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We investigate the vacuum instability in the presence of dilaton field in a holographic setup. Although the dilaton is a bulk field, it
leads to the vacuum instability on the boundary. We show that the whole process crucially depends on the probe brane position and
as well on the radial coordinate so that the effects of dilaton scale parameter in different regions of the bulk or for different probe
brane positions are different. We also observe that in our study, the temperature can strengthen the effect of scale parameter in
reducing the potential barrier. Finally, we show that this Schwinger-like effect, although is interesting by itself, does not produce
a considerable pair production rate.

1. Introduction

Pair production in the presence of an external electric field is
known as the Schwinger effect in nonperturbative quantum
electrodynamics (QED) [1]. Due to this phenomenon, when
the external field is strong enough, the virtual electron-
positron pair becomes a real particle. In other words, vacuum
is destroyed in the presence of such a field.

Although this context had been considered in QED first,
it is not restricted to it anymore. It has been extended
to quantum chromodynamics (QCD) and even higher-
dimensional objects like strings and branes [2]. As an
interesting example, it has been considered in a gravitational
wave background while the electric field was replaced by the
gravitational wave background and the electron/positron field
quanta were replaced by massless scalar photons [3]. In other
words, nowadays, the Schwinger effect is not restricted to
QED, external electric field, and electron-positron pair pro-
duction, but any kind of vacuum decay due to pair produc-
tion in the presence of any external field stands for the
Schwinger effect.

Potential analysis plays an important role in vacuum
stability. The main setup of our current work is based on

considering vacuum decay process by diminishing the poten-
tial barrier. Before going to the main subject, we mention
Schwinger effect which gives us the strategy of our computa-
tion, but we will discuss the important differences between
this effect (in its known form) and the current work in
upcoming calculations as well.

In the context of QED, the potential analysis estimated by
the static potential includes the Coulomb interaction
between the particles in addition to an energy Ex, where x
is a separating distance of the virtual pair and E is an external
electric field [4]. Generally, the total potential is calculated by
the Lagrangian integration over the internal distance of the
pair, in addition to a term coming from the external field
energy. This is the strategy: the internal energy of the virtual
pair leads to a potential barrier. When the virtual pair gets a
greater energy than the rest energy from an external field,
it becomes real. So, for the creation of a real pair which
corresponds to the vacuum decay, the external field should
reach to a critical value, where the vacuum becomes totally
unstable.

In QED, increasing electric field can destroy the potential
barrier and finally vacuum decays. Accordingly, one can
expect that in any kind of Schwinger effect, increasing

Hindawi
Advances in High Energy Physics
Volume 2020, Article ID 5074618, 11 pages
https://doi.org/10.1155/2020/5074618

https://orcid.org/0000-0002-5462-9862
https://orcid.org/0000-0003-2383-211X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5074618


external field results in destroying the potential barrier.
When the external field is small, the potential barrier is
present and the pair production is a tunneling process.
The potential barrier diminishes as the external field
increases. At a critical value of the field, the potential barrier
vanishes completely and the pair production is catastrophic
[2]. From string theory point of view, this critical value is
regarded as string behaviour in ultraviolet (UV) completion
of the string [5, 6].

One strong tool to investigate Schwinger effect in
string context or higher-dimensional objects is AdS/CFT
which is a correspondence describing a relation between
a d-dimensional conformal field theory (CFT) and a ðd + 1Þ
dimensional string theory in anti-de Sitter (AdS) space [7].
This is a powerful mathematical tool to investigate about
strongly correlated systems [8–10]. Extra dimension in the
AdS side leads to using the energy scale of the CFT side on
the boundary. Although QCD is not a CFT exactly, in recent
decades, AdS/QCD has been considered a useful approach to
study an analytic semiclassical model for strongly coupled
QCD. It has scale invariance, dimensional counting at short
distances, and color confinement at large distances. This
theory describes the phenomenology of hadronic properties
and demonstrates their ability to incorporate such essential
properties of QCD-like confinement and chiral symmetry
breaking. From the AdS/CFT point of view, the AdS5 plays
an important role in describing QCD phenomenon, so it is
called AdS/QCD [11–13].

Many works have been done about Schwinger effect in a
holographic setup related to quark-antiquark pair produc-
tion as follows, the creation rate of the quark pair in N = 4
SYM theory was obtained in [14] and based on that, the holo-
graphic Schwinger effect was calculated in various systems
[2, 4, 15–25]. Also, the vacuum decay rate is regarded as
the creation rate of the quark-antiquark in N = 2 super-
symmetric QCD (SQCD) [26]. In Ref. [27], electrostatic
potentials in the holographic Schwinger effect have been ana-
lyzed for the finite temperature and temperature-dependent
critical field cases to find agreement with the full form
Dirac-Born-Infeld (DBI) result. In Ref. [28], tunneling pair
creation of W-Bosons by an external electric field on the
Coulomb branch of N = 4 supersymmetric Yang-Mills the-
ory has been studied and found that the pair creation formula
has an upper critical electric field beyond which the process is
no longer exponentially suppressed.

Light-front holographic QCD [29, 30] is a model theory,
which tries to explain nonperturbative features of quantum
field theory for strong interactions, QCD. In order to get some
insight into the structure of the most interesting phenomena,
one has to make specific models and approximations. An
important approach is the semiclassical approximation of a
quantum field theory. The basis of light-front holographic
QCD is the “holographic principle” which states that cer-
tain aspects of a quantum field theory in four space-time
dimensions can be obtained as limiting values of a five-
dimensional theory as it is mentioned before. In light-front
holographic QCD (LFHQCD), one chooses a bottom-up
approach; that is, one modifies the five-dimensional classical
theory in such a way as to obtain from this modified theory

and the holographic principle realistic features of hadron
physics [31]. In LFHQCD, the action is an invariant action,
modified by a dilaton term eφðzÞ as

Seff =
ð
ddxdz

ffiffiffi
g

p
eφ zð ÞgN1N1′ ⋯ gN jN j

′

� gMM ′DMΦ
∗
N1⋯N j

DM ′ΦN1′⋯N j
′ − μ2eff zð ÞΦ∗

N1⋯N j
ΦN1′⋯N j

′
� �

,

ð1Þ

according to the dictionary between the AdS result and the
LFH, the potential is related to the dilaton field in the effec-
tive AdS5 action. The corresponding metric with the men-
tioned action is an asymptotic AdS5 metric modified by a
dilaton field φðzÞ. It is only a function of the holographic var-
iable z which vanishes in the conformal limit z→ 0. In AdS5,
this unique z dependence of the dilaton field allows the
description of the bound-state dynamics in terms of a one-
dimensional wave equation. It also enables one to establish
a map to the semiclassical one-dimensional approximation
to light-front QCD given by the frame-independent light-
front Schrödinger equation. It has been found that the dila-
ton profile has the specific form φðzÞ = −λz2 [31] which leads
to linear Regge trajectories and avoids the ambiguities in the
choice of boundary conditions at the infrared wall [30]. The
spectrum can only be described by choosing λ > 0. Thus, in
this work, we consider the dilaton profile as φðzÞ = −λz2 with
positive λ.

In Ref. [32], one of the authors of this work considered
vacuum instability in a deformed AdS in the presence of an
electric field. In the current work, our motivation is to con-
sider vacuum instability by this holographic model and with-
out any external electric field. This holographic model is
important from two different points of view. First, it stands
for light-front holographic approach which has been men-
tioned before. Second, it can be considered a deformed AdS
where one deforms the AdS by the second correction of the
radial coordinate [33], to discuss on some asymptotically
AdS behaviour of the theory. In the next section, we will rep-
resent such a metric with an estimate of the quadratic correc-
tion of the radial coordinate based on gauge/string duality. In
References [33, 34], it is written that in QCD analysis of the
two-current correlator, the first coefficient can be calculated
perturbatively, while the second coefficient (quadratic cor-
rection) is not easy to be found. Then, it should be estimated
based on some data. Correspondingly, in gauge/gravity dual-
ity, in models with the slightly deformed AdS5 metric, one
can find some results fit better to QCD which remains to be
seen. Here, we only addressed the main motivation and
avoided opening many details of discussion, so interested
readers can refer to the main references. We will focus on
the first point of view keeping in our mind that our results
will cover deformed AdS/QCD too [34]. So, starting by the
soft-wall LFH metric, we are interested in studying vacuum
decay process.

The process starts from “turning on the λ” which means
to consider the nonzero value of this scale parameter. As λ
increases, we expect that the potential barrier diminishes.
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Therefore, one interprets that the potential barrier is sup-
posed to be vanished by a “large enough value of λ.”
Although Schwinger effect has been considered by external
electric field and magnetic field before, the most important
difference of the current work is that the vacuum decay initi-
ates from inside the metric. Briefly, λ is responsible for vac-
uum decay and pair production; thus, it has the main role
in this process. This is a goal to see the effects of space-time
specifications during vacuum decay.

With all above explanations, we represent this paper as
follows. In Section 2, we consider vacuum decay by dilaton
field at zero temperature. Proceeding by finite temperature,
we follow the study in Section 3. In Sections 4 and 5, the pair
production rate for both zero and thermal cases is discussed.
Section 6 is the numerical strategy, and our conclusion and
results will be represented in Section 7.

2. Potential Analysis at Zero Temperature

Considering LFH metric at zero temperature, we analyze the
potential initiated by the dilaton field. According to the
holographic setup in [27], we will derive the total potential
from the action. The LFH metric is written as

ds2 = R2

z2
h zð Þ −dt2 + 〠

3

i=0
dx2i + dz2

 !
+ R2dΩ2

5, h zð Þ = e−λz
2 ,

ð2Þ

where R is the radius of space which is related to the slope
parameter and coupling via R2 = α′

ffiffiffi
λ

p
, with α′ = ls

2 where
ls is the string scale. Moreover, dΩ2

5 is the metric of a five-
dimensional sphere.

The potential of the produced pair particle is obtained
using the expectation value of the Wilson loop. The loop cor-
responds to a trajectory of test particles with infinite heavy
mass, and the expectation value corresponds to the area of
a string worldsheet attached to the Wilson loop [35, 36].
Thus, in order to study by AdS/CFT, the area of the rectangu-
lar Wilson loop on the probe D3-brane evaluates classical
action of a string attached to the probe D3-brane [28]. The
Nambu-Goto string action is given by

S = TF

ð
dτdσℒ = TF

ð
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Gab

p
, ð3Þ

where

Gab ≡
∂xμ

∂σa
∂xv

∂σb
gμv ð4Þ

is the induced metric and σa = ðτ, σÞ are worldsheet coordi-
nates and TF = 1/2πα′ is the string tension. From relation
(2), we have

gab = diag −
R2

z2
e−λz

2 , R
2

z2
e−λz

2
� �

: ð5Þ

It is useful to choose the static gauge, x0 = τ, and x1 = σ.
So, the radial direction zðσÞ depends only on σ in classical
solution. Therefore, the Lagrangian is

ℒ = R2

z2
e−λz

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + dz

dσ

� �2
s

: ð6Þ

From the equation of motion, one can find

∂ℒ
∂ ∂σzð Þ ∂σz −ℒ = C1, ð7Þ

where C1 is an arbitrary constant, and this yields to the fol-
lowing relation:

R2

z2
e−λz

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + dz/dσð Þ2

q = C2, ð8Þ

where C2 is an arbitrary constant. The important boundary
condition at σ = 0 imposes

dz
dσ

= 0, z = z∗, ð9Þ

where z∗ is the turning point, which means the deepest
position of the string in the bulk. Therefore, we yield to the
following differential equation:

dz
dσ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4∗
z4

e−2λ z2−z2∗ð Þ − 1
r

: ð10Þ

Thus, the separation length of the test particles on the
probe brane is

x =
ðz∗
z0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4∗/z4ð Þe−2λ z2−z2∗ð Þ − 1

q , ð11Þ

where z0 is the probe brane position. We will use this length
in considering behaviour of potential later. From the
Lagrangian (6), the potential of the produced pair particle is
given by

V = 2TF

ðx/2
0
dxℒ = 2TFR

2z2∗

ðz∗
z0

1
z4

e−λ 2z2−z2∗ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4∗/z4ð Þe−2λ z2−z2∗ð Þ − 1

q dz:

ð12Þ

Before studying this potential, it is useful to introduce
another quantity as critical dilaton field. The critical value
of the dilaton field corresponds to the value at which the
potential barrier is destroyed and pair production begins.
According to the metric and by considering the fact that
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the critical field is interpreted as string tension σstring in the
string theory side [37],

σstring = TF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g00g11

p
IRj : ð13Þ

Then, the result at zero temperature is

σstring = TF
R2

z20
e−λz

2
0 , ð14Þ

which corresponds to

h zð Þcr = TF
R2

z20
e−λz

2
0 : ð15Þ

We define a dimensionless value as the ratio of the field to
its critical value as

α = h zð Þ
h zð Þcr

= e−λz
2

TF R2/z20
� �

e−λz
2
0
= z20
TFR

2 e
−λ z2−z20ð Þ: ð16Þ

Based on previous works on Schwinger effect, we expect
that when α is unity, the pair production process gets started
[19, 27]. We will see that this is not a sufficient condition for
pair production in this work.

It is worth mentioning that the space-time metric param-
eters and the brane configuration all affect the Schwinger
effect considered here. Figure 1 considers the critical value
of the field as a function of z0. Clearly, with increasing z0,
the critical value of the field decreases. So when the probe
brane is near the boundary ðz = 0Þ, a larger value of the crit-
ical field is obtained for pair production. In addition, greater
λ corresponds to a smaller value of the critical field at the
same z0. This behaviour has an exception in the region far
from the boundary where different plots with different λ
are coincident. It means that when the probe brane is far
from the boundary, the scale parameter has no significant
effect on the critical field.

In Figure 2, based on the relation between α and λ, behav-
iour of α has been considered with respect to the scale param-
eter λ, for different values of z0. By choosing fixed probe
brane position, one can consider effects of scale parameter
and position of probe brane on α. Obviously, when the probe
brane is in the near-boundary region, α = 1 is obtainable in a
limited region near it and for a wide range of λ values as we
can see in plot (a). By increasing z0, in plot (b), the condition
α ≥ 1 is satisfied almost along the z coordinate. With increas-
ing z0, large values of scale parameter lead to large values of α.

In Figure 3, we show the two-dimensional (2D) cross-
section of Figure 2 for fixed probe brane position z0 = 2.
We observe a critical point at z = z0, where α is independent
of λ. After the critical point, α decreases with increasing λ. In
other words, scale parameter affects pair production and also
the probe brane position is important. In addition, the behav-
iour depends on the distance along the z axis.

Figure 4 shows the potential for different λ values with a
fixed probe brane position. We observe that α ≥ 1 is not a
sufficient condition for pair production; we need large values
of λ to overcome the potential barrier. Table 1 shows the
maximum values of V tot and x for different values of λ.
One notices that for large λ, the potential vanishes. So we
can conclude that to create a pair the necessary condition is
to have large λ.

3. Potential Analysis at Finite Temperature

In this section, potential analysis will be considered at finite
temperature. The modified thermal metric is given by

ds2 = R2

z2
h zð Þ −f zð Þdt2 + 〠

3

i=1
dx2i +

1
f zð Þ dz

2
 !

+ R2dΩ2
5,

ð17Þ

where

f zð Þ = 1 − z
zh

� �4
, h zð Þ = e−λz

2
: ð18Þ

The horizon is located at z = zh, where z0 < z∗ < zh, and
the temperature of the black hole is written as T = 1/πzh, so
zero temperature limit zh →∞ and f ðzÞ→ 1 have been dis-
cussed in the previous section. The Lagrangian is given by

ℒ = R2

z2
e−λz

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z4

z4h

� �
+ dz

dσ

� �2
s

: ð19Þ

By using the equation of motion, one can find

R2

z2
e−λz

2 1 − z4/z4h
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z4/z4h
� �� �

+ dz/dσð Þ2
q = C, ð20Þ
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Figure 1: Considering the critical field against probe brane position,
at zero temperature and for different values of scale parameter.
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which yields to the following differential equation:

dz
dσ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4∗
z4

e−2λ z2−z2∗ð Þ 1 − z4/z4h
� �� �2

1 − z4∗/z4h
� �� � − 1 − z4

z4h

� �s
: ð21Þ

So, the internal separation length of the pair particles is
obtained as

x =
ðz∗
z0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4/z4ð Þe−2λ z2−z2∗ð Þ 1 − z4/z4h

� �� �2/ 1 − z4∗/z4h
� �� �� �

− 1 − z4/z4h
� �� �r ,

ð22Þ

and the total potential is found as

Similar to the last section, there is a critical value of the
field, in which the pair production process starts. The ther-
mal metric results in [37]

h zð Þcr = TF
R2

z20
e−λz

2
0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b4

p
, ð24Þ

where b = z0/zh. Using (24), one can derive the α in the ther-
mal case as

α = h zð Þ
h zð Þcr

= z20
TFR

2
e−λ z2−z20ð Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − b4
p : ð25Þ

According to this ratio, we proceed by considering it in
different temperatures and at fixed scale parameter in
Figure 5(a). At the boundary, α has its maximum value. Mov-
ing along the radial coordinate, α decreases significantly. This
manner is obvious in the thermal case, similar to what we
have considered in Figure 3 at zero temperature. We observe
that α increases with increasing temperature, but far from the
boundary region, α becomes independent of temperature.
The behaviour of α at fixed temperature but with different

scale parameters is shown in Figure 5(b) where we find the
effects of λ on α according to the region. We observe a critical
point at z = z0 similar to the zero temperature case at which α
becomes independent of λ. The greater λ leads to larger α
from the boundary up to z = z0 in the bulk; then, this behav-
iour changes clearly in reverse. It can be interpreted as the
effect of scale parameter near the boundary is completely
different with the near-horizon region.

As it is represented in Figure 6, the critical field has a
monotonous manner in low temperature. On the one hand,
by increasing the temperature, the critical field falls down.
On the other hand, increasing scale parameter decreases the
value of the critical field. So, at the same temperature, greater
λ leads to a smaller critical field which should be obtained
for the starting point of the pair production. When the
probe brane is in the near-horizon limit, all the plots with
different λ coincide and increasing λ does not have any
effect anymore.

According to (23), the total potential has been shown in
Figure 7. We study the total potential at fixed value of scale
parameter in Figure 7(a) and at fixed temperature in
Figure 7(b). We observe that in Figure 7(a) increasing value
of b slightly reduces the potential as seen in Table 2 and in
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2z 4
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1.0�훼
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1.0�훼
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(b)

Figure 2: Considering pair production parameters versus each other in a 3D plot, at zero temperature and fixed value of probe brane position
at (a) z0 = 1 and (b) z0 = 2.

V = 2TF

ðx/2
0
dxℒ = 2TFR

2z2∗

ðz∗
z0

1
z4

e−λ 2z2−z2∗ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4∗/z4ð Þe−2λ z2−z2∗ð Þ − 1 − z4∗/z4h

� �� �
/ 1 − z4/z4h

� �� �� �q dz: ð23Þ
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Figure 7(b) increasing value of λ has the effect of reducing the
potential barrier. Although increasing both λ and b reduces
the potential, in comparison, the effect of b is not as signifi-
cant as λ. Thus, we can say that the effect of temperature is
to just strengthen the effect of λ.

4. Effects of Scale Parameter on Pair Production
Rate at Zero Temperature

The production rate P (per unit time and volume) is evalu-
ated by computing the expectation value of a circular Wilson
loop on the probe brane in the holographic description with
the string action [19]. According to [17], we have to find the
minimal action, because the pair production probability is
given by ω∝ e−Smin . In other words, based on [14], exponen-
tial dependence of the probability rate is given by the mini-
mum of the string effective action.

By the holographic setup, we should consider the action
in both zero and finite temperature cases. Deriving the differ-
ential equation of motion, we will find numerically the zðσÞ
satisfying the related boundary conditions. Then, we will
evaluate the action at this specific zðσÞ. So, just to remind,
the action at zero temperature is defined as

S = 2πTFR
2
ðx
0
dσ

1
z2

e−λz
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + z′2

q
: ð26Þ

From relation (6) and by the Euler-Lagrange equation,

d
dσ

∂ℒ
∂z′

� �
−
∂ℒ
∂z

= 0, ð27Þ

the following differential equation is obtained:

zz″ + 2 1 + z′2
� �

1 + λz2
� �

= 0, ð28Þ

where z = zðσÞ and z′ = dzðσÞ/dσ. Now, we should find
numerically zðσÞ satisfying these differential equations and
conditions:

z 0ð Þ = z∗,
z σ0ð Þ = z0:

ð29Þ

After finding zðσÞ, the classical action should be evalu-
ated numerically.

In Figure 8, the pair production rate in the Schwinger
effect at zero temperature is represented. Pair production rate
is also under the effect of probe brane position intensively, as
a greater value of z0 makes a larger pair production rate.
However, all the plots are definable in a specific width of
the α before falling down. When the pair production starts,
the rate decreases with increasing α immediately. In other
words, although the ratio of the field to its critical value is
increasing, it will not work as an effective factor of increasing
the pair production rate; on the contrary, the pair production
rate decreases immediately, and in this case, there is no cata-
strophic pair production. One can interpret that pair produc-
tion is considerable in a special large enough value of λ.
Vacuum stability in both limits λ→ 0 and λ→∞ is in agree-
ment with the stability of vacuum described by AdS5.

In Figure 9, the pair production rate of the process is rep-
resented. We can see that maximum values of the rate is
obtained when we increase λ. In a large enough value of scale

0.2 0.4 0.6 0.8
0.0
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0.6

x

V
to

t

�훼 ≥1
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�휆 = 0.3

Figure 4: Considering behaviour of potential during pair
production at zero temperature.
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Figure 3: Considering behaviour of α along the z axis at zero
temperature with different values of scale parameter.

Table 1: Maximum values of V tot and x for different values of λ for
z0 = 1:2.

λ x V

0.1 0.96 0.75

0.5 0.38 0.21

1.0 0.24 6:59 × 10−2

2.0 0.13 9:18 × 10−3

5.0 0.06 5:63 × 10−5
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parameter, the potential barrier will be destroyed, that is, in
agreement with our discussion in the last section. Studying
this plot, we find that from tunneling process to pair produc-
tion, this is what happens: during tunneling process, there is a
maximum value of pair production rate with an approxi-
mately monotonous manner with respect to α. After vacuum
decay, still greater scale parameter leads to larger rate. But
this rate falls down after a while more intense than for
smaller λ cases. Therefore, when λ is large enough to destroy
the potential barrier, pair production via Schwinger effect
happens in a short range of α, and thereafter, its rate fades.
The common point in these two plots is that there is no cat-
astrophic pair production since the creation of the pair has a
decreasing behaviour from its maximum value at the starting
point to zero. So, this kind of process will not continue as
long as α is increasing. So we do not consider pair production
forever, and no catastrophic pair production happens.

5. Effects of Scale Parameter on Pair Production
Rate at Finite Temperature

Considering the thermal case from (19), the action is
defined as

S = 2πTFR
2
ðx
0
dσ

1
z2
e−λz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f zð Þ + z′2

q
: ð30Þ

From the Euler-Lagrange equation, the differential equa-
tion is found as

zz″ f zð Þ − zz′2 df
dz

−
1
2 zf zð Þ df

dz

+ 2 f zð Þ + z′2
� �

f zð Þ 1 + λz2
� �

= 0:
ð31Þ

Similar to the zero temperature case, classical action at
the satisfying zðσÞ value should be evaluated. Behaviour of
the pair production rate at finite temperature has been con-
sidered in Figure 10. Here, fixed value of scale parameter
and different temperatures are considered. One can follow
from tunneling process to pair production. The pair produc-
tion rate decreases with increasing α, while greater tempera-
ture leads to greater pair production rate at the same scale
parameter. In addition, by increasing the temperature, the
pair production rate descends with the smaller slope. It
means that at a fixed λ, although the pair production rate
has a decreasing behaviour similar to the zero temperature
case, the temperature can strengthen this rate as larger
temperature results in greater pair production rate.

Comparative with Figure 9, the pair production rate has
been represented at different values of scale parameter and
finite temperature in Figure 11. As we saw in the zero tem-
perature case, the maximum value of pair production rate is
produced when one manipulates λ to increase, as much as
possible. In other words, the largest scale parameter leads to
greater rate of the pair creation. However, such a rate is
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Figure 5: Considering α versus z coordinate at (a) different temperatures and (b) different scale parameters.
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Figure 6: Considering behaviour of the critical field versus
temperature.
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accessible in a limited range of α and it falls down intensively
as it decreases with increasing α. This manner is common in
both zero and finite temperature cases. So the temperature
does not affect the pair production process significantly

while probe brane position and scale parameters do that
meaningfully. In addition, in both zero temperature and
finite temperature cases, pair production rate has a decreas-
ing behaviour just after starting the process. Temperature
strengthens the pair production rate as we saw in Figure 9,
but it can change the decreasing behaviour, and still there is
no catastrophic pair production in this Schwinger-like effect.

At the end of this section, one point should be mentioned
based on what we have seen so far. When vacuum decays, the
particle and antiparticle should be created at the same time.
Naturally, they are in short distance from each other, espe-
cially in our case that one of the main results is that the sys-
tem tends to go back to stability immediately. So, according
to our previous results, long distance cannot be considered
in our case.
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Figure 7: Considering the total potential in the pair production process, at (a) different values of temperature and (b) different values of λ.

Table 2: Maximum values of V tot and x for different values of b
for λ = 0:5.

b x V

0.2 0.38 0.21

0.4 0.39 0.21

0.6 0.42 0.20

0.8 0.26 0.14

0.98 0.09 0.02

0.0 0.5 1.0 1.5
0.96

0.97

0.98

0.99

1.00

�훼

�휆 = 0.1

e
–S

z0 = 4.0
z0 = 4.2
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Figure 8: Considering pair production rate at zero temperature and
fixed value of scale parameter and different probe brane positions.
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Figure 9: Considering pair production rate at zero temperature and
fixed probe brane position and different large values of scale
parameter.
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6. Numerical Strategy

The integration for x and V , respectively, is solved numeri-
cally to generate the plots shown in Figures 4 and 7. We
choose the value of z0 = 1:2 which falls in the region α ≥ 1
as seen in Figure 12.

The upper limit of the integration is varied over a range
from zmin

∗ to zmax
∗ to generate the data for the plots. The value

of zmin
∗ and zmax

∗ used is shown in Table 3 along with other
parameters.

The value of zmax
∗ is the value at which αðλ, z0, zmax

∗ Þ = 1.
The integration range for each λ value corresponding to
α ≥ 1 is shown in Figure 12 as a black line were the blue
and green dots correspond to zmin

∗ and zmax
∗ , respectively. We

see that the green dots are points on the surface plot α = 1.

The region beyond the green dots corresponds to α < 1,
and hence, they set the maximum value for the upper limit
in the integration of x and V . We extend the same numerical
strategy for the finite temperature plots. The value of the
parameters for the finite temperature potential plots is shown
in Table 4.

The pair production plots for zero temperature in Section
4 are produced by numerically solving the integration and
differential equation shown in Equations (26) and (28),
respectively, subject to the boundary condition shown in
Equation (29). Since now zðσÞ is a function of σ, we use an
integrated (αint) value of α given by

αint =
ðx
0
dσ α λ, z0, z σð Þð Þ: ð32Þ
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Figure 11: Considering pair production rate at finite temperature
and fixed probe brane position and different large values of scale
parameter.
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Figure 12: Surface plot satisfying the condition α = 1. The region
above and below the surface corresponds to α > 1 and α < 1,
respectively. The black lines show the range of integration for α ≥ 1.
The blue and green dots correspond to the value of zmin

∗ and
zmax
∗ , respectively.

Table 3: Parameter values used in Figure 4.

λ z0 zmin
∗ zmax

∗

0.10 1.2 1.21 2.29

0.20 1.2 1.21 1.84

0.30 1.2 1.21 1.65

0.0 0.5 1.0 1.5
0.988

0.990

0.992

0.994

0.996

0.998

1.000

�훼

e
–S

�휆 = 0.1

b = 0.40
b = 0.50
b = 0.67

Figure 10: Considering pair production rate at finite temperature,
different probe brane positions, and fixed value of scale parameter.

Table 4: Parameter values for finite temperature potential plots.

λ z0 zh b zmin
∗ zmax

∗

Figure 7(a)

0.10 1.2 2.5 0.48 1.21 2.31

0.10 1.2 3.0 0.40 1.21 2.28

0.10 1.2 4.0 0.30 1.21 2.26

Figure 7(b)

0.10 1.2 6 0.20 1.21 2.26

0.50 1.2 6 0.20 1.21 1.47

1.00 1.2 6 0.20 1.21 1.34
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The differential equation in Equation (28) is numerically
solved over the range of the variable σ from 0 to σmax. The
parameters z0, σ0, and z ∗ satisfy the boundary condition
defined in Equation (29). The data points are generated by
varying the upper limit of the integration in Equations (26)
and Equation (32) over the range 0 to xmax. The values of
all the parameter used in Figures 8 and 9 are shown in
Table 5. Again we apply the same strategy for the finite tem-
perature case to numerically solve Equations (30) and (31).
The parameter values used in Figures 10 and 11 are summa-
rized in Table 6.

7. Conclusion

In this paper, we studied the condition required for vacuum
instability in a holographic theory with dilaton field for both
zero and finite temperature cases. We started by consider-
ing a LFH metric background containing dilaton field. We
followed the approach of Reference [2] while the signifi-
cant difference between this work and other studies on
Schwinger-like effect is that there is no explicit external field
responsible for vacuum decay rather the field is within the
metric that causes the vacuum decay.

Potential analysis has been considered at both zero tem-
perature and finite temperature. In the zero temperature case,
we have considered that in the near-boundary region, a larger
value of the critical field should be obtained for pair produc-
tion; in addition, the effect of scale parameter is to decrease
the value of the critical field. Interestingly, far from the
boundary region, this scale parameter has no effect. The
critical field has the maximum value near the boundary
region, and this maximum value decreases with increasing
value of the scale parameter. Interestingly, far from the
boundary region, the critical field becomes almost inde-
pendent of the scale parameter. α is the ratio of dilaton

field to its critical value, and we have found that there is
a preferable region where the condition α ≥ 1 is obtainable
almost irrespective of λ value. Also, α depends on probe
brane position significantly.

During tunneling process at zero temperature, increasing
scale parameter leads to diminishing the potential barrier, so
although the pair production via Schwinger effect has not
been started yet, pair creation according to tunneling process
increases. In the current study, for pair creation via
Schwinger effect, condition α ≥ 1 is not enough because we
need λ to be large. Similar to the zero temperature case, at
finite temperature also, α has its maximum value in the
near-boundary region. In the region far from the boundary,
α becomes independent of the temperature. The effect of
scale parameter on α depends on the region completely, as
the effect of scale parameter near the boundary is completely
different with the near-horizon region. We found that the
low-temperature region does not have a significant effect on
the critical field, but at high temperature, the critical field falls
down rapidly and with further increases in temperature, it
becomes independent of the scale parameter. The results
for the potential analysis at finite temperature is similar with
the zero temperature case.

Pair production rate has been considered the exponential
function of the action. We observe that in both zero temper-
ature and finite temperature cases, the pair production rate
decreases with increasing values of scale parameter and probe
brane position. Also, the rate of decrease is rapid beyond the
region α ≥ 1. So, in this work, although we observe vacuum
instability under very restricted condition, there is no cata-
strophic pair production.
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