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ABSTRACT 
 

Nanoparticles (NPs) have emerged as promising tools for enhancing mulberry cultivation and the 
performance of silkworms, crucial for silk production. Mulberry, a vital plant for silk production, 
demands proper nutrient management for optimal growth and leaf production. Application of NPs, 
particularly zinc oxide and iron oxide, has shown significant improvements in mulberry growth 
parameters. Furthermore, NPs have demonstrated positive effects on silkworm larvae, enhancing 
feed efficiency and growth parameters, leading to better cocoon traits. Silkworms fed with NPs-
treated mulberry leaves exhibited increased body weight, cocoon weight, and silk filament 
characteristics. Additionally, NPs have shown promise in enhancing silkworm reproduction and 
fecundity while conferring resistance against diseases like BmNPV. Various NPs, including TiO2, 
silver and chitosan, have exhibited antibacterial properties against silkworm pathogens, thereby 
contributing to disease prevention. Overall, NPs offer a sustainable and effective approach to 
enhance mulberry cultivation, improve silkworm performance and mitigate disease risks, thus 
potentially revolutionizing silk production practices. 
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1. INTRODUCTION 
 
The mulberry silkworm economically important 
insect due to its silk secretion. The production of 
quality cocoons attributes to nutrition of the 
silkworm Mulberry leaves serves as ideal 
nutritional food for silkworm, which expands the 
quality and quantity of cocoon production. The 
essential trace elements viz., iron, nickel, coper, 
manganese, potassium, zinc and iodine should 
be included in nutrition of silkworm growth. 
Mulberry leaves contains the vitamins which 
provides minimum requirement of silkworms and 
these vitamins varies on ecological conditions, 
fertilizer doses and mulberry varieties. “The 
mulberry leaf quality is influenced by variety of 
spacing’s, irrigation levels, nitrogen levels, 
seasons and the extra foliate that are supplied 
exogenously through mulberry leaves” [1]. 
Enrichment and fortification of mulberry leaves 
can be enhanced the quality and increase the 
quantity of cocoon ultimately silk productivity [2]. 
 
Nanotechnology is quickly advancing, offering 
new paths to boost nutrition and revolutionize 
agriculture. It's gaining massive attention, 
revolving around tiny particles called 
nanoparticles, typically 1-100 nanometres in size, 
made from carbon, metals, metal oxides or 
organic materials [3]. “Nanoparticles are 
generally defined as particulate matter with at 
least one dimension that is less than 100 nm. 
This definition puts them in a similar size domain 
as that of ultrafine particles (air borne 
particulates) and places them as a sub-set of 
colloidal particles” [4]. In 2008 the International 
Organization for Standardization (ISO) defined a 
nanoparticle as a discrete nano-object where all 
three Cartesian dimensions are less than 100 
nm.  
 
“Nanoparticle components include silica, Fe, 
ZnO, titanium dioxide, cerium oxide, aluminium 
oxide, gold nanorods, ZnCdSe/ ZnS core-shell, 
P/ZnS core-shell and Mn/ZnSe quantum dots. 
Nanoparticle size, content, concentration and 
chemistry greatly affect how effective nano-
fertilizers are for plant growth. Nutrient release 
happens when these nano-fertilizers react with 
water in the soil” [5]. 
 
“Nanoparticle such as Metal oxides, AgO, MgO, 
ZnO and TiO2 are inorganic nanomaterials, 
whereas lipids, polymers and CNTs are organic 
nanomaterials. Biodegradable, natural and 

agriculturally safe carriers, such as chitosan, 
called polymeric NPs” [6]. “Owing to the 
polymeric cationic properties and the ability to 
interact with negatively charged molecules or 
polymers, chitosan is a promising agrochemical 
carrier. Diverse types of nanomaterials like 
copper, zinc, titanium, magnesium, gold and 
silver nanoparticles have arisen with effective 
antimicrobial efficacy against viruses, bacteria 
and other eukaryotic micro-organisms. Some 
nanomaterials possess antiviral, antibacterial and 
antifungal properties and have an excellent 
capacity to deal with pathogen-related           
diseases” [7,8]. 
 
Nanoparticles display distinctive physical, 
chemical and biological characteristics when 
compared to their counterparts at larger scales. 
This phenomenon arises from their 
comparatively larger surface area-to-volume 
ratio, heightened reactivity or stability in chemical 
processes, bolstered mechanical strength and 
other factors. [Assessment R 2007 cited by Elia 
2017]. These properties of nanoparticles have 
led to use various applications including 
medicine, engineering, catalysis and 
environmental remediation. The inclusion of 
nanomaterial in sericulture are novel; therefore, it 
is imperative to know and exploit their effects on 
mulberry silkworms and silk productivity. This 
review endeavours to elucidate the impact of 
nanoparticles on the growth and development of 
mulberry plants and silkworms. It 
comprehensively examines relevant data and 
delves into how nanoparticles affect larval 
growth, cocoon productivity, and resistance to 
disease in silkworms. Moreover, it                        
explores potential opportunities within                         
the captivating realm of nanomaterials in 
sericulture. 
 

2. UPTAKE MECHANISM OF 
NANOPARTICLES 

 
“The process of uptake typically entails the 
passage of nutrients from the soil toward the root 
surface, the transport of ions via the membranes 
of root surface cells, the radial transport of ions 
into the root xylem vessels, the transport in the 
xylem and the distribution of ions in the 
aboveground parts of the plant” [9]. Recent 
studies have focused on determining the total 
nutrient uptake over time, as well as the                
nutrient uptake of a particular root and its growth 
rate.  
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“After entering the soil, plant nanoparticles can 
take two routes through tissues:                           
apoplast or symplast. Apoplastic transport moves 
water and substances through extracellular 
spaces, xylem vessels, and cell walls of 
neighboring cells, all outside the plasma 
membrane” [10]. “In symplastic movement 
transportation takes place through the 
specialized structure called plasmodesmata” 
[11]. “Radial movement of nanoparticles within 
plant tissues was mainly triggered                                 
by apoplastic pathway which assists 
nanomaterials to reach the root central cylinder 
and the vascular tissues” [12,13,14]. “After 
reaching the central cylinder, nanoparticles move 
upward to the aerial part through xylem” 
[15,16,14]. 
 
“In case of foliar applications, nanoparticles cross 
cuticular barrier by lipophilic or hydrophilic 
pathway” [17]. “In lipophilic pathway diffusion 
takes place through cuticular waxes, whereas in 
hydrophilic pathway dispersion through polar 

aqueous pores of cuticle or stomata takes place” 
[18,19]. 
 

3. APPLICATION OF NANOPARTICLES 
 

Cancer therapy: Nanoparticles specifically 
target cancer cells, where they undergo either 
endocytosis or phagocytosis to eliminate the 
diseased cells. 
 

Drug delivery: Nanoparticles enclosing drugs 
enhance the stability and solubility of the 
medication, facilitating targeted delivery to 
particular tissues or cells. 
 

Antioxidant: Certain oxide nanoparticles exhibit 
properties similar to antioxidant molecules as a 
result of their inherent physicochemical 
characteristics. 
 

Biomolecule detection: Nanoparticles adhere 
to biomolecules on their surface, enabling the 
detection of these biomolecules through bio-
tagging or labeling techniques. 

 

 
 

Fig. 1. Application of nanoparticles in different fields 
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Plant growth: Nanoparticles can serve as nano-
fertilizers by encapsulating fertilizers, leading to 
improved growth, yield and quality of crops due 
to positive morphological and biological effects. 
 
Magnetic bio-seperation: Magnetic 
nanoparticles selectively absorb the desired 
product onto their surface, facilitating its 
separation from the solution. 
 
Enhanced immune function: Nanoparticles 
have the capability to trigger an immune 
response by functioning as adjuvants. 
 
Gene delivery: Nanoparticles offer an alternative 
to vectors in the transfer of genes within the field 
of genetic engineering. 
 
Against antimicrobial resistance: In combating 
antimicrobial resistance, nanoparticles surpass 
barriers due to their unique physio-chemical 
properties. These properties empower 
nanoparticles to employ diverse bactericidal 
pathways, thus achieving antimicrobial activity 
through novel means. 
 
Diagnosis: Combining diagnostic and 
therapeutic agents within a single nanoparticle 
formulation. 
 

4. EFFECT OF NANOPARTICLES ON 
MULBERRY 

 

4.1 Nanoparticles as Fertilizer for 
Mulberry Propagation 

 
Mulberry is a high biomass producing, fast-
growing, perennial, woody plant belonging to the 
genus Morus under the family Moraceae. Lu et 
al. [20] suggested that, “a proper nutrient 
management is required for appropriate root 
establishment, growth and leaf production”. 
Hansch and Mendel [21] stated that 
“micronutrients like iron, copper, zinc, 
manganese are required in very low amount, but 
presence of correct balance of these elements is 
essential for growth and quality leaf production”. 
Geetha et al. [22] suggested that “in case of multi 
micronutrient deficiency in Mulberry, yield can be 
reduced even up to fifty percent. Chemical and 
chelated fertilisers must be applied in order to 
remedy the deficiency”. Chelated fertilisers are 
expensive and frequently used on crops with 
high value. Nanoparticles can be synthesized 
from plant extract, which aid in seed germination, 
pesticide residue degradation and improved soil 
quality [23,24]. 

Nithya et al. [25] recorded “significantly highest 
shoot height (96.63 cm), number of branches per 
plant (8.47), number of leaves per shoot (18.60), 
number of leaves per plant (157.15), leaf area 
(96.90 cm2) and leaf yield (0.46 kg /plant) in the 
foliar application of nano Zinc Oxide at 20 ppm in 
V-1 mulberry variety. They also reported that 
nano zinc fertilizer treatment to be cost effective 
with higher B:C ratio (2.93) and highest net 
returns per hectare as compared to ZnSO4 
fertilizer”. Das and Mandal [26] reported that 
“nano-silver solution act as effective 
preservatives and enhance the activity of 
enzymatic and non-enzymatic antioxidants 
thereby reducing the harmful effect of 
accumulated free radicals and reactive oxygen 
species (ROS). Prevention of ROS generation 
helps in preventing plastid membrane 
peroxidation and thus maintaining chlorophyll 
content, extending the shelf life. They also 
reported that, the total chlorophyll, total protein, 
total sugar, reducing sugar, proline, total phenol, 
ascorbic acid, carotenoid and flavonoid contents 
were maximum after 7 days of leaf preservation 
in biosynthesized silver nanoparticles”. 
 
“Soil and foliar application of iron oxide 
nanoparticles and EDTA functionalized iron oxide 
nanoparticles on mulberry improves the overall 
growth parameters. The application of iron oxide 
nanoparticles @ 10 mg/kg in soil significantly 
improved sprouting percentage (82%), number of 
leaves (52.73% improved over control), plant 
biomass (37.20% and 90.24% increase of shoot 
and root biomass over control, respectively), root 
attributes (34% increment for root length) and 
also shortened the first leaf appearance period in 
mulberry” [27]. “Similarly, growth parameters, 
including shoot height, number of branches per 
plant, number of leaves per plant and total leaf 
area recorded in mulberry plant raised with foliar 
application of nano nitrogen fertilizer” [28]. Also, 
noted that increased maximum leaf yield and 
improved quality parameters, such as total 
carbohydrates, crude protein, crude fibre, 
chlorophyll content and leaf elemental 
compositions, with foliar application of nano 
nitrogen fertilizer. 
 

5. EFFECT OF NANOPARTICLES ON 
LARVAE  

 

5.1 Effect on larval Feed efficacy 
 
“The feeding efficiency of silkworm larvae is 
important as it accounts for their growth rate and 
development. Low concentrations of 
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nanoparticles (NPs) enhance larval body growth 
and feeding efficiency. Silkworm larvae fed with 
TiO2 NPs (5 or 10 mg/L) improved the ingestion 
and digestibility of mulberry leaves, which 
significantly accelerated their body weight gain” 
[29]. 
 
Prabhu et al. [30] recorded “the superior feed 
efficacy viz, food consumption (gm) food 
utilization (gm) approximate digestibility (%) food 
consumption index (%) and Co-efficient of food 
utilization (%) in silkworm fed with MR2 mulberry 
leaves treated with 25 % silver nanoparticles 
solution”. “Similarly feeding low concentration of 
TiO2 NPs showed significantly improved the 
amount of ingested food (g/larvae), the amount 
of digestion (g/larvae) and percentage of 
ingested food (%) in silkworms” [31,29]. 
Riboflavin NPs fortified mulberry leaves 
enhanced the feed efficacy specially with higher 
production rate (mg/day) and metabolism rate 
(mg/day) in silkworm [32]. Similarly, Bombyx mori 
L. larvae, pupae and cocoons showed improved 
body weight and shell weight as well as 
increased feeding efficiency when exposed to 
biosynthesized AgNPs [33]. 
 

5.2 Effect on larval Growth Parameters 
 
During the larval stages, silkworms feed on 
mulberry leaves which have all the required 
nutrients needed for their growth and 
development. Mulberry leaves treated with silver 
nanoparticles or along with spirulina led to 
significant increase in length and weight of fifth-
instar silkworm larvae due to enhanced nutrition 
efficiency [34,35]. Similarly, Prabhu et al. [36] 
reported the increased length, width and weight 
of 3rd, 4th and 5th instar larvae when fed with 
silver nanoparticles. Pandiarajan et al. [37] 
reported that “the exposure of silkworm larvae to 
Ag NPs (1 ppm) improved the larval growth rate 
and the cocoon weight”. Tian et al. [38] focused 
on studying “the impact of TiO2 NPs (5 mg/L) on 
the nutrient metabolism of the silkworm fat body. 
The treating mulberry leaves with TiO2 NPs 
activated the insulin signalling pathway of the 
silkworm by enhancing the metabolism of 
carbohydrates, proteins and fat when compared 
to the control group”.  
 
Nithya [39] found that larval weight and effective 
rate of rearing (ERR) increased after feeding with 
nano zinc oxide treated mulberry leaves. Also 
found that reduced Moulting duration (h) and 5th 
instar larval duration (days) with the same. 
Further, Pramila et al. [40] reported that full 

grown larval weight (g/10), 5th instar larval 
duration (h), total larval duration (h) and ERR (%) 
significantly increased in silkworm fed with nano 
zinc along with nano copper. Pooja et al. [28] 
reported that significant improvement in the larval 
traits of silkworm fed with mulberry leaves with 
foliar application of nitrogen nano-fertilizer. 
 

5.3 Influence of Nanoparticles on Cocoon 
Traits 

 

Patil et al. [41] stated that the silkworms fed with 
mulberry leaves treated with gold nanoparticles 
(300 ppm) were significantly superior in cocoon 
and reeling traits. Similarly, silkworms fed with 
nanoparticles of riboflavin treated mulberry 
leaves showed significantly highest cocoon 
weight, shell weight, pupa weight and shell ratio 
Kamala and Karthikeyan [32]. They also found 
that nanoparticles of riboflavin enhanced the 
denier, silk filament weight (g) and filament 
length(m). Further, silver nanoparticles or along 
with spirulina improved the cocoon weight (g), 
silk filament weight (g), sericin content (%) and 
fibroin content (%) [34]. The silkworms that were 
fed mulberry leaves treated with 50 ppm of 
spirulina-mediated TiO2NPs showed increased 
cocoon weight (g), shell ratio (%), silk filament 
length (m), filament weight (g), denier, and 
decreased rendita (kg) [42].  Similarly, Ag NPs, 
TiO2 and Nano Zn along with CuNPs enhanced 
the economic traits of cocoons [36,31,29,43,40]. 
 

According to Nithya [39] “adequate supply of zinc 
nanoparticles which accelerates the activity of 
enzymes and auxin metabolism in the plants that 
increased the larval parameters, thereby cocoon 
parameters of silkworms”. “Nano micronutrients 
might have stimulated the metabolic activities in 
silkworm resulting in better growth and 
development, resulting in production of good 
quality cocoons” [40]. 
 

“By feeding silkworm with the carbon nanotube 
(CNT) obtained high strength silk fibre (SF) from 
silkworm. It proved that the stress, strain, 
conductivity and thermal stability of SF have 
been visibly enhanced, with the mechanical 
properties being comparable with those of super 
SF and even the spider silk fibre” (Wang et al. 
2014). “The mechanical properties of the resulted 
silk were enhanced after feeding silkworms with 
MoO2 nanoparticles” [44]. 
 

5.4 Influence of Nanoparticles on 
Reproduction and Fecundity 

 

“Feeding the silkworm with TiO2 NPs is found to 
increase the metabolism of proteins and 
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carbohydrates to meet the energy demand for 
growth and development of gonads. Silkworms 
exhibited the denser oocytes differentiation and 
formation in ovaries resulting high density of 
eggs, indicates that TiO2 NPs not only increase 
the nutrient accumulation and transformation 
during the reproductive development but also 
improve the oviposition ability in B. mori” [45]. 
 

5.5 Influence of Nanoparticles on 
Resistance to Silkworm Diseases 

 
Feeding TiO2 NPs inhibits the proliferation of 
BmNPV in silkworm larvae and improves larval 
survival rate and cocoon traits after BmNPV 
infection [46,47,48]. Das et al. [49] found that 
silica nanoparticles (NP)-induced morphological 
transformation of BmNPV polyhedra could 
reduce the infectivity of BmNPV in silkworm 
larvae. Silver nanoparticle showed maximum 
zone of inhibition and lowest gut bacterial (Bacilli 
sp.) growth of larvae [50,30]. Similarly, Silver 
nanoparticle of P. Hornemannii (100 µl) showed 
maximum zone of inhibition against B. bassiana 
(22.6 mm) and M. anisopliae (21.0 mm) [51]. By 
inhibiting reactive oxygen species (ROS), the Ag 
NPs activates the Toll-pathway in silkworm to 
boost humoral and cellular immunity against S. 
aureus infection [52]. 
 
“Thymoquinone-Encapsulated Chitosan 
Nanoparticles (Tq-Chs NPs) showed an 
inhibitory impact against pathogenic bacteria 
infecting Bombyx mori larvae, proved their 
effects as antioxidant and anti-inflammatory 
agents which could be improved by loading Tq 
on Chs nanoparticles” [53]. “The biosynthesized 
silver and chitosan nanoparticles at low 
concentration showed significance in the 
prevention of silkworm pathogens (1ppm, 
10ppm, and 100 ppm)” [37,54]. “Chitosan at 
different concentrations showed antibacterial 
activity against the bacterial pathogens (Bacillus 
spp., Micrococcus spp. and Serratia spp.) of 
tropical tasar silkworm under in vitro conditions. 
The low concentration (0.2%) of chitosan from 
silkworm and chitosan NPs was identified as a 
minimum inhibitory concentration (MIC) against 
bacterial pathogens” [55,56].  AgNPs 
synthesised using crude flower extract showed 
synergistic antibacterial activity against Flacherie 
and Sappe microbial strains, including B. subtilis, 
S. aureus, E. coli, B. cereus, Aerobacter cloacae 
and S. typhi, according to Surendra et al. [33].  
 
“These NPs have a large surface area to volume 
ratio which enhances the binding activity or 

saturation capacity of NPs which is predicted to 
increase binding to the microbe cell membrane 
and also destroy the cell wall structure” [57]. 
 

Most studies showed positive upshot NPs on 
silkworms at their lower concentration. In 
addition, the exposure of diseased silkworms to 
some nanomaterials also exhibited some 
therapeutic properties. Applied nanoparticles 
also exhibited greater impact on several 
biochemical and antioxidant enzymes attributes. 
These nanoparticles might be an ideal 
substitution for the traditional fertilizer and will be 
helpful in fortification of plants with nutritional 
value [58]. 
 

6. CONCLUSION 
 

Sericulture implies rearing of silkworm for 
production of silk and ultimately its usage for 
textile and garment. Time has come to diversify it 
to make sericulture more sustainable, lucrative 
and remunerative one. Modern nano-
technological advancement has assumed greater 
importance in the development of sericulture and 
its diversification. The science of nanotechnology 
and its application particularly in the area of 
enhancing mulberry leaf production, 
improvement in feed efficacy, development of 
diseases resistant breed and feed and synthesis 
of high-quality silk may take sericulture into a 
new height. The introduction of nanomaterials 
through diet has been reported to improve 
quality, tissue repair and the overall survival rate 
of the silkworm. The present paper, therefore, is 
a comprehensive document where an attempt to 
accumulate different reports and research 
findings on thrust areas of sericulture like 
spraying effect of NPs on phenotypic 
characteristics of mulberry, showing 
enhancement in biomass and different growth 
attributes and its influence on silkworm have 
been discussed which will prove to be useful for 
further development of the silk industry in coming 
years. 
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