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Abstract 
 

Fixed-point theory (FPT) has lot of applications not only in the field of mathematics but also in various other 

disciplines. Fixed Point Theorem presents that if 𝑇: 𝑋 → 𝑋 is a contraction mapping on a complete metric 

space (𝑋, 𝑑) then there exists a unique fixed point in 𝑋. FPT is also essential in game theory, in this case 

Brower Fixed Point has an application in game theory specifically in non-cooperative games and existence of 

Equilibrium. In particular, a game is a set of actions done by the participants defined by a set of rules. This is 

commonly described using mathematical concepts, which offers a concrete model to describe a variety of 

situations.  On the other hand, the separation axioms  𝑇𝑖 , 𝑖 = 0,1,2,3,4  are vital properties that describes the 

topological spaces  𝑇0 , 𝑇1 , 𝑇2, 𝑇3 and  𝑇4 . It is noted that a  𝑇3 − 𝑠𝑝𝑎𝑐𝑒 is a generalized version of   𝑇2-space 

and since various results on application of fixed point theory in game theory on an arbitrary locally convex  

𝑇2 − space has been established, in this study we sort to  extend this concept to the general    𝑇3 − 𝑠𝑝𝑎𝑐𝑒. The 

utilization of a symmetric property of Hausdorff space established that if two continuous commutative 

mappings are defined on a   𝑇3 − 𝑠𝑝𝑎𝑐𝑒, then the two maps achieves unique fixed points. 

 

 

Original Research Article 

https://doi.org/10.9734/arjom/2024/v20i9827
https://www.sdiarticle5.com/review-history/121833


 
 

 

 
Koros et al.; Asian Res. J. Math., vol. 20, no. 9, pp. 48-52, 2024; Article no.ARJOM.121833 

 

 

 
49 

 

Keywords: Fixed-point theory; game theory; brower fixed point; separation axiom. 

 

1 Introduction 
 

A topological space 𝑋 is said to be a  Hausdorff space(𝑇2 −  space) if ∀ 𝑎, 𝑏 ∈ 𝑋, 𝑎 ≠ 𝑏, then ∃ an open sets 

𝑈 and 𝑉  such that   𝑎 ∈ 𝑈, 𝑏 ∈ 𝑉, 𝑎𝑛𝑑  𝑈 ∩ 𝑉 = 𝜙 , whereas a 𝑇3 −  𝑠𝑝𝑎𝑐𝑒 is a regular  𝑇1 −
𝑠𝑝𝑎𝑐𝑒 (Kuratowski, K. [1]. Furthermore, a topological space 𝑋 is regular  if ∀𝑎 ∈ 𝑋 and any closed set 𝐴 of 𝑋 , 

∃  open sets 𝑠𝑎𝑦 𝑈 𝑎𝑛𝑑  𝑉  such that 𝑎 ∈ 𝑈, 𝐴 ⊆ 𝑈 𝑎𝑛𝑑 𝑈⋂𝑉 = ∅ , while a topological space 𝑋 𝑖𝑠 said to be  
𝑇1 − 𝑠𝑝𝑎𝑐𝑒  if for any two points  𝑎, 𝑏 ∈ 𝑋, where 𝑎 ≠ 𝑏 there exist open sets 𝑈 𝑎𝑛𝑑 𝑉such that 𝑎 ∈ 𝑈, 𝑏 ∉
𝑈 and 𝑏 ∈ 𝑉, 𝑎 ∉ 𝑉(Thron, W. J. [2]. In this study, we  consider 𝑇𝑖 − 𝑠𝑝𝑎𝑐𝑒𝑠 for 𝑖 = 0,1,2,3,4 which are key 

separable topological spaces. In this case, 𝑇4 → 𝑇3 → 𝑇2→ 𝑇1 → 𝑇0. A case of interest in our study is the result 

that a 𝑇3 − space implies 𝑇2 − 𝑠𝑝𝑎𝑐𝑒 as illustrated by the following lemma. 

 

Lemma 1.1: Every topological space 𝑇3 − space is a 𝑇2 − space Munkres et al., [3]. 

 

We also present of an important property of  a symmetric Hausdorff space as presented by Gupta, V., Aydi, H., 

& Mani, N. [4] whereby, it is illustrated that a Hausdorff space 𝑋 with a  continuous mapping 𝐻 is said to be a 

symmetric if it satisfies the following axioms; 

 

I. H(x, y) = 0 iff x = y 

II.  H(x, y) = H(y, x) 

III.   It is a T1 − space 

 

Having seen that 𝑇3 − 𝑠𝑝𝑎𝑐𝑒 is a generalization of  𝑇2 − 𝑠𝑝𝑎𝑐𝑒 and suppose that the 𝑇3 − 𝑠𝑝𝑎𝑐𝑒  satisfies a 

symmetric conditions, then as a consequence of Lemma 1.1 the following result is evident, 

 

Lemma 1.2: Let 𝑋 be a 𝑇3 − 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 𝑅:𝑋 → 𝑋 be a continuous mapping such ∀𝑥, 𝑦 ∈  𝑋, then 

 

I. 𝑅(𝑥, 𝑦) = 0     𝑖𝑓𝑓 𝑥 = 𝑦. 

II.  𝐼𝑡 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑇1 − 𝑠𝑝𝑎𝑐𝑒 

III.  𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) 

 

Thus 𝑅 is said to be symmetric on  𝑇3 − 𝑠𝑝𝑎𝑐𝑒. 
 

From lemma 1.1 and lemma 1.2 we have established  𝑇2 − 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑  𝑇3 − 𝑠𝑝𝑎𝑐𝑒 are symmetric . 
 

Popa, [5] established a generalized results of Banach Fixed point theorem through Hausdorff topological space 

by considering the properties below: 

 

1. 𝐻(𝑥, 𝑦) ≠ 0…………………………………………………………..…………………………………   (1) 

2. 𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝛼𝑀(𝑥, 𝑦) + 𝛽𝐻(𝑥, 𝑦)…………………………………………..………………………     (2) 

3. 𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝛼(
𝐻(𝑥,𝐹𝑥)𝐻(𝑦,𝐹𝑦)

𝐻(𝑥,𝑦)
+ 𝛽(𝐻(𝑥, 𝑦))..(triangular inequality)……..……………………………   (3) 

4. 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝐻(𝑥, 𝑦),
𝐻(𝑥,𝐹(𝑥)𝐻(𝑦,𝑓(𝑦)

𝐻(𝑥,𝑦)
}………………………………………………………………  (4) 

5. 𝐻2(𝑥, 𝑦) ≥ 𝐻(𝑥, 𝑥)𝐻(𝑦, 𝑦)……………………………………………………....................................... (5) 

 

Where 𝛼, 𝛽 > 0 𝑎𝑛𝑑 𝛼 + 𝛽 < 1  for some 𝑥0 ∈ 𝑋   such that 𝐹𝑥0 = 𝑥1 . By defining the sequence 𝑥𝑛  in a 

Hausdorff space 𝑋 such that 𝐹𝑥𝑛 = 𝑥𝑛+1  and 𝐹𝑥𝑛−1 = 𝑥𝑛 , then through iteration process the sequence 𝑥𝑛 =
{𝐹𝑛𝑥0} has a convergent subsequent. As a result fixed point of 𝐹 is attain. 

 

Based on the results discussed above by Popa, [5] and utilizing the concept of symmetric Hausdorff space, we 

similarly make an effort of derivation of Fixed Point Theorem under  𝑇3 − 𝑠𝑝𝑎𝑐𝑒 in the proceeding proposition 

[6,7]. 
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2 Main Results 
 

Proposition 2.1:  

 

Let 𝑇: 𝑋 → 𝑋 be a continuous mapping on 𝑇3 − 𝑠𝑝𝑎𝑐𝑒 𝑋 into itself and let R: 𝑋 → 𝑋   be a continuous mapping 

which commutes with  𝑇 satisfying the following conditions [8]. 

 

1. 𝑅(𝑥) ⊂ 𝑇(𝑥) ∀ 𝑥 ∈ 𝑋 

2. 𝑑(𝑅𝑥, 𝑅𝑦) ≤ 𝛼(𝑇𝑥, 𝑇𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋, 

 

Then 𝑇 𝑎𝑛𝑑 𝑅 have a fixed point. 

 

Proof: 

 

Choosing 𝑥0 ∈ 𝑋 such that 𝑅𝑥0 = 𝑇𝑥1. Based on this, we define a sequence 𝑥𝑛 𝑖𝑛 𝑋 such that 
𝑇𝑥𝑛 = 𝑅(𝑥𝑛−1) 

 

Step 1: 

 

Let 𝑥0 ∈ 𝑋 and 𝑥1 be such that 

𝑇𝑥1 = 𝑅𝑥0, in general we choose 𝑥𝑛 so that 

𝑇𝑥𝑛 = 𝑅(𝑥𝑛−1) 

𝑇(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) For all 𝑛 

 

It follows from property (2) 

 

𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑇(𝑅𝑥𝑛−1,𝑅𝑥𝑛) ≤ 𝛼𝑇(𝑥𝑛−1, 𝑥𝑛) + 𝛽𝑇(𝑥𝑛−1, 𝑥𝑛) < 𝑇(𝑥𝑛−1, 𝑥𝑛)…. (1) 

Then from property (4) 

 

𝑇(𝑥𝑛−1, 𝑥𝑛) = 𝑚𝑎𝑥 {𝑇(𝑥𝑛−1, 𝑥𝑛),
𝑇(𝑥𝑛−1, 𝑅𝑥𝑛−1)𝑇(𝑥𝑛 , 𝑅𝑥𝑛)

𝑇(𝑥𝑛−1, 𝑥𝑛)
} 

= 𝑚𝑎𝑥{𝑇(𝑥𝑛−1, 𝑥𝑛), 𝑇(𝑥𝑛 , 𝑥𝑛+1)} 

 

Suppose that 

 

𝑇(𝑥𝑛 , 𝑥𝑛+1) > 𝑇(𝑥𝑛−1, 𝑥𝑛) , it follows from equation (1) 

𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛼𝑇(𝑥𝑛−1, 𝑥𝑛) + 𝛽𝑇(𝑥𝑛−1, 𝑥𝑛)…. (2) 

Also if 

 

𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑇(𝑥𝑛−1, 𝑥𝑛) 

It follows again from (I) 

𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤ (𝛼 + 𝛽)𝑇(𝑥𝑛−1, 𝑥𝑛) < 𝑇(𝑥𝑛−1, 𝑥𝑛)...(3) 

From (2) and (3) we obtain 

𝛼𝑇(𝑥𝑛 , 𝑥𝑛+1) + 𝛽𝑇(𝑥𝑛−1, 𝑥𝑛) ≤  (𝛼 + 𝛽)𝑇(𝑥𝑛−1, 𝑥𝑛) 

≤ 𝛼𝑇(𝑥𝑛−1, 𝑥𝑛) + 𝛽𝑇(𝑥𝑛−1, xn) 

𝛼𝑇(𝑥𝑛 , 𝑥𝑛+1) + 𝛽𝑇(𝑥𝑛−1, 𝑥𝑛) ≤ 𝛼𝑇(𝑥𝑛−1, 𝑥𝑛) + 𝛽𝑇(𝑥𝑛−1, xn) 

𝛼𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤    𝛼𝑇(𝑥𝑛−1, 𝑥𝑛) 

𝑇(𝑥𝑛 , 𝑥𝑛+1) ≤  𝑇(𝑥𝑛−1, 𝑥𝑛) < 𝑇(𝑥𝑛−1, 𝑥𝑛)….. (4) 

 

Using equation (3) and (4), and Repeating the process 𝑛 times then, 

 

𝑇(𝑥𝑛 , 𝑥𝑛+1) < 𝑇(𝑥𝑛−1, 𝑥𝑛) < ⋯ < 𝑇(𝑥1, 𝑥0) < 𝑇(𝑥0, 𝑥1) 

 

Since  lim
𝑛→→∞

𝑥𝑛 is bounded and letting  𝑥𝑛  ∀ 𝑛 ∈ 𝑁 be a convergent sequence, denote the limit by 𝑡 where 𝑡 ∈

𝑋. Let 𝑥𝑛𝑘    ∀ 𝑛 ∈ 𝑁 be subsequence such that if 𝜀 > 0 then by definition of convergence for 𝑥𝑛 𝑎𝑠 𝑛 ∈ 𝑁,there 
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exists  𝑁 ∈ ℕ such that |𝑥𝑛 − 𝑡| < 𝜀 for 𝑛 ≥ 𝑁,but this value 𝑁 will also work for 𝑥𝑛𝑘,this is because if 𝑛 ≥ 𝑁 

then 𝑥𝑛𝑘 = 𝑥𝑚 for some 𝑚 ≥ 𝑛 ≥ 𝑁 and so |𝑥𝑛𝑘 − t| = |𝑥𝑚 − t | < 𝜀.Thus |𝑥𝑛𝑘 − t| < 𝜀 ,as 𝑛 → ∞, 𝑥𝑛𝑘 = 𝑡 

 

Hence, we obtain a monotone sequence which converge with all its subsequence to some real number 𝑡 ∈ 𝑋. 

 

Step 2 

 

Next is to show 𝑡 is a fixed point for 𝑇 and 𝑅 

Where 𝑡 ∈ 𝑋 such that   𝑇𝑥𝑛 → 𝑡, 𝑅𝑥𝑛 → 𝑡 

Since 𝑇 is continuous it implies 𝑅 is also continuous. 

Since 𝑇 and 𝑅 commutes it follows that 

𝑅(𝑇(𝑥𝑛) → 𝑅(𝑡)𝑎𝑛𝑑  𝑇(𝑅(𝑥𝑛) → 𝑇(𝑡) So that 

𝑅(𝑇(𝑥𝑛) = 𝑇(𝑅(𝑥𝑛)) 

then 

𝑇(𝑡) = 𝑅(𝑡) 

 

And 

 

𝑇(𝑇(𝑡)) = 𝑇(𝑅(𝑡)) = 𝑅(𝑅(𝑡) (by commutativity) 

From contraction mapping 

𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡)) ≤ 𝛼𝑑(𝑇(𝑡), 𝑇(𝑅(𝑡)) = 𝛼𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡)) 

𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡)) ≤ 𝛼𝑑(𝑇(𝑡), 𝑇(𝑅(𝑡)) 

𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡)) − 𝛼𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡)) ≤ 0,Since 𝛼𝜖(0,1) 

𝑑(𝑅(𝑡), 𝑅(𝑅(𝑡))(1 − 𝛼) ≤ 0 

𝑅(𝑡) = 𝑅(𝑅(𝑡)) = 𝑇(𝑅(𝑡)), then 𝑅(𝑡) is a fixed point for 𝑇 and 𝑅 

 

Step3 

 

To show that 𝑅 and 𝑇 have unique fixed point, we 

Suppose 𝑅(𝑡) = 𝑇(𝑡) = 𝑡 and 𝑅(𝑡′) = 𝑇(𝑡′) = 𝑡′ 
Then it follows from contraction principle, 

𝑑(𝑡, 𝑡′) = 𝑑(𝑅(𝑡), 𝑅(𝑡′)) ≤ 𝛼𝑑(𝑇(𝑡), 𝑇(𝑡′)) = 𝛼𝑑(𝑡, 𝑡′) 

𝑏𝑢𝑡 𝛼 < 1 

And thus 

𝑡 = 𝑡′ 
Thus 𝑅 and 𝑇 have unique fixed point ∎ 

 

3 Conclusion 
 

In this study, it has been established that the generalized result by Popa, [5] of Banach Fixed point theorem in a 

𝑇2 topological space can be extended to a 𝑇3 space if the considered 𝑇3 − 𝑠𝑝𝑎𝑐𝑒 possesses two continuous maps 

that commutates with one another.   
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