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ABSTRACT 
 

Metagenomics has greatly improved our understanding of microbial ecology by revealing the 
metagenomes of uncultured bacteria, including those associated with insects. These bacteria play 
important roles in insect defence, reproduction, and food absorption, which influences pest 
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management tactics. Recent next generation sequencing advances in low-cost nucleotide and 
user-friendly bioinformatics have improved our ability to investigate microbial diversity in 
economically significant pests. Meta-omics technologies are now essential for defining microbial 
ecosystems, bio-surveillance, food safety, and commercial advances. Genome studies on insects 
and plants provide insights into pest control by discovering resistance genotypes and 
understanding stress-induced genomic changes. This review is focused on how herbivore 
specialists, such as the diamondback Plutella xylostella, adapt to host plants using gut microbiota. 
Metagenomic sequencing has discovered important bacteria-Enterobacter cloacae, Enterobacter 
asburiae, and Carnobacterium maltaromaticum- that help detoxify plant defences, breakdown cell 
walls, and synthesise amino acids. These findings indicate novel pest management tactics that 
target gut microbiota interactions. The paper continues with an overview of metagenomic DNA 
extraction, library creation and screening methods, especially on their applications in biotechnology 
and bioprocessing. 
 

 

Keywords: Metagenomics; insect pests; genome expression; diamond back moth; herbivores. 
 

1. INTRODUCTION 
 

Metagenomics is a sophisticated tool for 
investigating microbial communities in any 
environment that involves the metagenome of all 
microorganisms found in a given environment 
without the requirement for culturing. This 
method entails extracting DNA from particular 
environmental samples, cloning it and then 
sequencing the resulting library to discover 
microbial diversity and functions [27,42]. Insects 
are particularly interesting topics for 
metagenomic research because of their 
immense microbial diversity, which includes up to 
100 times more microbial genes than their own 
and ten times more bacteria than cells. The 
subject of insect genomics began in 2000 with 
the sequencing of Drosophila melanogaster, and 
over 30 more insect genomes have subsequently 
demonstrated their wide diversity and complex 
biology [2,8]. Recent study on the functional 
profile of Insect’s gut microbiome has 
increasingly focused on insect gut microbiomes, 
spurred by their important functions in digestion, 
metabolism, and pest management, including 
antibiotic resistance genes [52]. Increased crop 
output has increased insect infestations, 
necessitating extensive pesticide use, which 
destroys soil and disturbs natural pest foes. In 
response, DNA-based technologies, like as 
meta-omics, provide alternative pest 
management options. Meta-omics, which 
includes metagenomics, meta-transcriptomics, 
meta-proteomics, and meta-bolomics, offers a 
comprehensive understanding of molecular 
interactions and functions in microbial 
communities [47]. This holistic approach has 
resulted in the development of 'IPM-omics' in 
Integrated Pest Management, which combines 
meta-omics and GIS data to improve pest control 

strategies [63]. Microorganisms play crucial roles 
in physical, chemical, and biological processes, 
influencing host interactions, genetic diversity, 
and ecological balance in soils [58]. The study of 
microbial ecology has expanded from human 
microbiology to include marine, food, and insect 
sciences [19, 33]. Insect-associated microbial 
communities are essential for various functions 
such as nutrient absorption and protection from 
predators [22]. Meta-omics techniques have 
advanced our understanding of these microbial 
communities, revealing insights into gut 
microbiome profile of insect like Pentalonia 
nigronervosa [57], Lutzomyia spp. [26,1] and 
Apis mellifera [55, 56,71,72]. This review 
highlights how metagenomics and related 
technologies enhance our knowledge of insect 
gut microbiomes and their applications in pest 
management and biotechnology [82,77]. 
 

2. META-OMICS IN PEST MANAGEMENT 
 

Genomics is revolutionizing pest management by 
identifying critical insect survival genes, which 
can be targeted using transgenic and RNAi 
techniques. It also aids in developing new 
pesticides and discovering host-plant resistance 
factors. Additionally, population genomics 
reveals intra-species variations and origin of pest 
populations, enabling targeted control measures 
to prevent their spread. Meta-genomics, first 
introduced by [26] identifies the complete set of 
genomes in a sample, revealing the diverse 
microbial community. Metabarcoding, a refined 
meta-genomic method, uses short DNA 
fragments (barcodes) like 16S or COI to 
reconstruct the taxonomy of these communities 
and assess the presence of specific genes. 
Meta-transcriptomics extends this by analysing 
expressed genes, offering insight into which 
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biological processes are active. However, 
changes in gene expression might not always 
correspond to visible traits, which is where meta-
proteomics and metabolomics come in. These 
techniques help determine the actual functional 
activities of microbial communities by analysing 
proteins and metabolites, respectively [76, 31]. 
agriculture, pests have increased due to 
intensified farming practices, leading to 
widespread use of synthetic pesticides despite 
their environmental and health impacts. 
Microorganisms play a crucial role in pest biology 
and their interaction with plants. For instance, 
certain microbes can improve pest resistance to 
stress or aid in overcoming plant defences [49, 
73], Examples include the psyllid Bactericerca 
cockerelli, which uses symbionts to modulate 
plant defences [12] and beetles that exploit fungi 
for dietary needs and plant defence evasion 
[58,59].  
 

Meta-omics has significantly advanced pest 
management research. For example, sequencing 
the metagenome of the diamondback moth 
Plutella xylostella revealed that bacterial taxa 
help detoxify plant defense compounds. 
Similarly, metagenomics was used to explore the 
endosymbiont diversity in Diaphorina citri, a 
vector of citrus greening disease [66]. Meta-
transcriptomics has linked colony collapse 
disorder in honeybees to Israeli acute paralysis 
virus [16] and similar techniques have identified 
pathogens in the yellow crazy ant Anoplolepis 
gracilipes [15]. Additionally, meta-omics is 
shedding light on viral diversity in ecosystems, 
which could enhance biocontrol strategies [17, 
54]. 
 

3. GUT MICROBES  
 

Gut microbes are crucial for insect nutrition, often 
playing a symbiotic role by enhancing nutrient 
availability and regulating their allocation [20]. 
Insects have evolved to leverage 
microorganisms to adapt to nutrient-limited 
environments, either by consuming them directly 
or relying on them for pre-digesting complex 
diets [21]. These microbes can be transferred 
vertically between generations, horizontally 
among individuals, or acquired from the 
environment [21, 38]. In some cases, disrupting 
gut microbial communities can significantly 
impair insect performance [32]. Gut microbes 
help detoxify plant secondary metabolites, aiding 
insects in digesting their diets [9]. For example, 
the gut microbiota of Hyles euphorbiae and 
Brithys crini is dominated by Enterococcus, 
which likely assists these insects in feeding on 

toxic plants [78,79]. Recent studies have shown 
that host plant species significantly impact the 
gut microbiota of polyphagous insects. This has 
been observed in Acyrthosiphon pisum [23], 
Phylloxera notabilis [49], Melitaea cinxia [65], 
Thaumetopoea pityocampa [74], and Ceratitis 
capitata [47]. Factors such as diet, life stage, and 
environment are major drivers of gut microbial 
community composition [47, 14]. Additionally, 
insects reared on artificial diets exhibit different 
gut microbiota compared to those from natural 
environments [10]. 
 

4. METAGENOMIC ANALYSIS OF INSECT 
PESTS 

 

4.1 Diamondback Moth (Plutella 
xylostella) 

 

Diamondback moths are infamous pests of 
cruciferous plants such as cabbage, broccoli, 
and cauliflower. Metagenomic analyses of its 
microbiota show a predominance of 
Proteobacteria, particularly Enterobacteriales, 
and Firmicutes, most notably Lactobacillales. 
Resistant strains to chlorpyrifos and fipronil 
exhibit higher Lactobacillales and other 
uncommon taxa such as Pseudomonadales, 
implying that these bacteria may contribute to 
pesticide resistance [82]. 
 

4.2 Whitefly (Bemisia tabaci) 
 

Whiteflies are polyphagous pests that harm more 
than 900 plant species and serve as carriers for 
a variety of viral illnesses. 16S rDNA sequencing 
revealed 57 bacterial species spanning 10 phyla 
in wild B. tabaci from cotton plants in southern 
Punjab, Pakistan, with Proteobacteria, 
Bacteroidetes, Firmicutes, and Actinobacteria 
being the most common. PacBio sequencing of 
full-length 16S rRNA genes has detected 
endosymbionts such as Halomonas, as well as 
fresh Rickettsia and Arsenophonus strains 
across distinct whitefly populations [70, 34, 78]. 
 

4.3 Termites 
 

Termites pose a hazard to agriculture and 
wooden infrastructure and their gut microbiome 
is essential for lignocellulose digestion. 
Firmicutes and Spirochaetes are common in 
wood-feeding termites such as Amitermes 
wheeleri, but Nasutitermes corniger contains 
Spirochaetes and Fibrobacteres. Functional 
investigations show that A. wheeleri microbiota 
helps with hemicellulose breakdown and nitrogen 
fixation, whereas N. corniger microbiota focusses 
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on cellulose degradation and nitrogen fixation 
[29, 24]. 
 

4.4 Fungal Microbiota 
 

Mutualistic relationships between insects and 
fungi are complex and employ a variety of 
methods across taxa. Bark beetles, ambrosia 
beetles, fungus-farming ants, termites, wood 
wasps, and gall midges are among examples 
[37, 35]. Bark and ambrosia beetles, in particular, 
have strong symbiotic associations with fungus. 
Beetles from international harbours have been 
linked to both plant diseases and previously 
unknown fungus, which can spread 
internationally via wood-product shipping [45]. 
 

However, certain fungi have hostile associations 
with insects. Entomopathogenic fungi, such as 
Beauveria and Metarhizium, are utilised as pest 
biocontrol agents [69, 64]. These fungi can also 
form unusual multitrophic relationships. 
Metarhizium robertsii, for example, can transport 
nitrogen from Galleria mellonella infected larvae 
to plants [7], a behaviour similar to that seen with 
the ectomycorrhizal fungus Laccaria bicolour in 
white pine [40]. Furthermore, gene transfer 
between fungi and insects, such as aphids, has 
been demonstrated [51], and plant-fungus 
interactions can ameliorate the negative 
consequences of herbivores. 
 

Despite these findings, research into insect-
associated fungal microbiomes is scarce. 
Collembola [5], Lepidoptera [28], Coleoptera [50, 
36] and Diptera [13] are the primary focus of 
current study. For example, DNA metabarcoding 
of Bactrocera oleae, a prominent pest of olive 
orchards, revealed correlations with 
Colletotrichum species known to cause olive 
anthracnose [46].  
 

5. RECENT INSIGHTS AND POTENTIAL 
APPLICATIONS OF INSECT GUT 
MICROBIOME 

 

5.1 Cellulose and Xylan Hydrolysis 
 

Termites, which are effective wood degraders, 
have the potential to produce biofuel due to their 
various cellulose and xylan hydrolysing enzymes. 
[80] discovered several bacterial genes for these 
processes in the hindgut of wood-feeding 
Nasutitermes species, showing many 
unidentified protein families involved in 
lignocellulose breakdown. Traditionally, cellulose 
degradation was attributed to microbial gut 
symbionts, however recent research has 

revealed termite-derived cellulase gene 
transcripts. Additionally, xylanase genes have 
been found in both lepidopteran and termite 
intestinal samples. The combined activity of 
microbial and termite enzymes promotes 
lignocellulose digestion, which is essential for 
turning wood into biofuels and lowering 
greenhouse gas emissions [80, 11, 53] [81]. 
 

5.2 Vitamin Production 
 

The genome of Wigglesworthia sp., a symbiont 
of Glossina brevipalpis, has been sequenced, 
revealing genes for synthesizing several B 
vitamins: pantothenate (B5), biotin (B7), thiamin 
(B1), riboflavin (B2), pyridoxine (B6), 
nicotinamide (B3), and folate (B9) [3]. 
 

5.3 Nitrogen Fixation, Phenolics 
Metabolism and Antibiotic 
Resistance 

 
Insects use symbiotic gut bacteria to fix 
atmospheric nitrogen, a mechanism absent in 
eukaryotes but widespread in bacteria. Nitrogen-
fixing Enterobacter species have been identified 
from the southern pine beetle, and they, together 
with some fungi, may improve nitrogen 
availability for growing larvae [39]. Furthermore, 
Rahnella aquatilis, Klebsiella species, and 
Pantoea species are common in these beetles, 
and Dendroctonus frontalis larvae can fix 
nitrogen in a variety of environments [6]. Bacteria 
in the beetles gut also play a role in detoxifying 
conifer defensive compounds, primarily 
monoterpenes, diterpenes, and phenolics [60, 4] 
revealed new antibiotic-resistant genes, including 
β-lactamases, in the gypsy moth’s midgut 
microbial population. These genes, which 
provide resistance to E. coli, indicate that insects 
may contribute to the spread of important 
antibiotic resistance genes. Furthermore, insect-
associated microorganisms generate a variety of 
metabolites having biological functions [30, 25] 
discovered a new metagenomic clone that 
produces distinct quorum-sensing inducers by 
analysing the gypsy moth midgut microbiome. 
This clone carries a gene for a monooxygenase 
homologue, which opens up a pathway for indole 
oxidation and the production of a novel quorum 
sensor chemical. 
 

6. APPLICATION DOMAINS 
 
Meta-omics pipelines are becoming more 
accessible, broadening their applications from 
insect microbial ecology to industry and 
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biocontrol. [80] employed metagenomics to 
discover genes involved in cellulose and xylan 
hydrolysis in the termite Nasutitermes ephratae, 
while study on protistan communities in 
Coptotermes formosanus and Reticulitermes 
flaviceps underlined their importance in 
strengthening lignocellulolytic systems [43, 44, 
82]. Studies have looked into leveraging wood-
feeding beetle microbiome to uncover new 
enzymes [68, 48, 75] discovered that leaf-cutter 
ant microbiota enhances cellulose degradation, 
while [41] examined insect stomach microbiomes 
for industrial uses. Meta-omics also improves 
bio-surveillance by analysing complete genetic 
pools collected from traps to detect invasive 
species and plant pathogens [62, 61]. 
Furthermore, modifying insect-microbe 
connections may improve pest management 
efforts [18, 67]. DNA metabarcoding aids in the 
identification of honey sources, reducing fraud 
through advances in extraction and machine 
learning [58]. 

 
7. CONCLUSION 
 
Metagenomics has significantly improved our 
understanding of microbial communities linked 
with insects, providing new insights into 
manipulation of it in agricultural applications. 
especially pest control and biotechnological 
manufacturing processes. The thorough 
examination of insect gut microbiomes revealed 
crucial roles for microbial diversity in nutrition 
absorption, detoxification of plant defences, and 
pesticide resistance. These findings have 
resulted in novel pest control tactics that target 
gut microbiota interactions and show the 
potential of using insect-associated 
microorganisms for sustainable agricultural 
practices. Furthermore, the integration of meta-
omics with biotechnology and bioprocessing is 
creating new opportunities for industrial 
applications such as biofuel production and bio-
surveillance. As technology advances, the 
complete approach given by meta-omics will be 
crucial in tackling agricultural difficulties, 
improving pest control, and extending our 
understanding of microbial ecosystems in both 
natural and agricultural systems. 
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