—tkeyy +e,4 20,

e
'<z>t2+<_;<2>t3_k>ez

My, =

k [k k
Mg = —Z ke + t?es — tkey + e,
i=3 2
k

k
+ < > tPey — tke,, + e, > 0.
2

Therefore, we get

(45)
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e, 1 e 1

k b
3 2+ k-13%
2

|
-
[\S]
b
[SS)
|
/
7N
[\ bl
~_—
s
~_—
)
N
|
N
T
w

e 1 e, 1
es tk e tk’
e; 1 e, 1
e,  th’ ey tk’
€ 1 e 1
e k — k ’
R 2 Yo 2
2 2
e4_ 1 . , e < 1 ’
8 €13
121 2 >k, £+ k- 3k
2 2
e, 1 e 1
e - 5 - = >
a Zf3< >t3+k—t3k3 " Z,k_3< )t3+k 3k
ey 1

e 1
>0, L<—, 47
€ e, tk ( )
e _ 1 e _ 1
— b e b 4
Yo 2 vk, e (48)
2
e, 1 e, 1
—<—, =< 49
es th etk (49)
e; 1 e, 1
<=, —=<—, 50
e, thk ey tk (50)
e _ ! & !
TR ‘ 2 e ) 2
2 2
(51)
a1 a1

eg k T ey k ’
bR 2 Pk, £ - 83K
2 2
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e e
e <2>t3 e I <2>t3 o
(53)
€ _ 1
16 B k k . (54)
Qi £ -k
2

We encounter a question about relations (35)-(54). How
large should k be to claim that inequalities (35)-(54) can be
converted into equalities? We will give an approximate
answer to it by two examples.

Example 3. For p=1,t=5 and an initial message M,,,,
we have

3 5
M- [ ] | (55)
8 20

We consider k=1; then,

1

E=(L'(5,2))' x M x (L(5,2))

1 073 57[1 5 3020 (56)
_ls 1“8 20”0 1]_lz4 146].

Here, we have the following:

3, 320~ 0.015,
X (57)
24 146

From (35), we have 1/tk=1/5=0.2 and 1/2k* =1/25 =
0.04.
Now, for k=100, we have

100 100

E=(L'(52))  xMx (U'(5,2))
1

013 5 1 500 3 1005
500 1][8 20f/[0 1 1508 756520

(58)
In this case,
3
3, m = 0.0029,
(59)
3 3
—— =0.0019, ——— =0.0000039.
1508 756520
Since 1/tk=1/500=0.002 and 1/t2k* = 1/250000 =

0.000004, we have the following relations for k = 100:

2~ s — =, (60)

11
Example 4. For p=1,t =3 and an initial message as
1 5 7
M=|2 2 3|, (61)
4 8 9
we consider k =2; then,
E=(L'(3,3))" x M x (U'(3,3))’
1 0 0][1 5 7][1 6 29
=6 1 0 2 2 3 01 6
29 6 1[4 8 9]|0 0 1 (62)
(1 11 66
=!8 80 349
| 45 435 2525
In this case, we have the following values:
1 1
1, — =0.09, — =0.015,
11 66
1 1 1
— =0.125, — =0.0125, — =0.0028,
8 80 349
1 1 1
— =0.022, — =0.00229, —— =0.000396.
45 435 2525
(63)

From (39)-(42), we have

e, 1 1
—< — =—-=0.166,

e, thk 6

e, 1 1

< = — =0.0344,
) k 29
12k* - 2 —k
2

e, 1
—< — =—-=0.166,

e, tk

e 1

—< — = — =0.0277,

es 12k

e, 1 1

& = =0.0053,
e k 18

B3k - k2 — k%t
2
e 1
< = — =0.0344,
29
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e 1 1
—< = — =0.0053,
e k 18
Bk - kt? — Kt
2
64
e 1 1 (64)
< —— =0.001189.

e O

Now, let k =100. Then, we get

E=(L'(3,3)

1 0

100 100
) )

xMx (U'(3,3)
011 5 77[1 200 5450

200 1 0|2 2 3[(0 1 200

| 5450 200 1] |4 8 9|[0 © 1
! 205 6457

= 202 41402 1302703

| 5854 1198458 324847519 |

(65)
In this case, we obtain the following values:
1 1
1, —— =0.0048, ——— =0.00015,
205 6457
L =0.0049, ; =0.000024, ; =0.00000076,
202 41402 1302703
L =0.00017, ————— =0.00000083, ; =0.000003.
5854 1198458 324847519
(66)
From (39)-(42), we have
e 1 1
—< —=—=0.005,
e, tk 200
e, 1 1
€ - ~0.000049,
e k 20300
2k - 2 —k
2
e 1 1
—< —=—=0.005,
e, tk 200
e 1 1
e = =0.000025,
e 2k 40000
e 1 1
s =0.0000049,

e k ~ 204000
B3k — kt2 - k*t
2
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e 1
1< = =0.000049,
e, k 20300
2k - 2 —k
2
e 1 1
b - =0.0000049,
k 2040000
B - tk* — Kt
2
e 1

=0.0000024.

1
e k 2 203002
2k + k- << )t2>
2

Therefore, by considering ¢ and the matrix M, we can
find k =100 is an appropriate value.

Now, we calculate the error detection for the t-extension
of the p-Fibonacci Pascal decoding. Error detection and
correction of the code message E are the most important
aim of the coding theory. First, we should determine the
error detection in the code message E. For this, using the
property of the determinant of a matrix, we can check the
transmitted message E in the communication channel. We
have

(67)

E= (9 (t.m) x Mx (UF(t.m))"),

det E = det ((Lp(t, n)E x M x (UP(t, n))k) = det M.
(68)

Therefore, it is clear that the determinant of the initial
message M is connected with the determinant of the code
message E. So, we obtain the determinant of the matrix M.
det (M) treats as a controller of entries of the code matrix
E received from the communication channel. After receiving
the code matrix E and computing the determinant of M, we
will compute the determinant of E. Then, we will compare
them together. If det (E)=det (M), this means that the
matrix E has passed from the communication channel with-
out error. Otherwise, according to the matrix E of the order
nxn(l<n<4), we have “single,” “double,” ---, “n*-fold”
errors. Thus, we get

1C,2 +2C, a4 +nC,p = 2" — 1. (69)

Now, we will compute the error correction. Suppose
p=1 and n=2. Hence, there exists only one error in the
matrix E received from the communication channel. The
four variants of the single errors in the code matrix E
are as follows:
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where a, b, ¢, and d are the destroyed elements. By algebraic
equations and Lemma 10, we obtain

det M
,o e +eze3’ (71)
€y
—det M +
p= M TG (72)
€3
—det M +
c=E T 0% (73)
€
det M +
=8 T as (74)
€

From relations (71)-(74) and (35), we calculate the
destroyed element in the code matrix E.

In a similar way, we can correct “double” and “triple”
errors. For example, we consider the following case of
double errors in the matrix E,

-
e ¢

where g and h are the destroyed elements. We have
ge, — hey = det M. (76)

Similarly, we compute the destroyed element in the code

matrix E. So, there are 2> — 1 = 15 errors for n =2, p=1, and
we can correct all cases of this method except the fourfold.
Thus, the correctable possibility of it is equal to 14/15=
0.9333 = %93.33.

Similarly, there are 2% —1=511 errors for n= 3,p=1
Since det E=det M and from (40), we can correct up to
eight cases of this method except the ninefold. Therefore,
we get that correctable possibility of the method is equal to
510/511 = 0.9980 = %99.80. And finally, we obtain (2'° —2)/
(210 —1)=1=%100 for n=4,p > 3.

The t-extension of the p-Fibonacci Pascal coding
method has a high correction ability in comparison to the
classical (algebraic) coding method. The reason is the use
of matrix theory to get error-correction codes in this coding
method, while in algebraic coding method there are very
small information elements and bits and their combinations
are the objects of detection and correction. For example, we
compare the t-extension of the p-Fibonacci Pascal coding
method to the Hamming coding by an example and show
the correctable ability of the error is much greater in the
t-extension of the p-Fibonacci Pascal coding method. For
n=15 and k=10, we consider Hamming code method.
We will obtain the correctable ability of the error. There
is 210(215 — 219) = 32505856 error messages and the number
215 — 219 = 31744 can just be corrected; then, the correctable
ability of the error equals

31744

o ~0.0009765 = %0.09765. (77)
32505856
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Besides, the correctable ability of the error in the t-
extension of the 3-Fibonacci Pascal coding method is %
99.80. Thus, the correctable ability of the k-Fibonacci
Pascal is 10000 times more than Hamming one.

4, Conclusion

In this paper, we obtained the k-th power of the t-extension
of the p-Fibonacci matrix (L?(t, n)*) and the inverse of them
(L2(t, n) %) for (2 < n < 4). Then, using them, we introduced
a new coding/decoding method. The t-extension of the p-
Fibonacci Pascal coding method is the main application of
the matrices L?(t,n)* and L?(t, n) ™. The t-extension of the
p-Fibonacci Pascal matrix coding/decoding was calculated
very quickly by computer. Also, the correcting and detection
abilities of this coding method were very high in comparison
with a classical algebraic coding/decoding method.

Data Availability

There are no applications, analysis, or generation during the
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