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Abstract: This work is concerned with a comparative study of performances of meshfree (radial basis
functions) and mesh-based (finite difference) schemes in terms of their accuracy and computational efficiency
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1. Introduction

R eaction-diffusion systems arise frequently in the study of chemical and biological phenomena and are
typically modeled by time-dependent partial differential equations (PDEs) exhibiting oscillations. The

dynamics of reaction-diffusion systems have been the subject of intense research activities over the past few
decades due to its ability to demonstrate very complex dynamic behavior such as periodic solution and
chaos [1–4]. It was argued in [5] that it is necessary to consider at least a cubic nonlinearity in the rate
equations which originate from the model which was later referred as trimolecular model or Brusselator. The
reaction-diffusion Brusselator system contains a pair of input chemicals which intermediate with two reactants
to create two output (product) chemicals of which concentrations are controlled under given conditions. The
reaction scheme in Brusselator system contains an autocatlytic reaction as well as trimolecular reaction step
which occurs in the formation of ozone by atomic oxygen via a triple collusion. It also arises in the modeling of
certain chemicals’ reaction-diffusion process such as enzymatic reactions, and in plasma and laser physics in
multiple coupling between modes [6]. In many autocatlytic systems, complex dynamics have been observed,
including multiple steady-states and periodic orbits which make Brusselator system so important in the study
of reaction-diffusion systems. But solving such systems analytically is either very challenging or next to
impossible. That is why, the reaction-diffusion Brusselator system is of interest from the numerical point
of view.

Few researchers have proposed different approaches for approximating the solutions of one- and
two-dimensional Brusselator systems. Adomian [6] used a decomposition method which was further
modified by Wazwaz [7] for approximate solution of the reaction-diffusion Brusselator model. Among
standard differencing schemes (mesh-based) developed for Brusselator systems, the numerical scheme (second
order accurate in space and time) proposed by Twizell et.al.[8] is worth mentioning. Another robust and
computationally economic scheme, known as Gauss-Seidel like implicit finite-difference scheme was proposed
in [9] for solving the resulting PDEs from a coupled Brusselator model. This scheme not only provides
comparable accuracy with the classical Runge-Kutta method, it is also unconditionally convergent. Later,
standard and exponential time differencing (ETD) Crank-Nicolson (CN) methods were employed to solve
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the resulting initial-value problem from 1-D Brusselator system in [10]. To seek approximate solution of 2-D
Brusselator system, a dual-reciprocity boundary element method was adopted in [11].

The finite difference method (FDM) uses local approximations to the differential operator and the
boundary conditions by generating stencils of nodal values that couple neighboring nodal values. In this
sense, FDM differs from methods, such as Boundary Element method, which does not generate local stencils.
Basically, mesh-based methods like FDM require that the nodes of the stencils to be situated on some kind
of structured grid (or collection of structured grids), which severely limits their geometric flexibilities. This
necessitates the development of meshfree approximating schemes [12] e.g., collocation methods which need
no mesh generation and usually allow numerous approaches to solve PDEs. Some of its favorable properties
which have contributed to its ever-increasing popularity among the scientific community are as follow:

(i) ease to construct in any number of dimensions;
(ii) meshfree nature requiring only an arbitrary set of nodes to compute an approximate solution unlike the

generation of full mesh needed, for instance, in FDM;
(iii) applicability to the irregular shape domain problem; and finally
(iv) capability to produce smooth approximations not only for the unknown function but also for its

derivatives. Known meshfree techniques for numerical simulation of 2-D Brusselator system are the
radial basis function (RBF) collocation method [13], and the method of lines (MOL) implemented as a
meshfree method based on spatial trial spaces spanned by the Newton basis functions [14].

In this work, multiquadric (MQ) RBF is used as meshfree scheme and linearly implicit Crank-Nicolson
(LICN), Peaceman-Rachford Alternative Direct Implicit (ADI), ETD locally one dimensional (ETD-LOD), and
ETD-CN schemes are used as mesh-based schemes to numerically simulate the 1-D and 2-D Brusselator
systems.

2. Posing the problem

Let us consider the following initial-boundary value problems governed by the nonlinear time-dependent
system of PDEs in order to implement mesh-based and meshfree methods mentioned above:

2.1. Test problem 1

The Brusselator 1-D model in one spatial variable describing a chemical reaction with two constituents is
given by the following system of PDEs [10]

∂u
∂t

= µ
∂2u
∂x2 + u2v− (b + 1)u + a

∂v
∂t

= µ
∂2v
∂x2 − u2v + bu

Ω = {x/0 < x < 1}, t > 0 (1)

with a = 1, b = 3, µ = 1/50, and subject to the boundary and initial conditions:

u(0, t) = u(1, t) = 1

v(0, t) = v(1, t) = 3

 t > 0 (2)

u(x, 0) = 1 + sin(2πx)

v(x, 0) = 3

 x ∈ Ω ∪ ∂Ω. (3)

2.2. Test problem 2

The Brusselator 2-D model in two spatial variables describing a chemical reaction with two constituents
is given by the following system of PDEs [13]

∂u
∂t

= µ(
∂2u
∂x2 +

∂2u
∂y2 ) + u2v− (b + 1)u + a

∂v
∂t

= µ(
∂2v
∂x2 +

∂2u
∂y2 )− u2v + bu

Ω = {(x, y)/0 < x, y < 1}, t > 0, (4)
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with b = 1, a = 0 and µ = 1/4 and subject to the initial and boundary conditions extracted from the exact
solution for a particular case:

u(x, y, t) = exp(−x− y− 0.5t)

v(x, y, t) = exp(x + y + 0.5t)

}
(x, y) ∈ Ω ∪ ∂Ω, t > 0. (5)

In Equation 4, a and b are concentrations of the two input reactants. Since the reactants A and B are assumed
to be in such large access so that their concentrations a and b do not change with time, therefore, considered
as constants. Furthermore, u and v represent dimensionless concentrations of two intermediate reactants and
µ is the constant diffusion coefficient.

3. Numerics

3.1. Mesh-based (finite difference) methods

3.1.1. Derivation of implicit Crank-Nicolson method for test problem 1

In order to implement linearly implicit Crank-Nicolson (LICN) to Test Problem 1, we discretized the
domain Ω with uniform grid of step size h with h = 1/(N − 1), where N is the total number of grid points
and partitioned time domain with time step k. Let Ui,j and Vi,j denote the finite difference approximations of
ui,j = u(ih, jk) and vi,j = v(ih, jk) respectively. Now, we replaced uxx with the mean of its finite-difference
approximations i.e.,

uxx ≈
uj

i+1 − 2uj
i + uj

i−1
h2

with leading error of O(h2) at the (j)th and (j + 1)th time-levels as shown in the Figure 1.

i− 1, j + 1 i, j + 1 i + 1, j + 1

i, ji− 1, j i + 1, j

Figure 1. Stencil for Linearly Implicit Crank-Nicolson (LICN) scheme.

Also, ut being its forward difference approximation i.e., ut ≈
ui,j+1 − ui,j

k
with a leading error ofO(k), we

get:
U j+1

i −U j
i

k
=

µ

2h2

[
δ2

x(U
j+1
i + U j

i )
]
+ (U j

i )
2V j

i − (b + 1)U j
i + a

V j+1
i −V j

i
k

=
µ

2h2

[
δ2

x(V
j+1
i + V j

i )
]
− (U j

i )
2V j

i − bU j
i ,

 (6)

where δx is the central difference operator. After doing simple algebra, we arrive at the following system:

−r
2

U j+1
i−1 + (1 + r)U j+1

i − r
2

U j+1
i+1 =

r
2
(U j

i−1 + U j
i+1) + (1− r− k(b + 1))U j

i + kU j
i
2V j

i + ka

− r
2

V j+1
i−1 + (1 + r)V j+1

i − r
2

V j+1
i+1 =

r
2
(V j

i−1 + V j
i+1) + (1− r)U j

i − kU j
i
2V j

i + kbU j
i

 (7)

where i = 2, 3, . . . , N − 1, and r = kµ

h2 .
In matrix notation first equation of the above system can be expressed as:(

I − r
2

A
)

Uj+1 = B (8)
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where

A =



−2 1 · · · 0 0 0
1 −2 1 · · · 0 0
0 1 −2 1 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 −2 1
0 0 · · · 0 1 2


(9)

Uj+1 =


U j+1

2

U j+1
3
...

U j+1
N−1

 (10)

and

B =



r
2 U j+1

1 + r
2

[
U j

3 −U j
1

]
+ (1− r− (b + 1))U j

2 + k(U j
2)

2V j
2 + ka

r
2

[
U j

4 −U j
2

]
+ (1− r− (b + 1))U j

3 + k(U j
3)

2V j
3 + ka

...
r
2

[
U j

N−3 −U j
N−2

]
+ (1− r− (b + 1))U j

N−2 + k(U j
N−2)

2V j
N−2 + ka

r
2 U j+1

N + r
2

[
U j

N−2 −U j
N

]
+ (1− r− (b + 1))U j

N−1 + k(U j
N−1)

2V j
N−1 + ka


(11)

which can be solved either by direct or indirect (iterative) methods for U j+1
i−1 , U j+1

i , and U j+1
i+1 for i = 2, 3..., N− 1.

Here, the system can be solved by using LU decomposition algorithm to attain the concentration profile of u
of the Brusselator system for successive time iterations. Similarly, the second equation of the above system can
be solved for V j+1

i−1 , V j+1
i , and V j+1

i+1 for i = 2, 3..., N − 1.

3.1.2. Construction of Peaceman-Rachford ADI scheme for test problem 2

The ADI is a predictor-corrector scheme, where part of the difference operator is implicit in the initial
(predictor) step and another part is implicit in the final (corrector) step. In Peaceman-Rachford, the predictor
step consists of solving Test Problem 2 for a time step k

2 using implicit Euler method for the x derivative terms
and the explicit Euler method for the y derivative terms i.e.,

Un+ 1
2

i,j = Un
i,j +

r
2

[
δ2

xUn+ 1
2

i,j + δ2
yUn

i,j

]
+

k
2

Fn
i,j

Vn+ 1
2

i,j = Vn
i,j +

r
2

[
δ2

xVn+ 1
2

i,j + δ2
yVn

i,j

]
+

k
2

Gn
i,j

 (12)

The corrector step completes the solution process for a time step by using explicit Euler method for x derivative
terms and the implicit Euler method for y derivative terms, thus

Un+1
i,j = Un+ 1

2
i,j +

r
2

[
δ2

xUn+ 1
2

i,j + δ2
yUn+1

i,j

]
+

k
2

Fn
i,j

Vn+1
i,j = Vn+ 1

2
i,j +

r
2

[
δ2

xVn+ 1
2

i,j + δ2
yVn+1

i,j

]
+

k
2

Gn
i,j

 (13)

In matrix notation, the first equations of systems (12) and (13) can be expressed as below:(
I − r

2
Ax

)
Un+ 1

2 =
(

I +
r
2

Ay

)
Un +

k
2

Fn
i,j + Bn+ 1

2(
I − r

2
Ay

)
Un+1 =

(
I +

r
2

Ax

)
Un+ 1

2 +
k
2

Fn
i,j + Cn+1

 (14)
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where

Un =


Un

2,j
Un

3,j
...

Un
N−1,j

 , Bn+ 1
2 =


Un+ 1

2
1,j
...

Un+ 1
2

N,j

 , Cn+1 =


Un+1

i,1
...

Un+1
i,N

 ,

Ax = Ay = A as in Equation (9) and F(u, v, t) = u2v− (b+ 1)u+ a. The system (14) can be efficiently solved by
applying the LU decomposition algorithm outside of the timing loop because the matrices Ax and Ay remain
constant during the time iteration. Similarly, the second equations of systems (12) and (13) can also be solved
for V with the LU decomposition algorithm. This scheme is second order accurate both in time and space and
unconditionally stable and has restriction on time step such that k < 2h/π (approximately) to avoid oscillation
where the discontinuity exist [15].

3.1.3. Derivation of ETD-LOD scheme for test problem 2

In order to derive ETD-LOD scheme for Test Problem 2, we introduce a uniform grid of spacing h× h on
domain Ω with h = 1/(N − 1), where N is the total number grid points along each direction x and y. This
allows the replacement of second order derivatives in Test Problem 2 by, for instance, the central difference
operator,

du
dt

=
1
h2

[
δ2

xu(x, t) + δ2
yu(x, t) + O(h2)

]
+ f (u, v, t) (15)

dv
dt

=
1
h2

[
δ2

xv(x, t) + δ2
yu(x, t) + O(h2)

]
+ g(u, v, t), (16)

where δ2
xu(x, t) = u(x + h, t)− 2u(x, t) + u(x− h, t), and δ2

yu(x, t) = v(x + h, t)− 2v(x, t) + v(x− h, t). Also,
f (u, v, t) = u2v − (b + 1)u + a and g(u, v, t) = −u2v + bu. Now, applying Equations (15) and (16) to all
interior mesh points, we obtain a system of ordinary differential equations:

dU
dt

+ AU = F(U, V , t) (17)

dV
dt

+ AV = G(U, V , t) (18)

where U = [U2, U3, · · · , UN−1] is a vector of approximation to u = [u2, u3, · · · , uN−1].
Here A = A1 + A2, and though in general A1 × A2 6= A2 × A1, here their multiplication is commutative

due to the same diffusion coefficients involved with second order derivatives in x and y and equal spatial step
size length used along both the axes. In fact, A1 = A2 and

A1 =
1
h2



2 −1 · · · 0 0 0
−1 2 −1 · · · 0 0
0 −1 2 −1 · · · 0
...

...
. . .

...
...

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 2


After solving Equation (17), formally we arrive at the following recurrence formula for the exact solution [10]:

U(tn+1) = exp(−kA)U(tn) + k
∫ 1

0
exp(−kA(1− τ))F(U(tn + τk), V(tn + τk), tn + τk)dτ. (19)

Let the numerical approximation to U(tn) and F(Un, Vn, tn) be denoted by Un and Fn respectively. The simplest
approximation to the integral is obtained by assuming F to be constant between t = tn and t = tn+1 i.e.,
F = Fn + O(k) which makes it first order accurate and subsequently yields

Un+1 ≈ exp(−kA)Un + k
∫ 1

0
exp(−kA(1− τ))Fndτ = exp(−kA)Un − A−1(exp(−kA− I))Fn. (20)
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This semi-discrete scheme is not applicable until the matrix exponential is discretized. Noting that

− A−1(exp(−kA− I)) ≈ −A−1((I + kA)−1 − I)

= −A−1(I − (I + kA))(I + kA)−1

= k(I + kA)−1 (21)

and, then plugging (21) in (20) we get,

Un+1 ≈ exp(−kA)Un + k exp(−kA)Fn

= exp(−kA)(un + kFn) (22)

= exp(−kA1) exp(−kA2)(un + kFn) (23)

Now, we can compute (22) efficiently by using the Pade approximation R0,1(kA) to approximate exp(−kA1)

and exp(−kA2) in (23) which yields
(I + kA1)U∗ = Un + kFn

(I + kA2)Un+1 = U∗

}
(24)

where R0,1(kA) = (I + kA)−1 and U∗ is an intermediate vector.
Similarly, we can get the same expression for (18) as well. It is well-known that this two-step procedure

is first-order accurate in time which also has the advantage of being easily solved, when the components of
second step of (24) are reordered. In particular, if the second order derivatives in Test Problem 2 are replaced
by central differences, A becomes an N2 × N2 matrix with five nonzero bands. Instead of solving such a
banded system, we solve (24) by implementing sequence of tridiagonal matrix solvers [15]. This scheme is also
unconditionally stable and free of oscillatory problem unlike Peaceman-Rachford ADI scheme.

3.2. Meshfree (radial basis functions) scheme

3.2.1. Construction of Meshfree RBF scheme for test problem 1

In order to implement meshfree approach to Test Problem 1 to get the unknown functions u and v, we
discretize the time derivatives of the 1-D Brusselator system by applying first order forward difference formula
and the space derivatives by using θ−weighted (0 ≤ θ ≤ 1) scheme at two successive time levels n and n + 1
as below:

un+1−un

k
= a+θ

[
(u2v)n+1−(b+1)un+1 + α

(
∂2u
∂x2

)n+1]
+(1−θ)

[
(u2v)n−(b+1)un + µ

(
∂2u
∂x2

)n]

vn+1 − vn

k
= a + θ

[
(u2v)n+1 + bun+1 + µ

(
∂2v
∂x2

)n+1]
+ (1− θ)

[
(u2v)n + bun + µ

(
∂2v
∂x2

)n]


(25)

To linearize system (25), we approximate the nonlinear term (u2v)n+1 by using Taylor’s series formula [16]:

(u2v)n+1 = (u2)n(v)n+1 + 2unvnun+1 − 2(u2)nvn (26)

plugging Equation (26) in system (25) we get

un+1 − θk

[
α

(
∂2u
∂x2

)n+1

− (b + 1)un+1 + (u2)n(v)n+1 + 2unvnun+1

]
=

un + k

[
(1− θ)

{
−(b + 1)un + α

(
∂2u
∂x2

)n}
+ (1− 3θ)(u2)nvn

]

vn+1 − θk

[
α

(
∂2v
∂x2

)n+1

+ bun+1 − (u2)n(v)n+1 − 2unvnun+1

]
=

vn + k

[
(1− θ)

{
−(b + 1)un + α

(
∂2u
∂x2

)n}
+ (1− 3θ)(u2)nvn

]
.



(27)
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Now, in order to attain the unknown functions u and v, we approximate them by using the radial basis
functions as:

Un(x) =
N

∑
j=1

αn
j φ(rj), (28)

Vn(x) =
N

∑
j=1

βn
j φ(rj), (29)

where Un(x) ≈ u(x, tn), Vn(x) ≈ v(x, tn), and αn
j , βn

j are unknown coefficients. Also rj = ‖x − xj‖, where
‖ · ‖ denotes the euclidean norm. The points xj are the center points for j = 1, 2, . . . , N, and lastly, φ(rj) are
the RBFs. In this work, for both Test Problems, we have used the multiquadric RBF, φ(r) =

√
r2 + c2, where

c is a positive shape parameter. The aim is to determine the unknown coefficients in Equations (28) and (29)
by the collocation method. Hence, for each collocation point xi, i = 1, 2, . . . , N, Equations (28) and (29) can be
expressed as

Un(xi) =
N

∑
j=1

αn
j φ(rij), (30)

Vn(xi) =
N

∑
j=1

βn
j φ(rij). (31)

It should be noted that N = Ni + Nb, where Ni is the number of interior points and Nb is the number of
boundary points. The system of Equations (30) and (31) can be expressed in matrix notation as

Mn = Bγn, (32)

where

Mn =

[
Un

V n

]
, Un = [Un

1 , Un
2 , . . . , Un

N ]
′ , Vn = [Vn

1 , Vn
2 , . . . , Vn

N ]
′ ,

B =

[
φ 0
0 φ

]
, φ =

[
φi
φb

]
, φi = (φ(ri,j))Ni×N , i = 1, . . . , Ni; j = 1, 2, . . . , N,

φb = φ(ri,j)Nb×N , i = Ni + 1, . . . , N; j = 1, 2, . . . , N , γn =

[
αn

βn

]
,

αn = [αn
1 , αn

2 , . . . , αn
N ]
′ , βn = [βn

1 , βn
2 , . . . , βn

N ]
′ .

Plugging Equations (28) and (29) in to the system (27), we arrive at the following matrix form for Test Problem
1:

[B− θkA] γn+1 = [B− k{(1− θ)C + (1− 3θ)D}] γn + pn+1, (33)

where

A =

[
2UnV n ◦φi − (b + 1)φi + µD1 (Un)2 ◦φi

bφi − 2UnV n ◦φi µD1 − (Un)2 ◦φi

]
,

C =

[
−(b + 1)φi + µD1 0

bφi µD1

]
, D =

[
0 (Un)2 ◦φi
0 −(Un)2 ◦φi

]
,

Pn+1 =

[
F(n+1)

G(n+1)

]
,

Fn+1 =
[

ak, ak, · · · , ak, ak + f (xNi+1, tn+1), · · · , ak + f (xNi+1, tn+1)
]′

,

Gn+1 =
[

0, 0, · · · , 0, g(xNi+1, tn+1), · · · , g(xNi+1, tn+1)
]′

,

D1 =

(
∂2φ(ri,j)

∂x2
i

)
Ni×N

, i = 1, 2, . . . , Ni, j = 1, 2, . . . , N,
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f (x, t) = 1 and g(x, t) = 3. The symbol ◦means the multiplication of i-th component of the vector Un to every
element of the i-th row of the matrix φi.

To get 2N unknown coefficients αj and β j, j = 1, 2, . . . , N from the dense system (33), we solved it by using
Gaussian elimination method. The shape parameter c plays vital role to obtain an accurate solution, so it is
imperative to evaluate the value of c numerically for each problem.

3.2.2. Construction of Meshfree RBF method for test problem 2

Implementing the same procedure as depicted in construction of meshfree RBF scheme for Test Problem
1, and just replacing rij = ‖(xi, yi)− (xj, yj)‖, φ(rij) =

√
r2

ij + c2 and D1 = (C1 + C2) where

C1 =

(
∂2φ(ri,j)

∂x2
i

)
Ni×N

, i = 1, 2, . . . , Ni, j = 1, 2, . . . , N,

and

C2 =

(
∂2φ(ri,j)

∂y2
i

)
Ni×N

, i = 1, 2, . . . , Ni, j = 1, 2, . . . , N,

we can obtain similar expressions as in (33) for Test Problem 2. Then, it can be solved by Gaussian elimination
method for 2N unknown coefficients αj and β j, j = 1, 2, . . . , N.

4. Numerical results and discussions

In this section, we present the results of numerical schemes, namely meshfree (MQRBF) and mesh-based
(finite difference) outlined in the previous section for Test Problems 1 and 2, in order to carry out a comparative
analysis of these schemes in terms of their accuracy, rate of convergence and execution time. The accuracy
of these schemes for both Test Problems is measured in terms of l2 norm error and the temporal rate of
convergence of schemes is calculated by using the following formula:

order = log2

(
ek/e k

2

)
,

where ek = ‖u− uk‖, e k
2
= ‖u− u k

2
‖, u is an exact solution, uk and u k

2
are the numerical solutions at the time

steps size k and (k/2), respectively. The execution time is the CPU time in seconds used by the schemes to get
the solution of Test Problems.

Numerical solution of Test Problem 1 was computed by using the LICN, MQRBF and ETD-CN [10]
schemes at the final time t = 10. The l2 norm errors of these schemes were calculated by comparing their
results with a reference solution obtained by employing the implicit Euler method on very fine grid. For
the empirical convergence analysis, we set h = 0.0125, and by repeatedly halving the time step size k in
each simulation, we calculate the l2 norm errors, rates of convergence and CPU times which are presented
in Table 1. As we can see from Table 1 that all three schemes are able to achieve the expected order of
convergence. In terms of accuracy, MQRBF scheme with the weight parameter θ = 0.5 outperforms other
two schemes. But, in terms of computational efficiency, we can observe that LICN and ETD-CN schemes take
similar CPU time and perform more efficiently than MQRBF scheme. For MQRBF scheme, the most accurate
results are obtained corresponding to shape parameter c = 0.12 for N = 81.

Table 1. Comparison of the schemes LICN, ETD-CN and MQRBF for Test Problem 1 in terms of l2 norm error,
rates of convergence, and computational efficiency at t = 10.0 (only dimensionless concentration u).

LICN ETD-CN [10] MQRBF
k l2(u) Order CPU(s) l2(u) Order CPU(s) l2(u) Order CPU(s)

0.2 4.59E-02 - 0.0148 2.84E-02 - 0.0279 2.58E-03 - 0.2359

0.1 2.45E-02 0.9028 0.0297 6.45E-03 2.1392 0.0367 6.38E-04 2.0147 0.5882

0.05 1.27E-02 0.9472 0.0500 1.44E-03 2.1635 0.0480 1.59E-04 2.0013 1.2841

0.025 6.49E-03 0.9704 0.0750 3.62E-04 1.9892 0.0687 4.03E-05 1.9837 2.5373
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Figure 2 exhibits the comparison of numerical solution obtained via LICN, ETD-CN, and MQRBF schemes
with the analytical solution for concentration profiles of u and v at t = 10. One can see from Figure 2, among
three aforementioned schemes, only ETD-CN and MQRBF solutions are in good agreement with the analytical
solution.

Figure 2. Numerical solutions (obtained by the schemes LICN, ETD-CN, MQRBF) corresponding to h = 0.0125
(N = 81) and k = 0.0125 at t = 10 versus analytical solution.

In another set of experiments, we ran simulation on Test Problem 1 until t = 10 by using MQRBF to
capture a spatio-temporal solution profile of the components u and v and shown in Figure 3.

Figure 3. Numerical solution obtained by MQRBF scheme for u and v corresponding to (N = 81) and k = 0.0125
until t = 10.

For Test Problem 2, the numerical computations are carried out using ETD-LOD, Peaceman-Rachford
ADI and MQRBF schemes. In order to verify whether the considered schemes demonstrate the expected
convergence rates, a numerical test on Test Problem 2 was performed with various values of k and fixed h =

1/9 (i.e., N = 100) at t = 2. The computed results obtained from these schemes are displayed in Table 2, where
the empirical convergence rates agree well with the expected rates of the schemes. Moreover, we observe
that the scheme MQRBF outperforms the other two schemes in terms of accuracy, but, it is computationally
more expansive than ETD-LOD and Peaceman-Rachford ADI schemes. For MQRBF scheme, the most accurate
results are obtained corresponding to shape parameter c = 0.90 for N = 100. Also the comparison of numerical
approximations of u, v via MQRBF scheme and their corresponding analytical solutions are depicted through
contour surface plots in Figure 4 and Figure 5 until t = 2 for N = 100.
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Table 2. Comparison of the schemes ETD-LOD, Peaceman-Rachford ADI and MQRBF for Test Problem 2 in
terms of l2−norm error, rates of convergence, and computational efficiency at t = 2.0 (only for dimensionless
concentration u).

ETD-LOD Peaceman-Rachford ADI MQRBF

k l2(u) Order CPU(s) l2(u) Order CPU(s) l2(u) Order CPU(s)
0.2 8.01E-02 - 0.0085 1.19E-01 - 0.0451 5.73E-04 - 1.0106

0.1 3.98E-02 1.0071 0.0261 2.95E-02 2.020 0.0594 1.38E-04 2.0549 2.2406

0.05 1.99E-02 0.9987 0.0672 7.40E-03 1.9934 0.0867 3.30E-05 2.0623 4.6063

0.025 9.99E-03 0.9967 0.1382 1.93E-03 1.9377 0.1391 8.66E-06 1.9309 8.5403

(a) Numerical Solution (MQRBF) (b) Analytical Solution

Figure 4. Comparison between solution profiles of u with h = 1/9, k = 0.01 at t = 2.

(a) Numerical Solution (MQRBF) (b) Analytical Solution

Figure 5. Comparison between solution profiles of v with h = 1/9, k = 0.01 at t = 2.

5. Conclusions

In this note, we presented a comparative study of mesh-based (e.g., LICN, ETD-CN, and
Peaceman-Rachford ADI) and mesh free (MQRBF) numerical schemes for solving 1-D and 2-D Brusselator
systems. For both problems under consideration, the numerical results exhibited that the meshfree scheme
MQRBF provides more accurate approximations than other considered schemes in the note. In terms of
computational efficiency, MQRBF is more expansive than the mesh-based schemes used for the comparison.
In the near future, we would like to investigate the computational performances of RBF scheme and Fourier
spectral schemes for solving three-dimensional nonlinear reaction diffusion system.
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