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Abstract

Wireless sensor networks (WSNs) is now a developing area. The coverage problem is an important part of
that. WSNs contain sensors which cover a three or two-dimensional bounded convex set. In general, the
sensors are deployed randomly from the air. Sometimes sensors are placed by robot(s) or sensor can move to
placed themselves on some points of a pre-assigned region, known as Region of Interest (ROI). Since there is
a randomness of placing the sensors, they may not be placed on the pre-assigned points. Hence, ROI may
not completely cover by the sensors. So, the problem is, how one decrease the uncovered area? Most of
the situations, extra sensors are deployed on some randomly chosen points to cover the ROI. In one of our
previous work, we reduced the distance between two adjacent vertices and drop exactly one sensor on each
vertex. We compare the uncovered area using two strategies (the general one and our previous
one), for normal and uniform distributions, and for a different percentages of extra sensors. We observed that
our strategy is better for low variance-distribution, but not for high variance-distribution. So, we combined
the two strategies in this paper.We partitioned the ROI in regular hexagons and develop a new mixed strategy,
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for dropping the sensors. The extra sensors are divides in two groups. One group is used for reducing the
distance between the two adjacent vertices and other parts is used for deploying an extra sensor on randomly
selected points. We simulate with a non parametric distribution also along with above two. Simulation
shows the optimal trade-off between the percentage of these two groups, which change with the variance of
randomness.

Keywords: Coverage problem; random deployment; wireless sensor networks.

1 Introduction

WSNs is a system of a set of sensors. The sensors are small and have a wireless receiver, a processing circuit.
Battery capacity of a sensors are low, they have low processing power, they also have a radio. Sensor can
measures humidity, direction, distance, temperature, speed, etc. The unique feature of WSNs is that, the sensor
can dropped or placed deterministically or randomly in any domain [1]. They provide scope for civilians and
military activities. For example, military surveillance, emergency health care, industrial applications, etc.[2].
Abdallah et.al. [3] present placement of WSN for electronics objects in house. Wajgi and Tembhurne [4] present
clustering-based localization strategies for WSN in detail. In a wireless multimedia sensor network, clustering is
useful to offer distributed computing and parallel processing by grouping the sensor into small subgroups which
operate independently.

The main objects of a WSN is observing an event in a region. Hence, covering of the region is necessary for a
WSN. To do the job, a WSNs must cover the full region, without any gap. This type of gap is called sensing hole
[5]. A sensor can find an object or can detect an event in a disc (called, sensing disc) of a radius (called sensing
radius). A point of ROI is not be covered by a set of sensors when the point is not in the sensing radius of any
sensor of the WSN. We have to put the sensors in a way, that there should not be any sensing hole. However,
one cannot expect that, a sensor will be put at the target point, because sensors are randomly dropped from the
helicopter or by a robot [6]. Cause of wrong placement may happen for other factors also. Sensors are deployed
in a convex, bounded and closed set of R2. We must find a strategy for deployment of sensors, so that, the
sensing holes will be decreased, if possible, minimized.

We have two distinct methods for sensor placement: (i) placement of sensors in deterministic way and (ii)
deploying sensors from the air onto target points [7]. In method (i), it is possible to cover ROI completely by a
sufficient number sensors. In method (ii), it is not possible to cover ROI completely even if a sufficient number
of sensor are deployed.

When we drop sensors from the air, we may use robots to cover or to decrease the uncovered area of the ROI.
This network is known as wireless sensor and actuator network (WSAN). In this network, sensors are randomly
or deterministically placed, and after that, the sensors are relocated by robot [8]. In some networks, there is a
type of sensor which can move, and can put itself at a neighbouring point without any robot. Since a movable
sensor needs large amount of battery capacity or others type of energy, robot assisted sensor placement is more
feasible [9, 10].

There are many methods to put sensors efficiently to cover a bounded set of R2. This problem of covering of a
region is usually known as the coverage problem. Several variant of coverage problem can be found in [11]. A
survey on the strategies of sensor deployment is in [12]. Complete analysis of the expected and the maximum
distance covered by a robot, to achieve the full coverage, is in [13, 8]. In previous works, the uncovered area is
covered, either by dropping extra sensors or using robot(s), or by activating a group of passive sensors. Nandi
et al. describe a new algorithm for the robot to decrease the uncovered region [8].
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2 Motivations

Now the important question is ‘Is ROI completely covered or not?’ and, if the ROI is not completely covered;
then how we cover the region using extra sensors. Many works have been done on this, but only few works
have been done on the problems: (i) ‘How the proportion of the uncovered area is changed w.r.t. the number of
sensors?’ and (ii) ‘How the proportion of the uncovered area depends on the strategies of random placements
of the sensors?’.

Note that it is not guaranteed that the region is completely covered even if one use more extra sensors, unless
one relocates of those sensors, either using movable sensors or with the help of robot(s). We consider there is
no movable sensor and no actuator. Our prime goal is to develop a mixed strategy for deployment of sensors for
decrease the uncovered proportion.

Clearly, each point of ROI is sufficient to cover by exactly one sensor. So, if any point of ROI is covered by
greater than one sensor; then it is a wastage of sensors. Since the covered area by a sensor is a circular disc, we
cannot avoid this wastage. Hence, our goal is to decrease the wastage part of the ROI. One idea is, place the
sensors in a deterministic way on the pre-fixed points of ROI, so that, if they are actually put on those points,
in that situation, there is minimum wastage. But after the deployment, there must be some uncovered portion
for random deployment of the sensors. That is why we need extra sensors.

So, our problem can be restated as follows, how do we placed the sensors so the wastage is decrease or may
be minimum, i.e., in which method, we use the extra sensors to decrease the uncovered points or area. Nandi
et.al. develop a strategy to solve the above problem in R2 [14] and Nandi develop a strategy to solve the above
problem in R3 [15]. In above two papers, we assumed that a sensor can be placed at any arbitrary point of ROI.
We also assumed that, the distance between two points; where the sensor actually placed; and the target point
where we want to place; is random in nature. Now when we placed an extra sensor at few randomly chosen
points of ROI, then uncovered area will be reduced. On the other hand, if we placed exactly 1 sensor at the
target point, but decrease the distance between two neighbouring target points, then also the uncovered points
or area will be decrease. In either situation we keep the sensing radius unchanged. That is, we use some extra
sensors in 2 different ways in different two strategies. The differences between the above two are as follows:

• In the first strategy (call it S), we target to deploy 2 sensors on few randomly chosen vertices and 1 sensor
onto other vertices. In second strategy (call it S’), we drop exactly 1 sensor onto each vertex.

• Let in S, there are m regular hexagons and l extra sensors, i.e., total m+ l sensors is placed in S. If the
sides is b in S, then in S’ the side will be c where, (m+ l)c2 = mb2. Hence the total covered area is equal
in either case. The distance between two target vertices is less for S’ than that of S.

In the above 2 papers, we consider the ROI is a convex bounded subsets of R2 or R3. The distance (Di) between
two aforesaid points is a random variable. We assumed probability distribution of (Di) is uniform and may be
normal. We simulated the uncovered area for above 2 distributions and for above 2 strategies.

To solve the coverage problem in 2-dimensions, we divide the ROI into required number of regular hexagon. It
is well-known that, in the case of deterministic placement, coverage is best when we divide ROI into regular
hexagons. But in case of random deployment, the hexagonal division may not be best among all types of
partition. In the above two papers, we consider the hexagonal and cube centered partition in case of 2 and
3 dimensions respectively. We have shown that the S is better for distribution which have higher standard
deviation and the S’ is better for distribution which has smaller standard deviation.

Since the lower and higher standard deviation (s.d.) distribution behaves oppositely for 2 strategies, we hope
that in case of moderate (i.e., between higher and lower) s.d. mixing of the above two strategies may be better.
In this new mixed strategy, the idea is; divide all extra sensors in two parts; sensors of the first part is used
for reducing the distance between the two adjacent vertices (i.e., using our previous method) and then remain
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sensors is used for dropping two sensors on randomly selected vertices (i.e., using usual method). The percentage
of division into two parts depends on the s.d., and hope that there is a optimal division of two parts depending
on the corresponding s.d. Here we divide the ROI into regular hexagon. Simulation results show our hypotheses
is correct. Results also suggest the optimal division of two parts. We consider uniform, normal distributions
and a nonparametric distribution.

3 Assumptions and Definitions

Formally we can state the problem as follows: for an indexed set T , let the set of unit discs {CT ⊆ R2 : t ∈ T},
which can cover a set in R2. This set to be considered as ROI. Let collection of two-dimensional random vectors
be {Yt : t ∈ T}. Let Dt be the distance between Yt and the center of Ct, for t ∈ T . Assume that Dt’s are i.i.d. We
consider three probability distributions for Dt here, one is nonparametric and other two are uniform and normal.

Assume the ROI is partitioned into similar regular hexagons of length b. To cover each regular hexagon by one
sensor, we have to choose b ≤ r, where r is the sensing radius. If r = b each hexagon will be completely covered
by a sensor if the sensor is put on the center of the corresponding hexagon. Since a sensor is too small, so one
can assume sensor as a point.

Let there be n regular hexagons and l extra sensors, that is, overall n+ l sensors is used. Let k(< l) sensors are
used for reducing distance between 2 adjacent vertices and l−k sensors are used for deploying 2 sensors on l−k
randomly chosen vertices. If the initial length of the sides is a, then the length of the side will be changed to
b where (n+ k)b2 = na2. Hence overall covered area will be same for both. Now we define important concepts
and terms. Some terms are defined in [16, 17].

• Sensing Disc TM of a sensor M is a circular disc of radius r with the center at M , which is covered by the
sensor placed at the corresponding node. The radius of the circular disc, r is known as sensing radius.
Sensing radius is assumed to be same for all discs.

• N(V ) is the node which corresponds to a vertex V , that is, a sensor is placed on N(V ) but the target
was to place at V . V (N) is the respective vertex of a node N .

• V is set of all vertices and AdjV is set of all the adjacent vertices of vertex V . Similar definitions and
notations can be formulated for a sensor also. The respective notations are M and AdjM for M ∈M.

• d(R,S) be the distance between two points R and T .

• A point P ∈ Rn is defined to be covered by sensor M if the distance between P and M , d(P,M) ≤ r and
P is said to be covered by a set of sensorsM if P is covered by at least one sensor inM. A point P ∈ Rn

is said to be uncovered by a node M if it not covered by M and the point P is said to be not covered or
uncovered by M if P is not covered by sensors in M.

• Area of a set T will be denoted by A(T ).

Observe that if a sensor is placed on the target, then the vertex and its corresponding node is equal, i.e.,
V (N) = N and N(V ) = V .

Now we define the concept ‘wastage’. Let T be any convex set in R2, which is covered by a finite (or infinite)
set of sensors M. The wastage in T for M is define as follows:

WM(T ) =

∑
M∈M

A(T ∩ TM )−A(T )∑
M∈M

A(T ∩ TM )
· · · (1).
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If M is a set so that |TM1 ∩ TM2 ∩ SM3 | ≤ 1 for distinct M1,M2,M3 ∈M, then

WM(T ) =

∑
M1 6=M2∈M

A(T ∩ TM1 ∩ TM2)∑
M∈M

A(T ∩ TM )
· · · (2).

Intuitively, the denominator of is the overall area, which intersect with T , and the numerator is the wastage
area in common sense. Here wastage is actually the proportion of wastage area with respect to the overall area.

LetM be a set of sensors which cover R2. LetM∩T is a finite set for all bounded set T . Definition of wastage
in R2 for M is

WM(R2) = lim
y→∞

WM∩By (By), · · · (3)

where By is the disc in R2 with radius y and center at origin.

Intuitively, wastage in R2 is the ratio of the wastage area in R2. Note that we can take any non-decreasing
sequence of sets whose limit set (i.e., the union of all sets) is R2 and we can define wastage in a similar manner.
Prove of the result that, two definitions are equivalent, is given in any standard book in measure theory.

4 Simulation Result

Now we describe the simulation technique in details and provide the data, what we get from the simulations.
We used C-code for simulation.

Table 1. Simulation result of proportion of the coverage area for U(0.5)

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.97090 0.97103 0.97371 0.97811 0.98251 0.98502 0.98527 0.98642 0.98831 0.98890 0.99150
0.05 0.96901 0.97392 0.97734 0.98012 0.98521 0.98585 0.98641 0.98841 0.98907 0.99155 0.99159
0.10 0.97590 0.97712 0.97998 0.98531 0.98618 0.98651 0.98854 0.98920 0.99156 0.99161 0.99173
0.15 0.97752 0.97976 0.98582 0.98681 0.98690 0.98860 0.98952 0.99159 0.99165 0.99182 0.99202
0.20 0.98112 0.98601 0.98729 0.98695 0.98862 0.98982 0.99161 0.99168 0.99190 0.99211 0.99359
0.25 0.98527 0.98829 0.98892 0.98893 0.98990 0.99160 0.99169 0.99194 0.99243 0.99361 0.99447
0.30 0.98789 0.98875 0.98897 0.98991 0.99161 0.99172 0.99197 0.99256 0.99364 0.99453 0.99529
0.35 0.98865 0.98998 0.99021 0.99168 0.99178 0.99202 0.99298 0.99370 0.99458 0.99531 0.99572
0.40 0.98992 0.99096 0.99171 0.99180 0.99200 0.99301 0.99378 0.99462 0.99538 0.99587 0.99651
0.45 0.99098 0.99180 0.99185 0.99200 0.99300 0.99389 0.99461 0.99540 0.99597 0.99686 0.99701
0.50 0.99179 0.99189 0.99201 0.99312 0.99397 0.99477 0.99541 0.99601 0.99699 0.99741 0.99800

Table 2. Simulation result of proportion of the coverage area for U(1.0)

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.92341 0.92918 0.93350 0.93680 0.94500 0.94876 0.95321 0.95676 0.95753 0.95932 0.96247
0.05 0.92904 0.93412 0.93762 0.94519 0.94901 0.95410 0.95782 0.95799 0.96071 0.96350 0.96765
0.10 0.93380 0.93942 0.94597 0.94998 0.95512 0.95802 0.95843 0.96226 0.96454 0.96854 0.97139
0.15 0.94231 0.94625 0.95016 0.95601 0.95897 0.95957 0.96352 0.96589 0.96932 0.97199 0.97731
0.20 0.94601 0.95321 0.95754 0.95964 0.96187 0.96432 0.96672 0.97031 0.97267 0.97719 0.98001
0.25 0.95676 0.95807 0.96002 0.96352 0.96517 0.96749 0.97110 0.97318 0.97801 0.98062 0.98236
0.30 0.95997 0.96187 0.96529 0.96602 0.96831 0.97192 0.97400 0.97893 0.98135 0.98311 0.98471
0.35 0.96302 0.96754 0.96725 0.96932 0.97275 0.97532 0.97971 0.98211 0.98389 0.98542 0.98666
0.40 0.96896 0.96843 0.97076 0.97327 0.97687 0.98056 0.98301 0.98467 0.98608 0.98732 0.98831
0.45 0.97003 0.97197 0.97401 0.97802 0.98148 0.98399 0.98542 0.98692 0.98809 0.98902 0.99001
0.50 0.97300 0.97521 0.97901 0.98231 0.98489 0.98611 0.98755 0.98897 0.98999 0.99053 0.99102
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Fig. 1. Graph (from simulation data) of proportion of coverage area in R2

Clearly radius of sensing disc (i.e., r) has no importance in the simulation. In our simulation, we consider 10000
nodes with r = 1. Then we divide the ROI in to congruent regular hexagons and target to drop exactly one

sensor onto the center of these regular hexagons. The overall area is 10000 × 3
√
3

2
unit, and distance between

adjacent vertices is
√

3 unit. We put 100 sensors in a row and there are 100 rows. We simulate the uncovered area
considering the distances Di’s between the targeted vertex and the point where it is placed are i.i.d. We simulate
with three different distributions uniform, normal and a non-parametric. The p.d.f. of uniform distribution U(t)
is f(x) = 2x

t2
I(0,t). Normal distribution with mean 0 and s.d. t is denoted by N(0, t2). The non-parametric

distribution is generated randomly by simulation.

Let (p1+p2)% more sensors are used, hence the number of sensors is 10000×
(
1 + p1+p2

100

)
where (p1+p2) ∈ [0, 100].

Our new mixed strategy is as below:

Partition ROI into 10000
(
1 + p1

100

)
regular hexagon of length

√
100

100+p1
. Consider 10000

(
1 + p1

100

)
hexagons and

their centers as vertices and deploy one sensor exactly for every vertices. Observe that the area of the whole

region is 10000
(
1 + p1

100

)
× 3

√
3

2

(√
100

100+p1

)2
= 10000× 3

√
3

2
· · · (4).

Next pick 100p2 vertices uniformly and randomly from the 10000
(
1 + p1

100

)
and deploy two sensors on each of

those vertices and drop exactly one sensor on other (10000 + 100p1 − 100p2) vertices. Then we compute the
ratio of uncovered area of ROI with different values of p1, p2 and t for uniform and normal distribution using
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Table 3. Simulation result of proportion of the coverage area for N(0, 0.1)

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.96569 0.96881 0.97079 0.97591 0.97649 0.97870 0.97976 0.98231 0.98421 0.98520 0.98694
0.05 0.96849 0.97021 0.97542 0.97772 0.97983 0.98001 0.98341 0.98534 0.98597 0.98705 0.98721
0.10 0.96951 0.97387 0.97875 0.98099 0.98081 0.98403 0.98607 0.98653 0.98749 0.98897 0.98911
0.15 0.97230 0.97997 0.98189 0.98205 0.98571 0.98701 0.98712 0.98764 0.98812 0.99001 0.99119
0.20 0.97968 0.98264 0.98310 0.98610 0.98826 0.99839 0.99841 0.98901 0.99100 0.99197 0.99208
0.25 0.98230 0.98421 0.98735 0.98921 0.98953 0.98960 0.98998 0.99241 0.99243 0.99241 0.99294
0.30 0.98543 0.98812 0.99033 0.99034 0.99035 0.99058 0.99098 0.99241 0.99278 0.99307 0.99452
0.35 0.98901 0.99021 0.99035 0.99036 0.99081 0.99149 0.99258 0.99301 0.99378 0.99498 0.99537
0.40 0.98997 0.99025 0.99041 0.99173 0.99261 0.99309 0.99372 0.99450 0.99501 0.99568 0.99619
0.45 0.99054 0.99060 0.99281 0.99324 0.99380 0.99421 0.99471 0.99513 0.99581 0.99674 0.99765
0.50 0.99132 0.99219 0.99310 0.99388 0.99412 0.99490 0.99541 0.99601 0.99721 0.99804 0.99900

Table 4. Simulation result of proportion of the coverage area for N(0, 0.25)

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.93848 0.94550 0.94750 0.95048 0.95502 0.95770 0.96321 0.96432 0.96764 0.97001 0.97052
0.05 0.94401 0.94732 0.95164 0.95709 0.95887 0.96398 0.96444 0.96814 0.97136 0.97156 0.97290
0.10 0.94700 0.95287 0.95851 0.95998 0.96405 0.96453 0.96887 0.97202 0.97245 0.97378 0.97463
0.15 0.95402 0.96021 0.96169 0.96483 0.96488 0.96853 0.97303 0.97343 0.97456 0.97524 0.97595
0.20 0.96184 0.96301 0.96557 0.96500 0.96961 0.97387 0.97456 0.97532 0.97609 0.9673 0.97747
0.25 0.96452 0.96638 0.96574 0.96050 0.97467 0.97572 0.97614 0.97692 0.97737 0.97831 0.97931
0.30 0.96712 0.96621 0.97153 0.97542 0.97654 0.97699 0.97769 0.97829 0.97907 0.97989 0.98042
0.35 0.96678 0.97128 0.97621 0.97731 0.97786 0.97852 0.97901 0.97982 0.98075 0.98134 0.98196
0.40 0.97055 0.97532 0.97802 0.97864 0.97932 0.97980 0.98051 0.98163 0.98222 0.98273 0.98328
0.45 0.97425 0.97898 0.97976 0.98021 0.98074 0.98163 0.98257 0.98301 0.98356 0.98414 0.98532
0.50 0.97873 0.97965 0.98045 0.98134 0.98245 0.98321 0.98389 0.98434 0.98509 0.98600 0.98623

simulation, where p1, p2, t are real numbers between 0 and 1. We repeat the whole procedure for a set of three
parameters p1, p2 and t for 10000 times and take the average of those 10000 ratios. Then we repeat the steps
for different sets of parameters. Next, we find the average of ratios for different sets of three parameters. Again,
we do the whole simulation for uniform, normal and a non-parametric distribution.

We have the following Tables 1 to 6 showing the proportion of the uncovered area of ROI (written in the
body) with different values of p1, p2 for U(0.5), U(1.0), N(0, 0.1) and N(0, 0.25) respectively. Here the first row
represent the value of p1 and first column represent the value of p2.

From the tables we can find the best choice of the p1 and p2 for fixed value of p with p = p1 +p2. As for example,
consider the distribution U(0.5) below:

For p = 0.05 when p1 = 0 and p2 = 0.05 the average ratio of the covered area is 0.96901, whereas when p1 = 0.05
and p2 = 0 the average ratio of the covered area is 0.97103. So, we can conclude that, the second choice is better

Table 5. Simulation result of proportion of the coverage area for N(0, 0.5)

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.92843 0.93503 0.93502 0.93948 0.94021 0.94377 0.95132 0.95343 0.95676 0.95900 0.96105
0.05 0.93344 0.93473 0.94051 0.94579 0.95588 0.95639 0.95644 0.95814 0.96071 0.96176 0.96372
0.10 0.93647 0.94152 0.94758 0.94859 0.95364 0.95464 0.95688 0.96072 0.96172 0.96378 0.96574
0.15 0.94454 0.94660 0.94761 0.95264 0.95464 0.95868 0.96473 0.96734 0.96874 0.96875 0.96975
0.20 0.95061 0.95363 0.95655 0.95665 0.96096 0.96473 0.96574 0.96753 0.96876 0.96973 0.97074
0.25 0.95645 0.95866 0.95965 0.96050 0.96774 0.96875 0.96914 0.97069 0.97373 0.97783 0.97951
0.30 0.96071 0.96162 0.96715 0.96875 0.96954 0.97169 0.97376 0.97282 0.97590 0.97698 0.98002
0.35 0.96067 0.96712 0.96762 0.96877 0.96877 0.96978 0.97090 0.97298 0.97580 0.97814 0.98019
0.40 0.96705 0.96753 0.968782 0.96864 0.97093 0.97398 0.97580 0.97816 0.97822 0.97982 0.98032
0.45 0.97025 0.97289 0.97197 0.97802 0.97980 0.98016 0.98025 0.98130 0.98235 0.98341 0.98452
0.50 0.97083 0.97296 0.97384 0.97813 0.97825 0.98032 0.98138 0.98434 0.98309 0.98460 0.98563
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Table 6. Simulation result for non-parametric distribution with s.d. 0.5

p1 → 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00 0.92432 0.93032 0.93102 0.93482 0.93640 0.94077 0.94513 0.95043 0.95167 0.95390 0.95610
0.05 0.93044 0.93307 0.93405 0.93998 0.94588 0.95039 0.95432 0.95541 0.95607 0.96076 0.96221
0.10 0.93471 0.93941 0.94275 0.94591 0.94642 0.95046 0.95368 0.95607 0.95861 0.96037 0.96257
0.15 0.94254 0.94366 0.94612 0.95064 0.95146 0.95681 0.96147 0.96347 0.96428 0.96532 0.96750
0.20 0.94615 0.948536 0.95165 0.95266 0.95609 0.95739 0.96157 0.96331 0.96587 0.96737 0.96977
0.25 0.95452 0.95661 0.95796 0.95960 0.96277 0.96487 0.96791 0.96870 0.97137 0.97478 0.97695
0.30 0.95607 0.95861 0.96071 0.96287 0.96495 0.96716 0.97037 0.97182 0.97359 0.97569 0.97802
0.35 0.95706 0.95967 0.96176 0.96387 0.96587 0.96830 0.97000 0.97208 0.97458 0.97681 0.97893
0.40 0.96052 0.96343 0.96587 0.96648 0.96709 0.96818 0.97023 0.97163 0.97382 0.97598 0.97803
0.45 0.96702 0.96899 0.97097 0.97380 0.97598 0.97801 0.97980 0.98092 0.98123 0.98234 0.98401
0.50 0.96783 0.96961 0.97184 0.97339 0.97521 0.97803 0.98038 0.98240 0.98300 0.98346 0.98531

than the first. For p = 0.25 when p1 = 0.05 and p2 = 0.20 the average ratio of the covered area is 0.98601, which
is the best choice of p1 and p2. If we take more values of p1 and p2 in the interval, we will get the more precise
optimal choice of p1 and p2.

Finally, we draw the ‘average ratio of covered area (δ)’ vs. number of sensors (‘p’) graphs for 5 distributions and
three different values of p1 and p2 (see Fig. 1a to 1e). The red, blue and black curves show the values of proportion
of covered area for different values of p and for (p1, p2) = (p, 0), (p1, p2) = (p/2, p/2) and (p1, p2) = (0, p)
respectively. From the curves we can find the best choice of p1 and p2. Note that one can draw more curves for
different choices of p1 and p2 to get a more precise optimal choice of p1 and p2.

5 Conclusion

In our paper, we want to give some new idea in the coverage problem in R2. We consider the sensors may not
be perfectly put on the target, whereas it can be placed at a random point in the region. Our assumption is,
the distance between the aforesaid 2 points is random and follow i.i.d. We also consider that distribution to be
uniform, normal and nonparametric. For these three distributions we have done simulations using C-code. To
decrease the wastage i.e., uncovered area, we develop a new mixed strategy of using sensors. We have compared
the new strategy with older one. We consider hexagonal partition of ROI. We divide the extra sensors in 2
different parts. First part is used for reducing the length of hexagon and other parts is used to drop 2 sensors
on some randomly selected vertices. Simulation results show our hypotheses is correct. Results also suggest the
optimal division of two parts. We consider uniform, normal distributions and a nonparametric distribution.

In future we consider the deployment of sensors for 3-dimensional covering and we may divide ROI into square.
We can think other parametic distributions like multivariate normal, exponential distribution for deployment.
Here we consider a new mixed strategy to deploy sensors, which is better among all existence strategies. One
can find other strategies, which may be better, for distributions other than normal and uniform. In future one
may use extra sensors as well as robots.
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