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Abstract
Solving analytically intractable partial differential equations (PDEs) that involve at least one
variable defined on an unbounded domain arises in numerous physical applications. Accurately
solving unbounded domain PDEs requires efficient numerical methods that can resolve the
dependence of the PDE on the unbounded variable over at least several orders of magnitude. We
propose a solution to such problems by combining two classes of numerical methods: (i) adaptive
spectral methods and (ii) physics-informed neural networks (PINNs). The numerical approach
that we develop takes advantage of the ability of PINNs to easily implement high-order numerical
schemes to efficiently solve PDEs and extrapolate numerical solutions at any point in space and
time. We then show how recently introduced adaptive techniques for spectral methods can be
integrated into PINN-based PDE solvers to obtain numerical solutions of unbounded domain
problems that cannot be efficiently approximated by standard PINNs. Through a number of
examples, we demonstrate the advantages of the proposed spectrally adapted PINNs in solving
PDEs and estimating model parameters from noisy observations in unbounded domains.

1. Introduction

The use of neural networks as universal function approximators [1, 2] led to various applications in
simulating [3, 4] and controlling [5–8] physical, biological, and engineering systems. Training neural
networks in function-approximation tasks is typically realized in two steps. In the first step, an observable us
associated with each distinct sample or measurement point (x, t)s ≡ (xs, ts), s= 1,2, . . . ,n is used to construct
the corresponding loss function (e.g. the mean squared loss) in order to find representations for the
constraint us ≡ u(xs, ts) or infer the equation that the function u(x, t) obeys. In many physical settings, the
variables x and t denote the space and time variables, respectively. Thus, the data points (x, t)s in many cases
can be classified in two groups, {xs} and {ts}, and the information they contain may be manifested
differently in an optimization process. In the second step, the loss function is minimized by backpropagating
gradients to adjust neural network parametersΘ. If the number of observations n is limited, additional
constraints may help to make the training process more effective [9].

To learn and represent the dynamics of physical systems, the constraints used in physics-informed neural
networks (PINNs) [3, 4] provide one possible option of an inductive bias in the training process. The key
idea underlying PINN-based training is that the constraints imposed by the known equations of motion for
some parts of the system are embedded in the loss function. Terms in the loss function associated with the
differential equation can be evaluated using a neural network, which could be trained via backpropagation
and automatic differentiation. In accordance with the distinction between Lagrangian and Hamiltonian
formulations of the equations of motion in classical mechanics, PINNs can be also divided into these two
categories [10–12]. Another formulation of PINNs uses variational principles [13] in the loss function to
further constrain the types of functions used. Such variational PINNs rely on finite element (FE) methods to
discretize partial differential equation (PDE)-type constraints.
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Many other PINN-based numerical algorithms have been recently proposed. A space-time domain
decomposition PINN method was proposed for solving nonlinear PDEs [14]. In other variants,
physics-informed Fourier neural operators have also been proposed to learn the underlying PDE
models [15]. In general, PINNs link modern neural network methods with traditional complex physical
models and allow algorithms to efficiently use higher-order numerical schemes to (i) solve complex physical
problems with high accuracy, (ii) infer model parameters, and (iii) reconstruct physical models in
data-driven inverse problems [3]. Therefore, PINNs have become increasingly popular as they can avoid
certain computational difficulties encountered when using traditional FE/FD methods to find solutions to
physics models.

The broad utility of PINNs is revealed by their numerous applications to problems in aerodynamics [16],
surface physics [17], power systems [18], cardiology [19], and soft biological tissues [20]. PINNs have also
been integrated into the multi-task learning [21] and meta-learning [22] frameworks. When implementing
PINN algorithms to find functions in an unbounded system, the unbounded variables cannot be simply
normalized, precluding reconstruction of solutions outside the range of data. Nonetheless, many problems in
nature are associated with long-ranged potentials [23, 24] (i.e. unbounded spatial domains) and processes
that are subject to algebraic damping [25] (i.e. unbounded temporal domains), and thus need to be solved in
unbounded domains. For example, to capture the oscillatory and decaying behavior at infinity of the
solution to Schrödinger’s equation, efficient numerical methods are required in the unbounded domain R
[26]. As another example, in structured cellular proliferation models in mathematical biology, efficient
unbounded domain numerical methods are required to detect and better resolve possible blow-up in mean
cell size [27, 28]. Finally, in solid-state physics, long-range interactions [29, 30] require algorithms tailored
for unbounded domain problems to accurately simulate particle interactions over long distances.

Solving unbounded domain problems is thus a key challenge in various fields that cannot be addressed
with standard PINN-based solvers. In static problems, if the solution’s behavior at infinity is known, one can
use boundary-layer methods to truncate the unbounded domain by discretizing space [31]. However, in
spatiotemporal problems it is often the case that the solution’s behavior is evolving over time or otherwise
unknown. Solving a PDE in this situation requires proper detection and capturing of the function’s
long-range behavior over time. Thus, simply discretizing space or truncating the domain is usually not
effective in spatiotemporal problems. To efficiently solve PDEs in unbounded domains, we will treat the
information carried by the xs data using spectral decompositions of the function u(x, t) in the x variable.
Typically, a spatial initial condition of the desired solution is given and some spatial regularity is assumed
from the underlying physical process. As a consequence, we suppose that at time t, we can use a spectral
expansion in x to record spatial information. On the other hand, a solution’s behavior in time t is unknown
and one still has to numerically step forward in time to obtain the solution. Thus, we combine PINNs with
spectral methods and propose a spectrally adapted PINN (s-PINN) method that can utilize recently
developed adaptive function expansions techniques [32, 33].

In contrast to traditional numerical spectral schemes that can only furnish solutions at discrete,
predetermined timesteps, our approach uses time t as an input variable into the neural network combined
with the PINN method to define a loss function, which enables (i) easy implementation of high-order
Runge-Kutta schemes to relax the constraint on timesteps and (ii) easy extrapolation of the numerical
solution at any time. However, our approach is distinct from that taken in standard PINNs,
variational-PINNs, or physics-informed neural operator approaches. We do not input spatial positions x into
the network or try to learn the x-dependence of u(x, t); instead, we assume that the function u(x, t) can be
approximated by a spectral expansion in x with appropriate basis functions. Rather than learning the explicit
spatial dependence directly, we train the neural network to learn the time-dependent expansion coefficients.
Our main contributions include (i) integrating spectral methods into multi-output neural networks to
approximate the spectral expansions of functions when partial information is available, (ii) incorporating
recently developed adaptive spectral methods in our s-PINNs to allow accurate solutions of
unbounded-domain spatiotemporal PDEs, and (iii) presenting explicit examples illustrating how s-PINNs
can be used to solve unbounded domain problems, recover spectral convergence, and more easily solve
inverse-type PDE inference problems. We show how s-PINNs provide a unified, easy-to-implement method
for solving PDEs and performing parameter-inference given noisy observation data and how complementary
adaptive spectral techniques can further improve efficiency, especially for solving problems in unbounded
domains.

In section 2, we show how neural networks can be combined with modern adaptive spectral methods to
outperform standard neural networks in function approximation tasks. As a first application, we show in
section 3 how efficient PDE solvers can be derived from spectral PINN methods. In section 4, we discuss
another application that focuses on reconstructing underlying physical models and inferring model
parameters given observational data. In section 5, we summarize our work and discuss possible directions for

2



Mach. Learn.: Sci. Technol. 4 (2023) 025024 M Xia et al

Table 1. Overview of variables. Definitions of the main variables and parameters used in this paper.

Symbol Definition

n Number of observations
N Spectral expansion order
NH Number of intermediate layers in the neural network
H Number of neurons per layer
η Learning rate of stochastic gradient descent
Θ Neural network parameters (weights and biases)
K Order of the Runge–Kutta scheme
L Loss function, e.g., sum of squared errors (SSEs)
β Scaling factor in basis functions ϕβ

i,xL
(x) := ϕi(β(x− xL))

xL Translation of basis functions ϕβ
i,xL

:= ϕi(β(x− xL))

uβN,xL
Spectral expansion of order N generated by the neural network: uβN,xL

=
∑N

i=0w
β
i,xL

ϕi(β(x− xL))

F(uβN,xL
) Frequency indicator for the spectral expansion uβN,xL

Ĥβ
i,xL

Generalized Hermite function of order i, scaling factor β, and translation xL
Pβ
N,xL

Function space defined by the first N+ 1 generalized Hermite functions Pβ
N,xL

:= {Ĥβ
i,xL

}Ni=0
q Scaling factor (β) adjustment ratio
ν Threshold for adjusting the scaling factor β
ρ,ρ0 Threshold for increasing, decreasing N
γ Ratio for adjusting ρ

future research. A summary of the main variables and parameters used in this study is given in table 1. Our
source codes are publicly available at https://gitlab.com/ComputationalScience/spectrally-adapted-pinns.

2. Combining spectral methods with neural networks

In this section, we first introduce the basic features of function approximators that rely on neural networks
and spectral methods designed to handle variables that are defined in unbounded domains. In a dataset
(xs, ts,us), s ∈ {1, . . . ,n}, xs are values of the sampled ‘spatial’ variable x which can be defined in an
unbounded domain. We will also assume that our problem is defined within a finite time horizon so that ts
are time points restricted to a bounded domain, and are thus normalizable. Our key assumption is that the
solution’s behavior in x can be represented by a spectral decomposition, while u’s behavior in t remains
unknown and is to be learned from the neural network. This is achieved by isolating the possibly unbounded
spatial variables x from the bounded variables t by expressing u in terms of suitable basis functions in x with
time-dependent weights. As indicated in figure 1(a), we approximate us using

us := u(xs, ts)≈ uN(xs, ts) :=
N∑
i=0

wi(ts)ϕi(xs), (1)

where {ϕi}Ni=0 are suitable basis functions that can be used to approximate u in an unbounded domain (see
figure 1(b) for a schematic of a basis function ϕi(x) that decays with x). Examples of such basis functions
include, for example, the generalized Laguerre functions in R+ and the generalized Hermite functions in
R [34]. In addition to being defined on an unbounded domain, spectral expansions allow high accuracy [35]
calculations with errors that decay exponentially (spectral convergence) in space if the target function u(x, t)
is smooth.

Figure 1(c) shows a schematic of our proposed s-PINN algorithm. The variable x is directly fed into the
basis functions ϕi instead of being used as an input in the neural network. If one wishes to connect the
output uN(x, t;Θ) of the neural network (here,Θ respresents the parameters of the neural network) to the
solution of a PDE and perform backpropagation to minimize a loss functional L[uN(x, t;Θ),us(x, t)], it must
contain spatial derivatives of uN intrinsic to the underlying PDE. Derivatives that involve the variable x can
be easily and explicitly calculated by taking derivatives of the basis functions with high accuracy while
derivatives with respect to t can be obtained via automatic differentiation [36, 37].

If a function u can be written in terms of a spectral expansion in some dimensions (e.g. x in equation (1))
with appropriate spectral basis functions, we can approximate u using a multi-output neural network by
solving the corresponding least squares optimization problem

min
Θ

{
n∑

s=1

∣∣uN(xs, ts;Θ)− us
∣∣2} , uN(x, t;Θ) =

N∑
i=0

wi(t;Θ)ϕi(x), (2)

3
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Figure 1. Solving unbounded domain problems with spectrally adapted physics-informed neural networks for functions uN(x, t)
that can be expressed as a spectral expansion uN(x, t) =

∑N
i=0wi(t)ϕi(x). (a) An example of a function uN(x, t) plotted at

three different time points. (b) Decaying behavior of a corresponding basis function element ϕi(x). (c) PDEs in unbounded
domains can be solved by combining a PINN with a neural network approximation of the spectral representation,
uN(x, t, ;Θ) =

∑N
i=0wi(t;Θ)ϕi(x), and minimizing the loss function L. Spatial derivatives of basis functions are explicitly

defined and easily obtained. Here, g denotes an activation function such as the ReLU function.

where n is the number of sample points. The neural network outputs the t-dependent vector of coeffcients
wi(t;Θ). This representation will be used in the appropriate loss function depending on the application. The
neural network can achieve arbitrarily high accuracy in the minimization of the loss function if it is deep
enough and contains sufficiently many neurons in each layer [38]. Since the solution’s spatial behavior has
been approximated by the spectral expansion which could achieve high accuracy with proper ϕi, we shall
show that solving equation (2) can be more accurate and efficient than directly fitting to us by a neural
network without using a spectral expansion. The proper choice of basis function ϕi(x) usually depends on
the domain and how the solution decays at infinity. Overviews of asymptotic properties of basis functions are
given in [34, 39]. For instance, in bounded domains, using any set of basis functions in the Jacobi polynomial
family leads to the same convergence order for smooth functions and usually similar performance; in a
semi-unbounded domain R+, the generalized Laguerre functions are often used; in the whole unbounded
domain R+, the generalized Hermite functions are a common choice if the function decays exponentially at
infinity. If the solution is expected to decay algebraically at infinity, the mapped Jacobi functions, such as the
modified mapped Gegenbauer functions (MMGFs) are to be used [34].

As a motivating example, we compare the approximation error of a neural network which is fed both xs
and ts with that of the s-PINN method in which only ts are inputted, but with the information contained in
xs imposed on the solution via the basis functions {ϕi(x)}Ni=0. We show that taking advantage of the prior
knowledge on the x-data greatly improves training efficiency and accuracy. All neural networks that we use in
our examples are based on fully connected linear layers with ReLU activation functions. Weights and biases
in each layer are initially distributed according to a uniform distribution U(−

√
a,
√
a), where a is the inverse

of the number of input features. To normalize hidden-layer outputs, we apply the batch normalization
technique [40]. Neural-network parameters are optimized using stochastic gradient descent.

Example 1 (Function approximation). Consider approximating the function

u(x, t) =
8x sin3x

(x2+ 4)2
t, (3)

which decays algebraically as u(x→∞, t)∼ t/|x|3 when |x| →∞. To numerically approximate equation (3),
we choose the loss function to be the mean-squared error

MSE=
1

n

n∑
s=1

∣∣uN(xs, ts)− us
∣∣2. (4)

4
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Figure 2. Example 1: function approximation. Approximation of the target function equation (3) using both standard
feed-forward neural networks and a spectral multi-output neural network that learns the coefficients wi(t;Θ) in the spectral
expansion equation (1). Comparison of the approximation error using a spectral multi-output neural network (red) with the
error incurred when using a standard neural-network function approximator (black). Here, both the spectral and non-spectral
function approximators use the same number of parameters, but the spectral multi-output neural network converges much faster
on the training set and has a smaller validation error than the standard feed-forward neural network. (a) The training curve of the
spectral multi-output neural network decreases much faster than that of the standard feed-forward neural network. (b) Since the
spectral multi-output neural network is better at fitting the data by taking advantage of the spectral expansion in x, its validation
error is also much smaller and decreases faster. (c) Asymptotic behavior of the spatial derivatives of the analytic solution ∂xu(x, t),
the feed-forward neural network ∂xũ(x, t; Θ̃) (equation (5)), and the spectral neural network ∂xuN(x, t;Θ) (equation (7)). The
feed-forward neural network fails to capture the function’s behavior when |x| is large because ∂xũ(x, t; Θ̃) is not vanishing for
large |x|, but the spectral approximation equation (7) leads to smaller errors because ∂xuN(x, t;Θ) better approximates ∂xu(x, t)
especially when |x| is large. Here, t= 0.937 is randomly chosen from one of the training samples.

A standard feed-forward neural network approach is applied by inputting both xs and ts into a five-layer,
15 neuron-per-layer network defined by the neural network parameters Θ̃ to find a numerical approximation
to

uN(xs, ts) := ũ(xs, ts; Θ̃) (5)

by minimizing equation (4) with respect to Θ̃.
To apply a multi-output neural network to this problem, we need to choose an appropriate spectral repres-

entation of the spatial dependence of equation (3), in the form of equation (2). To capture an algebraic decay
at infinity as well as the oscillatory behavior resulting from the sin(3x) term, we start from the MMGFs [41]

Rλ,β
i (x) = (1+(βx)2)−(λ+1)/2Cλ

i

(
βx/

√
1+(βx)2

)
, x ∈ R, (6)

where Cλ
i (·) is the Gegenbauer polynomial of order i. At infinity, the MMGFs decay as Rλ,β

i (x)∼
sign(x)i (2λ)

(i)

i! (1+(βx)2)−(λ+1)/2, where (2λ)(i) is the ith rising factorial of 2λ. A suitable basis ϕi needs
to include functions that decay more slowly than x−3. If we choose β = 1/4 and the special case λ= 0, the
basis function is defined as ϕi(x) = R0,βi (x)≡ (1+(βx)2)−1/2Ti(βx/

√
1+(βx)2), where T i are the Cheby-

shev polynomials. We thus use

uN(xs, ts;Θ) =
N=9∑
i=0

wi(ts;Θ)R0,βi (xs) (7)

in equation (4) and use a four-layer neural network with 15 neurons per layer to learn the coefficients
{wi(t;Θ)}1i=04 by minimizing the MSE (equation (4)) with respect to Θ. The total numbers of parameters
for both the four-layer spectral multi-output neural network and the normal five-layer neural network are
the same. The training set and the validation set each contain n= 200 pairs of values (x, t)s = (xs, ts) where
xs are sampled from the Cauchy distribution, xs ∼ C(12,0), and ts ∼ U(0,1). For each pair (xs, ts), we find
us ≡ u(xs, ts) using equation (3). The positions xs are sampled from the unbounded domain R and cannot be
normalized (the expectation and variance of the Cauchy distribution do not exist). Theminimum (maximum)
value of x in the training set and the validation set are−18.65 (50.32) and−721.50 (120.01), respectively.

We set the learning rate η = 5× 10−4 and plot the training and validation MSEs (equation (4)) as a func-
tion of the number of training epochs in figure 2. Figures 2(a) and (b) show that the spectral multi-output
neural network yields smaller errors since it naturally and efficiently captures the oscillatory and decaying fea-
ture of the underlying function u from equation (3). Directly fitting u≈ ũ leads to over-fitting on the training
set which does nothing to reduce the validation error. We can see from figure 2(c) that using the feed-forward
neural network, equation (5) results in a nonvanishing spatial derivative when |x| is large. Such an approxim-
ation to the original function u(x, t), which vanishes for large |x|, is thus inaccurate. On the other hand, the
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spatial derivative of the spectral neural network equation (7) better fits u(x, t) especially as |x| →∞. Therefore,
it is important to take advantage of the data structure, in this case, using the spectral expansion to represent
the function’s known oscillations and decay as x→∞.

In this and subsequent examples, all computations are performed using Python 3.8.10 on a laptop with a
4-core Intel® i7-8550U CPU @ 1.80GHz.

3. Application to solving PDEs

In this section, we show that spectrally adapted neural networks can be combined with PINNs which we shall
call s-PINNs. We apply s-PINNs to numerically solve PDEs, and in particular, spatiotemporal PDEs in
unbounded domains for which standard PINN approaches cannot be directly applied. Although we mainly
focus on solving spatiotemporal problems, s-PINNs are also applicable to other types of PDEs.

Again, we assume that the problem is defined over a finite time horizon t while the spatial variable xmay
be defined in an unbounded domain. Assuming the solution’s asymptotic behavior in x is known, we
approximate it by a spectral expansion in x with suitable basis functions (e.g. MMGFs in example 1 for
describing algebraic decay at infinity). AssumingM is an operator that only involves the spatial variable x
(e.g. ∂x,∂2x , etc), we can represent the solution to the spatiotemporal PDE ∂tu=M[u](x, t) by the spectral
expansion in equation (2) with expansion coefficients {wi(t;Θ)} to be learned by a neural network with
parametersΘ. If the solution’s behavior in both x and t are known and one can find proper basis functions in
both the x and t directions, then one could use a spectral expansion in both x and t to solve the PDE directly
without time-stepping. However, it is often the case that the time dependence is unknown and u(x, t) needs
to be solved step-by-step in time.

As in standard PINNs, we use a high-order Runge–Kutta scheme to advance time by uniform timesteps
∆t. What distinguishes our s-PINNs from standard PINNs is that only the intermediate times ts between
timesteps are provided as inputs to the neural network, while the outputs contain global spatial information
(the spectral expansion coefficients), as shown in figure 1(c). Over a longer time scale, the optimal basis
functions in the spectral expansion equation (2) may change. Therefore, one can use new adaptive spectral
methods proposed in [32, 33]. Using s-PINNs to solve PDEs has the advantages that they can (i) accurately
represent spatial information via spectral decomposition, (ii) convert solving a PDE into an optimization
and data fitting problem, (iii) easily implement high-order, implicit schemes to advance time with high
accuracy, and (iv) allow the use of recently developed spectral-adaptive techniques that dynamically find the
most suitable basis functions.

The approximated solution to the PDE ∂tu=M[u](x, t) can be written at discrete timesteps
tj+1− tj =∆t as

uN(x, tj+1;Θj+1) =
N∑
i=0

wi(tj+1;Θj+1)ϕi(x), (8)

whereΘj+1, j⩾ 1 is the parameter set of the neural network used in the time interval ( j∆t,( j+ 1)∆t). In
order to forward time from tj = j∆t to tj+1 = ( j+ 1)∆t, we can use, e.g. a Kth-order implicit Runge–Kutta
scheme, with 0< cs < 1 (s= 1, . . . ,K) as parameters describing different collocation points in time and
ars,br (r= 1, . . . ,K) the associated coefficients.

Given u(x, tj), the Kth-order implicit Runge–Kutta scheme aims to approximate u(x, tj + cs∆t) and
u(x, tj +∆t) through

uN(x, tj + cs∆t) = u(x, tj)+
K∑

r=1

arsM
[
uN(x, tj + cr∆t)

]
,

uN(x, tj +∆t) = u(x, tj)+
K∑

r=1

brM
[
uN(x, tj + cr∆t)

]
. (9)

With the starting point uN(t0,x;Θ0) := uN(t0,x) defined by the initial condition at t0, we define the target
function as the sum of squared errors

SSEj =
K∑

s=1

∥∥∥∥∥uN(x, tj + cs∆t;Θj+1)− uN(x, tj;Θj)−
K∑

r=1

asrM[uN(x, tj + cr∆t;Θj+1)]

∥∥∥∥∥
2

2

+

∥∥∥∥∥uN(x, tj +∆t;Θj+1)− uN(x, tj;Θj)−
K∑

r=1

brM[uN(x, tj + cr∆t;Θj+1)]

∥∥∥∥∥
2

2

, (10)
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where the L2 norm is taken over the spatial variable x. Minimization of equation (10) provides a numerical
solution at tj+1 given its value at t j. If coefficients in the PDE are sufficiently smooth, we can use the basis
function expansion in equation (8) for uN and find that the weights at the intermediate Runge–Kutta
timesteps can be written as the Taylor expansion

wi(tj + cr∆t;Θj+1) =
∞∑
ℓ=0

w(ℓ)
i (tj;Θj+1)

ℓ!
(cr∆t)ℓ, (11)

where w(ℓ)
i (tj) is the ℓth derivative of wi with respect to time, evaluated at t j. Therefore, the neural network is

learning the mapping tj + cs∆t→
∑∞

ℓ=0w
(ℓ)
i (tj)(cs∆t)ℓ/ℓ! for every i by minimizing the loss function

equation (10).

Example 2 (Solving bounded domain PDEs). Before focusing on the application of s-PINNs to PDEs whose
solution is defined in an unbounded domain, we first consider the numerical solution of a PDE in a bounded
domain to compare the performance of the spectral PINN method (using recently developed adaptive meth-
ods) to that of the standard PINN.

Consider the following PDE:

∂tu=

(
x+ 2

t+ 1

)
∂xu, x ∈ (−1,1),

u(x,0) = cos(x+ 2), u(1, t) = cos(3(t+ 1)), (12)

which admits the analytical solution u(x, t) = cos((t+ 1)(x+ 2)). In this example, we use Chebyshev polyno-
mials Ti(x) as basis functions and the corresponding Chebyshev-Gauss-Lobatto quadrature collocation points
andweights such that the boundary u(1, t) = cos(3(t+ 1)) can be directly imposed at a collocation point x= 1.

Since the solution becomes increasingly oscillatory in x over time, an ever-increasing expansion order
(i.e. the number of basis functions) is needed to accurately capture this behavior. Between consecutive
timesteps, we employ a recently developed p-adaptive technique for tuning the expansion order [33]. This
method is based on monitoring and controlling a frequency indicator F(uN) defined by

F(uN) =


N∑

i=N−[ N3 ]+1

γiw2i

N∑
i=0

γiw2i


1
2

, (13)

where γi :=
´ 1
−1T

2
i (x)(1− x2)−1/2dx. The frequency indicator F(uN) measures the proportion of high-

frequencywaves and serves as a lower error bound of the numerical solution uN(x, t;Θ) :=
∑N

i=0wi(t;Θ)Ti(x).
When F(uN) exceeds its previous value by more than a factor ρ, the expansion order is increased by one. The
indicator is then updated and the factor ρ also is scaled by a parameter γ ⩾ 1.

We use a fourth-order implicit Runge–Kutta method to advance time in the loss function (10) and in order
to adjust the expansion order in a timelyway, we take∆t= 0.01. The initial expansion orderN = 8, and the two
parameters used to determine the threshold of adjusting the expansion order are set to ρ= 1.5 and γ= 1.3.
A neural network with NH = 4 layers and H= 200 neurons per layer is used in conjunction with the loss
function (10) to approximate the solution of equation (12).We compare the results obtained using the s-PINN
method with those obtained using a fourth-order implicit Runge–Kutta scheme with∆x= 1

256 ,∆t= 0.01 in
a standard PINN approach [3], also using NH = 4 and H= 200.

Figure 3 shows that s-PINNs can be used to greatly improve accuracy because the spectral method can
recover exponential convergence in space, and when combined with a high-order accurate implicit scheme in
time, the overall error is small. In particular, the large error shown in figure 3 of the standard PINN suggests
that the error of applying auto-differentiation to calculate the spatial derivative is significantly larger than
the spatial derivatives calculated using spectral methods. Moreover, when equipping spectral PINNs with the
p-adaptive technique to dynamically adjust the expansion order, the frequency indicator can be controlled,
leading to even smaller errors as shown in figures 3(b) and (c).

Computationally, using our 4-core laptop on this example, the standard PINN method requires ∼106 s
while the s-PINN approach with and without adaptive spectral techniques (dynamically increasing the expan-
sion order N) required 1711 and 1008 s, respectively. Thus, s-PINN methods can be computationally more
efficient than the standard PINN approach. This advantage can be better understood by noting that training of
standard PINNs requires time ∼O(

∑NH

i=0HiHi+1) (Hi is the number of neurons in the ith layer) to calculate

7
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Figure 3. Example 2: solving equation (12) in a bounded domain. L2 errors, frequency indicators, and expansion order associated
with the numerical solution of equation (12) using the adaptive s-PINN method with a timestep∆t= 0.01. (a) In a bounded
domain, the s-PINNs, with and without the adaptive spectral technique, have smaller errors than the standard PINN (black).
Moreover, the s-PINN method combined with a p-adaptive technique that dynamically increases the number of basis functions
(red) exhibits a smaller error than the non-adaptive s-PINN (blue). The higher accuracy of the adaptive s-PINN is a consequence
of maintaining a small frequency indicator (13), as shown in (b). (c) Keeping the frequency indicator at small values is realized by
increasing the spectral expansion order.

each spatial derivative (e.g. ∂xu,∂2xu, . . .) by autodifferentiation [42]. However, in an s-PINN, since a spec-
tral decomposition uN(x, t;Θ) has been imposed, the computational time to calculate derivatives of all orders
is O(N), where N is the expansion order. Since

∑NH

i=0HiHi+1 ⩾
∑NH

i=0Hi and the total number of neurons∑NH

i=0Hi is usually much larger than the expansion order N, using s-PINNs can substantially reduce compu-
tational cost.

In bounded-domain problems, there are many other good machine-learning-based PDE solvers against
which we can compare, such as the DeepONet method [43], its PINN extension [44], and the Fourier neural
operator method [45]. However, what distinguishes s-PINNs from the standard PINN framework is that the
latter uses spatial and temporal variables as neural-network inputs, implicitly assuming that all variables are
normalizable especially when batch-normalization techniques are applied while training the underlying
neural network. Our s-PINN approach relies on spectral expansions to represent the dependence of a
function u(x, t) on the spatial variable x, which can then be defined in unbounded domains and does not
need to be normalizable. Thus, our s-PINN method provides a novel machine-learning-based PDE solver for
unbounded-domain spatiotemporal problems. In the following example, we shall explore how our s-PINN is
applied to solving a PDE defined in (x, t) ∈ R+ × [0,T].

Example 3 (Solving unbounded domain PDEs). Consider the following PDE, which is similar to
equation (12) but is defined in (x, t) ∈ R+ × [0,T]:

∂tu=−
(

x

t+ 1

)
∂xu, u(x,0) = e−x, u(0, t) = 1. (14)

Equation (14) admits the analytical solution u(x, t) = exp[−x/(t+ 1)]. In this example, we use the basis func-

tions {L̂β
i (x)} := {L̂(0)

i (βx)} where L̂(0)
i (x) is the generalized Laguerre function of order i defined in [34].

Here, we use the Laguerre–Gauss quadrature collocation points and weights so that x= 0 is not included in the
collocation node set. We use a fourth-order implicit Runge–Kutta method to minimize the SSE equation (10)
by advancing time. In order to address the boundary condition, we augment the loss function in equation (10)
with terms that represent the cost of deviating from the boundary condition:

SSEj =
K∑

s=1

∥∥∥∥∥uN(x, tj + cs∆t;Θj+1)− uN(x, tj;Θj)−
K∑

r=1

asrM[uN(x, tj + cr∆t;Θj+1)]

∥∥∥∥∥
2

2

+

∥∥∥∥∥uN(x, tj +∆t;Θj+1)− uN(x, tj;Θj)−
K∑

r=1

brM[uN(x, tj + cr∆t;Θj+1)]

∥∥∥∥∥
2

2

(15)

+
K∑

s=1

[
uN(0, tj + cs∆t;Θj+1)− u(0, tj + cs∆t)

]2
+
[
uN(0, tj+1;Θj+1)− u(0, tj+1)

]2
,

8
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Figure 4. Example 3: solving equation (14) in an unbounded domain. L2 error, frequency indicator, and expansion order
associated with the numerical solution of equation (14) using the s-PINN method combined with the spectral scaling technique.
(a) The s-PINN method with the scaling technique (red) has a smaller error than the s-PINN without scaling (blue). The higher
accuracy of the adaptive s-PINN is a consequence of maintaining a smaller frequency indicator equation (13), as shown in (b).
(c) Keeping the frequency indicator at small values is possible by reducing the scaling factor so that the basis functions decay more
slowly at infinity. The timestep is∆t= 0.05. (d) The errors for the spectral method with and without scaling at t= 2. When the
scaling factor is properly adjusted, very high accuracy can be obtained with only a few basis functions. Not dynamically adjusting
the scaling factor leads to a much slower convergence.

where the last two terms push the constraints associated with the Dirichlet boundary condition at x= 0 at all
time points:

uN(0, tj + cs∆t;Θj+1) = u(0, tj + cs∆t), uN(0, tj+1;Θj+1) = u(0, tj+1), (16)

where in this example, u(0, tj + cs∆t) = u(0, tj+1)≡ 1.
Because the solution of equation (14) becomes more diffusive with x (i.e. decays more slowly at infinity),

it is necessary to decrease the scaling factor β to allow basis functions to decay more slowly at infinity. Between
consecutive timesteps, we adjust the scaling factor by applying the scaling algorithmproposed in [32]. Thus, we
dynamically adjust the basis functions in equation (1). As with the p-adaptive technique we used in example 2,
the scaling technique also relies onmonitoring and controlling the frequency indicator given in equation (13).
In order to efficiently and dynamically tune the scaling factor, we set∆t= 0.05. The initial expansion order is
N = 8, the initial scaling factor is β= 2, the scaling factor adjustment ratio is set to q= 0.95, and the threshold
for tuning the scaling factor is set to ν = 1/(0.95). A neural network with 3 intermediate layers and 100 neur-
ons per layer is used in conjunction with the loss function given in equation (10). Figure 4(a) shows that
s-PINNs can achieve very high accuracy even when a relatively large timestep (∆t= 0.05) is used. Scaling
techniques to dynamically control the frequency indicator are also successfully incorporated into s-PINNs, as
shown in figures 14(b) and (c), and very high accuracy can be achieved with only a few basis functions, as
shown in figure 14(d). Actually, such spatiotemporal diffusive behavior in unbounded domains distinguishes
unbounded-domain problems from bounded-domain problems, as we have to dynamically adjust the scaling
factor over time using the scaling technique in [32].

9
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In equation (14), we imposed a Dirichlet boundary condition by modifying the SSE equation (15) to
include boundary terms. Other types of boundary conditions can be applied in s-PINNs by including bound-
ary constraints in the SSE as in standard PINN approaches.

In the next example, we focus on solving a PDE with two spatial variables, x and y, each defined on an
unbounded domain.

Example 4 (Solving 2D unbounded domain PDEs). Consider the two-dimensional heat equation on
(x,y) ∈ R2

∂tu(x,y, t) = ∆u(x,y, t), u(x,y,0) =
1√
2
e−x2/12−y2/8, (17)

which admits the analytical solution

u(x,y, t) =
1√

(t+ 3)(t+ 2)
exp

[
− x2

4(t+ 3)
− y2

4(t+ 2)

]
. (18)

Note that the solution spreads out over time in both dimensions, i.e. it decays more slowly at infinity as time
increases. Therefore, we apply the scaling technique to capture the increasing spread by adjusting the scal-
ing factors βx and βy of the generalized Hermite basis functions. Generalized Hermite functions of orders
i = 0, . . . ,Nx and ℓ= 0, . . . ,Ny are used in the x and y directions, respectively.

In order to solve equation (17), we multiply it by any test function v ∈H1(R) and integrate the resulting
equation by parts to convert it to the weak form (∂tu,v) =−(∇u,∇v). Solving the weak form of equation (17)
ensures numerical stability. When implementing the spectral method, the goal is to find

u
βx,βy

Nx,Ny
(x,y, t) =

Nx∑
i=0

Ny∑
ℓ=0

wi,ℓ(t)Ĥβx

i,0(x)Ĥ
βy

ℓ,0(y), (19)

where Ĥβx

i,0, Ĥ
βy

ℓ,0 are generalized Hermite functions defined in table 1 such that (∂tu,v) =−(∇u,∇v) t ∈
(tj, tj+1) for all v ∈ Pβx

Nx,0× P
βy

Ny,0, t ∈ (tj, tj+1). This allows one to advance time from t j to tj+1 given

u
βx,βy

Nx,Ny
(x,y, tj).

Tuning the scaling factors βx,βy across different timesteps is achieved by monitoring the frequency indic-
ators in the x- and y-directions, Fx and Fy, as detailed in [32]. We use initial expansion orders Nx = Ny = 8
and scaling factors βx = 0.4,βy = 0.5. The ratio and threshold for adjusting the scaling factors, are set to be
q= 0.95 and ν−1 = 0.95. The timestep∆t= 0.1 is used to adjust both scaling factors in both dimensions in a
timely manner and a fourth order implicit Runge–Kutta scheme is used for numerical integration. The neural
network that we use to learn wi,ℓ(t) has 5 intermediate layers with 150 neurons in each layer.

The results depicted in figure 5(a) show that an s-PINNusing the scaling technique can achieve high accur-
acy by using high-order Runge–Kutta schemes in minimizing the SSE equation (10) and by properly adjusting
βx and βy (shown in figure 5(b)) to control the frequency indicatorsFx andFy (shown in figures 5(c) and (d)).
The s-PINNs can be extended to higher spatial dimensions by calculating the numerical solution expressed in
tensor product form as in equation (19).

Since our method outputs spectral expansion coefficients, using the full tensor product in the spatial
spectral decomposition leads to a number of outputs that increase exponentially with dimensionality. The
very wide neural networks needed for such high-dimensional problems results in less efficient training.
However, unlike other recent machine–learning–based PDE solvers or PDE learning methods [45, 46] that
explicitly rely on a spatial discretization of grids or meshes, the curse of dimensionality can be partially
mitigated in our s-PINN method. By using a hyperbolic cross space [47], we can effectively reduce the
number of coefficients needed to accurately reconstruct the numerical solution. In the next example, we
solve a 3D parabolic spatiotemporal PDE, similar to that in example 4, but we demonstrate how
implementing a hyperbolic cross space can reduce the number of outputs and boost training efficiency.

Example 5 (Solving 3D unbounded domain PDEs). Consider the (3+1)-dimensional heat equation

∂tu(x,y,z, t) = ∆u(x,y,z, t), u(x,y,0) =
1√
6
e−x2/12−y2/8−z2/4, (20)

which admits the analytical solution

u(x,y,z, t) =
1√

(t+ 3)(t+ 2)(t+ 1)
exp

[
− x2

4(t+ 3)
− y2

4(t+ 2)
− z2

4(t+ 1)

]
(21)
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Figure 5. Example 4: Solving a higher-dimensional (2D spatial) unbounded domain PDE (equation (17)). L2 error, scaling factor,
and frequency indicators associated with the numerical solution of equation (17) using s-PINNs, with and without dynamic
scaling. (a) L2 error as a function of time. The s-PINNs that are equipped with the scaling technique (red) achieve higher accuracy
than those without (black). (b) The scaling factors βx (blue) and βy (red) as functions of time. Both scaling factors are decreased
to match the spread of the solution in both the x and y directions. Scaling factors are adjusted to maintain small frequency
indicators in the x-direction (c), and in the y-direction (d). In all computations, the timestep is∆t= 0.1.

for (x,y,z) ∈ R3. If we use the full tensor product of spectral expansions with expansion orders Nx = Ny =
Nz = 9, we will need to output 103 = 1000 expansion coefficients, and in turn, a relatively wide neural network
with many parameters will be needed to generate the corresponding weights as shown in figure 1(c). Training
such wide networks can be inefficient. However, many of the spectral expansion coefficients are close to zero
and can be eliminated without compromising accuracy. One way to select expansion coefficients is to use the
hyperbolic cross space technique [47] to output coefficients of the generalized Hermite basis functions only in
the space

Vβ⃗,⃗x0
N,γ×

:= span
{
ĤNx(βxx)ĤNy(βyy)ĤNz(βzz) : |N⃗|mix∥N⃗∥−γ×

∞ ⩽ N1−γ×
}
,

N⃗ := (Nx,Ny,Nz), |N⃗|mix :=max{Nx,1}max{Ny,1}max{Nz,1}, (22)

where the hyperbolic space index γ× ∈ (−∞,1). Taking γ× =−∞ in equation (22) corresponds to the full
tensor product with N + 1 basis functions in each dimension. βx,βy,βx are the scaling factors for the basis
functions in the x,y,z directions, and Nx,Ny,Nz are the orders of the basis function expansions in the x,y,z
directions. For fixed N in equations (22), the number of total basis function tend to decrease with increasing
γ×.We setN = 9 in equation (22) anduse the initial scaling factorsβx = 0.4,βy = 0.5,βz = 0.7.Using a fourth-
order implicit Runge–Kutta scheme with timestep ∆t= 0.2, we set the ratio and threshold for adjusting the
scaling factors are set to q= 0.95 and ν−1 = 0.95 in each dimension.

To illustrate the potential numerical difficulties arising fromoutputting large numbers of coefficients when
solving higher-dimensional spatiotemporal PDEs, we use a neural network with two hidden layers and differ-
ent numbers of neurons in the intermediate layers. We also adjust γ× to explore how decreasing the number
of coefficients can improve training efficiency. Our results are listed in table 2.

The results shown in table 2 indicate that, compared to using the full tensor product γ× =−∞, imple-
menting the hyperbolic cross space with a moderate γ× =−1 or 0, the total number of outputs is signific-
antly reduced, leading to faster training and better accuracy. However, increasing the hyperbolicity to γ× = 1

2 ,
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Table 2. Example 5: Applying hyperbolic cross space and s-PINNs to the (3+1) dimensional PDE equation (20). Applying the
hyperbolic cross space (equation 22), we record the L2 error as well as the training time (in seconds). The number of coefficients
(outputs in the neural network) for γ× =−∞,−1,0, 1

2
are 1000,205,141,110, respectively. Using γ× =−1 or 0 leads to the most

accurate results. The training time tends to increase with the number of outputs (a smaller γ× corresponds to more outputs). By
comparing the results in different rows for the same column, it can be seen that more outputs require a wide neural network for training.

γ×
H −∞ −1 0 1

2

200 2.217× 10−3, (22911) 1.651× 10−4, (4309) 5.356× 10−5, (2886) 3.173× 10−4, (3956)
400 1.072× 10−3, (26725) 2.970× 10−5, (7014) 5.356× 10−5, (3309) 3.173× 10−4, (2356)
700 2.276× 10−3, (43923) 2.900× 10−5, (3133) 5.356× 10−5, (3229) 3.173× 10−4, (2098)
1000 7.871× 10−5, (55880) 2.901× 10−5, (3002) 5.356× 10−5, (2016) 3.173× 10−4, (1894)

the error increases relative to using γ× =−1,0 because some useful, nonzero coefficients are excluded. Also,
comparing the results across different rows, wider layers lead to both more accurate results and faster training
speed. The sensitivity of our s-PINN method to the number of intermediate layers in the neural network and
the number of neurons in each layer are further discussed in example 7. Overall, in higher-dimensional prob-
lems, there is a balance between computational cost and accuracy as the number of outputs needed will grow
fast with dimensionality. Spectrally-adapted PINNs can easily incorporate a hyperbolic cross space so that
the total number of outputs can be reduced to a manageable number for moderate-dimensional problems.
Finding the optimal hyperbolicity index γ× for the cross space equation (22) will be problem-specific.

In the next example, we explore how s-PINNs can be used to solve the Schrödinger equation in x ∈ R.
Solving this complex-valued equation poses substantial numerical difficulties as the solution exhibits
diffusive, oscillatory, and convective behavior [26].

Example 6 (Solving anunboundeddomain Schrödinger equation). We seek to numerically solve the follow-
ing Schrödinger equation defined on x ∈ R

i∂tψ(x, t) =−∂2xψ(x, t), ψ(x,0) =
1√
ζ
exp

[
ikx− x2

4ζ

]
. (23)

For reference, equation (23) admits the analytical solution

ψ(x, t) =
1√
ζ + it

exp

[
ik(x− kt)− (x− 2kt)2

4(ζ + it)

]
. (24)

As in example 4, we shall numerically solve equation (23) in the weak form

(∂tΨ(x, t),v)+ i(∂xΨ(x, t),∂xv) = 0, ∀v ∈H1(R). (25)

Since the solution to equation (23) decays as ∼exp[−x2/(4
√

(ζ2+ t2))] at infinity, we shall use the gener-
alized Hermite functions as basis functions. The solution is rightward-translating for k> 0 and increasingly
oscillatory and spread out over time. Hence, as detailed in [33], we apply three additional adaptive spectral
techniques to improve efficiency and accuracy: (i) a scaling technique to adjust the scaling factor β over time
in order to capture diffusive behavior, (ii) a moving technique to adjust the center of the basis function xL to
capture convective behavior, and (iii) a p-adaptive technique to increase the number of basis functions N to
better capture the oscillations. We set the initial parameters β = 0.8,xL = 0,N= 24 at t= 0. The scaling factor
adjustment ratio and the threshold for adjusting the scaling factor are q= ν−1 = 0.95, theminimum andmax-
imum change in displacements of the basis functions are 0.004 and 0.1 within each timestep, respectively, and
the threshold for moving is 1.001. Finally, the thresholds of the p-adaptive technique are set to ρ= ρ0 = 2 and
γ= 1.4.

Generally speaking, it is desirable to set the adaptive spectralmethod scaling hyperparameters to ν ≳ 1≳ q.
When implementing adaptive moving, it is desirable to make the change in the basis functions’ displacement
as accurate as possible by setting a small minimum change in displacement per timestep, a large maximum
change in displacement per timestep, and a threshold for moving which is slightly larger than 1. For the p-
adaptive technique that adjusts the spectral expansion order, there is a cost-accuracy tradeoff; setting ρ and γ
to small values but ρ0 to a large value leads to smallest errors but higher computational costs. A more detailed
and theoretical discussion of how the choices of those hyperparameters influence the results is given in [48].

To numerically solve equation (25), a fourth-order implicit Runge–Kutta scheme is applied to advance
time with timestep∆t= 0.1. The neural network underlying the s-PINN that we use in this example contains
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Figure 6. Example 6: Solving the Schrödinger equation (equation (23)) in an unbounded domain. Approximation error, scaling
factor, displacement, and expansion order associated with the numerical solution of equation (23) using adaptive (red) and
non-adaptive (black) s-PINNs. (a) Errors for numerically solving equation (23) with and without adaptive techniques. (b) The
change of the scaling factor which decreases over time as the solution becomes more spread out. (c) The displacement of the basis
functions xL which is increased as the solution moves rightwards. (d) The expansion order N increases over time as the solution
becomes more oscillatory. A timestep∆t= 0.1 was used.

13 layers with 100 neurons in each layer. Figure 6(a) shows that the s-PINN with adaptive spectral techniques
leads to very high accuracy as it can properly adjust the basis functions over a longer timescale (across differ-
ent timesteps), while not adapting the basis functions results in larger errors. Figures 6(b)–(d) show that the
scaling factor β decreases over time to match the spread of the solution, the displacement of the basis func-
tion xL increases in time to capture the rightward movement of the basis functions, and the expansion order
N increases to capture the solution’s increasing oscillatory behavior. Our results indicate that our s-PINN
method can effectively utilize all three adaptive algorithms.

We now explore how the timestep and the order of the implicit Runge–Kutta method affect the
approximation error, i.e. to what extent can we relax the constraint on the timestep and maintain the
accuracy of the basis functions, or, if higher-order Runge–Kutta schemes are better. Another feature to
explore is the neural network structure, such as the number of layers and neurons per layer, and how it affects
the performance of s-PINNs. In the following example, we carry out a sensitivity analysis.

Example 7 (Sensitivity analysis of s-PINN). To explore how the performance of an s-PINN depends on
algorithmic set-up and parameters, we apply it to solving the heat equation defined on x ∈ R,

∂tu(x, t) = ∂2xu(x, t)+ f(x, t), u(x,0) = e−x2/4 sinx (26)

using generalized Hermite functions as basis functions. For the source f(x, t) = [xcosx+(t+ 1) sinx] (t+

1)−3/2 exp[− x2

4(t+1) ], equation (26) admits the analytical solution

u(x, t) =
sinx√
t+ 1

exp

[
− x2

4(t+ 1)

]
. (27)
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Table 3. Example 7: Sensitivity analysis of s-PINN. Computational runtime (in seconds), error, and the final scaling factor for different
timesteps∆t, different implicit order-K Runge–Kutta schemes, and the traditional Crank-Nicolson scheme. In each box, the runtime
(in seconds) and the SSE are listed, with the final scaling factor given just below. The results associated with the smallest error are
highlighted in italic while the results associated with the shortest run time for our s-PINN method are indicated in bold.

K
∆t C-N scheme 2 4 6 10

0.02 12, 8.252× 10−6,
0.545

27, 4.011× 10−8,
0.545

54, 1.368× 10−8,
0.545

279, 2.545× 10−7,
0.545

7071, 6.358× 10−5,
0.695

0.05 5, 5.157× 10−5,
0.545

12, 2.799× 10−8,
0.545

23, 1.651× 10−8,
0.545

105, 2.566× 10−7,
0.545

3172, 1.052× 10−6,
0.545

0.1 3, 2.239× 10−4,
0.695

6, 1.331× 10−6,
0.695

10, 1.314× 10−6,
0.695

72, 1.346× 10−6,
0.695

1788, 2.782× 10−6,
0.695

0.2 2, 9.308× 10−4,
0.695

3, 3.760× 10−6,
0.695

9, 2.087× 10−6,
0.695

317, 2.107× 10−6,
0.695

1310, 1.925× 10−3,
0.753

We solve equation (26) in the weak form by multiplying any test function v ∈H1(R) on both sides and integ-
rating by parts to obtain

(∂tu,v) =−(∂xu,∂xv)+ ( f,v), ∀v ∈H1(R). (28)

The solution diffusively spreads over time, requiring one to decrease the scaling factor β of the generalized
Hermite functions {Ĥβ

i (x)}. We shall first study how the timestep and the order of the implicit Runge–Kutta
method associatedwith solving theminimization problem (10) affect our results.We use a neural networkwith
five intermediate layers and 200 neurons per layer, and set the learning rate η = 5× 10−4. The initial scaling
factor is set to β= 0.8. The scaling factor adjustment ratio and threshold are set to q= 0.98, and ν = q−1,
respectively. For comparison, we also apply a Crank-Nicolson scheme for numerically solving equation (28),
i.e.

Uβ
N(tj+1)−Uβ

N(tj)

∆t
= Dβ

N

[
Uβ

N(tj+1)+Uβ
N(tj)

]
2

+
FβN(tj+1)+ FβN(tj)

2
(29)

whereUβ
N(t),F

β
N(t) are theN + 1-dimensional vectors of spectral expansion coefficients of the numerical solu-

tion and of the source, respectively. Dβ
N ∈ R(N+1)×(N+1) is the tridiagonal block matrix representing the dis-

cretized Laplacian operator ∂2x :

Di,i−2 = β2
√
(i− 2)(i− 1)

2
, Di,i =−β2

(
i− 1

2

)
, Di,i+2 = β2

√
i(i+ 1)

2
,

and Di,j = 0, otherwise.
Table 3 shows that since the error from temporal discretization∆t2K is already quite small forK⩾ 4, using a

higher-order Runge–Kuttamethod does not significantly improve accuracy for all choices of∆t. Using higher-
order (K⩾ 4) schemes tends to require longer run times. Higher orders require fitting over more data points
(using the same number of parameters) leading to slower convergence whenminimizing equation (10), which
can result in larger errors. Compared to the second-order Crank-Nicolson scheme, whose error is O(∆t2),
the errors of our s-PINN method do not grow significantly when∆t increases. In fact, the accuracy using the
smallest timestep ∆t= 0.02 in the Crank-Nicolson scheme was still inferior to that of the s-PINN method
using the second order or fourth order Runge-Kutta scheme with ∆t= 0.2. Moreover, the run time of our
s-PINN method using a second or fourth-order implicit Runge–Kutta scheme for the loss function is not
significantly larger than that of the Crank-Nicolson scheme. Thus, compared to traditional spectral methods
for numerically solving PDEs, our s-PINNmethod, even when incorporating some lower-order Runge–Kutta
schemes, can greatly improve accuracy without significantly increasing computational cost.

In table 3, the smallest run time of our s-PINNmethod, which occurs forK= 2,∆t= 0.2, is shown in bold.
The smallest error case, which arises forK= 4,∆t= 0.02, is shown in italic. The run time always increases with
the order K of the implicit Runge–Kutta scheme and always decreases with ∆t due to fewer timesteps. Addi-
tionally, the error always increases with ∆t regardless of the order of the Runge–Kutta scheme. However, the
expected convergence order is not observed, implying that the increase in error results from increased lag in
adjustment of the scaling factor β when∆t is too large, rather than from an insufficiently small time discret-
ization error∆t2K. Using a fourth-order implicit Runge–Kutta scheme with∆t= 0.05 to solve equation (28)
seems to both achieve high accuracy and avoid large computational costs.
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Table 4. Example 7: Sensitivity analysis of our s-PINN for different numbers of intermediate layers NH and neurons per layer H. The
first line gives the total computational runtime (seconds) and the runtime per epoch (in parentheses), while the second line lists the SSE
(equation (10)) and the final scaling factor. Results associated with the smallest error are marked in italic while those associated with the
shortest run time are highlighted in bold.

NH

H 3 5 8 13

50 1348 (0.0014) ,
6.317× 10−4, 0.738

798 (0.0015),
9.984× 10−5, 0.695

995 (0.0020),
1.891× 10−4, 0.579

778 (0.0039),
4.022× 10−4, 0.695

80 784 (0.0015),
7.164× 10−4, 0.654

234 (0.0016),
1.349× 10−6, 0.695

216 (0.0023),
1.345× 10−6, 0.695

376 (0.0043),
1.982× 10−6, 0.695

100 1080 (0.0018),
8.804× 10−5, 0.695

114 (0.0017),
1.344× 10−6,0.695

102 (0.0024),
1.346× 10−6, 0.695

145 (0.0043),
1.348× 10−6, 0.695

200 219 (0.0022),
1.349× 10−6, 0.695

72 (0.0035),
1.346× 10−6, 0.695

43 (0.0048),
1.347× 10−6,0.695

64 (0.0057),
1.345× 10−6, 0.695

We also investigate how the total number of parameters in the neural network and the structure of the
network affect efficiency and accuracy. We use a sixth-order implicit Runge–Kutta scheme with∆t= 0.1. The
learning rate is set to η = 5× 10−4 for all neural networks.

As shown in table 4, the computational cost tends to decrease with the number of neuronsH in each layer as
it takes fewer epochs to converge whenminimizing equation (10). The run time tends to decrease withNH due
to a faster convergence rate, until aboutNH = 8. The errors whenH= 50 are significantly larger as the training
terminates (after a maximum of 100 000 epochs) before it converges. For NH = 3, the corresponding s-PINN
always fails to achieve accuracy within 100 000 epochs unlessH≳ 200. Actually, themean run time for training
one epoch increases with H,NH. Nonetheless, a neural network with 8 intermediate layers and 200 neurons
in each layer performs the best with the smallest total run time. Therefore, overparametrization is indeed
helpful in improving the neural network’s performance, leading to faster convergence rates, in contrast tomost
traditional optimization methods that take longer to converge with more parameters. Similar observations
have been made in other optimization tasks that involve deep neural networks [49, 50]. Consequently, our s-
PINNmethod retains the advantages of deep and wide neural networks for improving accuracy and efficiency.

4. Parameter inference and source reconstruction

As with standard PINN approaches, s-PINNs can also be used for parameter inference in PDE models or
reconstructing unknown sources in a physical model. Assuming observational data at uniform time intervals
tj = j∆t associated with a partially known underlying PDE model, s-PINNs can be trained to infer model
parameters θ by minimizing the sum of squared errors, weighted from both ends of the time interval
(tj, tj+1),

SSEj = SSE
L
j + SSE

R
j , (30)

where

SSELj =
K∑

s=1

∥∥∥∥∥u(x, tj + cs∆t;θj+1;Θj+1)− u(x, tj;θj)−
K∑

r=1

asrM
[
u(x, tj + cr∆t;θj+1;Θj+1)

]∥∥∥∥∥
2

2

,

SSERj =
K∑

s=1

∥∥∥∥∥u(x, tj + cs∆t;θj+1;Θj+1)− u(x, tj+1;θj+1)−
K∑

r=1

(asr − br)M
[
u(x, tj + cr∆t;θj+1;Θj+1)

]∥∥∥∥∥
2

2

.

(31)

Here, θj+1 are the set of model parameters to be found using the sample points cs∆t between t j and tj+1. The
most obvious advantage of s-PINNs over standard PINN methods is that they can deal with models defined
on unbounded domains, extending PINN-based methods that are typically applied to finite domains. Note
that the revised loss function equation (30) differs from equation (10) because now the solutions at tj and
tj+1 are both known, while for equation (10) the solution at tj+1 is to be solved.

Given observations over a certain time interval, one may wish to both infer parameters θj in the
underlying physical model and reconstruct the solution u at any given time. Here, we provide an example in
which both a parameter and the numerical solution of a model are to be inferred.
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Example 8 (Parameter (diffusivity) inference). As a starting point for a parameter-inference problem, we
consider diffusion with a source defined on x ∈ R

∂tu(x, t) = κ∂2xu(x, t)+ f(x, t), u(x,0) = e−x2/4 sinx, (32)

where the constant parameter κ is the thermal conductivity (or diffusion coefficient) in the entire domain. In
this example, we set κ= 2 as a reference and assume the source

f(x, t) =

[
2(xcosx+(t+ 1) sinx)

(t+ 1)3/2
− x2

4(t+ 1)2
+

sinx

2(t+ 1)3/2

]
exp

[
− x2

4(t+ 1)

]
. (33)

In this case, the analytical solution to equation (32) is given by equation (27). We numerically solve
equation (32) in the weak form of equation (28). If the form of the spatiotemporal heat equation is known
(such as equation 32), but some parameters such as κ is unknown, reconstructing it from measurements is
usually performed by defining and minimizing a loss function as was done in [51]. It can also be shown that
κ= κ(t) in equation (32) can be uniquely determined by the observed solution u(x, t) [52–54] under certain
conditions. Here, however, we assume that observations are taken at discrete time points tj = j∆t and seek to
reconstruct both the parameter κ and the numerical solution at tj + cs∆t (defined in equations (31)) by min-
imizing equation (30). We use a neural network with 13 layers and 100 neurons per layer with a sixth-order
implicit Runge–Kutta scheme. The timestep∆t is 0.1. At each timestep, we draw the function values from

u(x, tj) =
sinx√
tj + 1

exp

[
− x2

4(tj + 1)

]
+ ξ(x, tj), (34)

where ξ(x, t) is the noise term that is both spatially and temporally uncorrelated, and ξ(x, t)∼N (0,σ2), where
N (0,σ2) is the normal distribution of mean 0 and variance σ2 (i.e. ⟨ξ(x, t)ξ(y, s)⟩= σ2δx,yδs,t). For different
levels of noiseσ, we take one trajectory of themeasured solutionwith noiseu(x, tj) to reconstruct the parameter
κ, which is presumed to be a constant in [tj, tj+1), and simultaneously obtain the numerical solutions at the
intermediate time points tj + cs∆t. We are interested in how different levels of noise and the increasing spread
of the solution will affect the SSE and the reconstructed parameter κ̂. Figure 7 shows the deviation of the
reconstructed κ̂ from its true value, |κ̂− 2|, the SSE, the scaling factor, and the frequency indicator as functions
of time for different noise levels. Figure 7(a) shows that the larger the noise, the less accurate the reconstructed
κ. Moreover, as the function becomes more spread out (when σ = 0), the error in both the reconstructed
diffusivity and the SSE increases across time, as shown in figure 7(b). This behavior suggests that a diffusive
solution that decays more slowly at infinity can give rise to inaccuracies in the numerical computation of the
intermediate timestep solutions and in reconstructing model parameters. Finally, as indicated in figures 7(c),
(d), larger variances in the noise will impede the scaling process since the frequency indicator cannot be as
easily controlled because larger variances in the noise usually corresponds to high-frequency and oscillatory
components of a solution.

In example 8, both the parameter and the unknown solution were inferred. Apart from reconstructing the
coefficients in a given physical model, in certain applications, we may also wish to reconstruct the underlying
physical model by inferring, e.g. the heat source f(x, t). Source recovery from observational data commonly
arises and has been the subject of many previous studies [55–57]. We now discuss how the s-PINN methods
presented here can also be used for this purpose. For example, in equation (26) or equation (32), we may
wish to reconstruct an unknown source f(x, t) by also approximating it with a spectral decomposition

f(x, t)≈ fN(x, t) =
N∑
i=0

hi(t)ϕ
β
i,xL

(x), (35)

and minimizing an SSE that is augmented by a penalty on the coefficients hi, i = 0, . . . ,N.
We learn the expansion coefficients hi within [tj, tj+1] by minimizing

SSEj =SSE
L
j + SSE

R
j +λ

K∑
s=1

∥∥hN(tj + cs∆;Θj+1)
∥∥2
2
, λ⩾ 0,

SSELj =
K∑

s=1

∥∥∥∥∥u(x, tj + cs∆t)− u(x, tj)−
K∑

r=1

asr
[
∂xxu(x, tj + cr∆t)+ fN(x, tj + cr∆t;Θj+1)

]∥∥∥∥∥
2

2

, (36)

SSERj =
K∑

s=1

∥∥∥∥∥u(x, tj + cs∆t)− u(x, tj+1)−
K∑

r=1

(asr − br)
[
∂xxu(x, tj + cr∆t)+ fN(x, tj + cr∆t;Θj+1)

]∥∥∥∥∥
2

2

,
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Figure 7. Example 8: parameter (diffusivity) inference. The parameter κ inferred within successive time windows of∆t= 0.1, the
SSE error equation (30), the scaling factor, and the frequency indicators associated with solving equation (32), for different noise
levels σ. Here, the SSE was minimized to find the estimate θ̂ ≡ κ̂ and the solutions uN at intermediate timesteps tj + cs∆t. (a), (b)
Smaller σ leads to smaller SSE equation (31) and a more accurate reconstruction of κ̂. When the function has spread out
significantly at long times, the reconstructed κ̂ becomes less accurate, suggesting that unboundedness and small function values
render the problem susceptible to numerical difficulties. (c), (d) Noisy data results in a larger proportion of high-frequency waves
and thus a large frequency indicator, impeding proper scaling.

where hN(tj + cs∆t;Θj+1)≡ (h1(tj + cs∆t;Θj+1), . . . ,hN(tj + cs∆t;Θj+1)) and u (or the spectral expansion
coefficients wi of u) is assumed known at all intermediate time points cs∆t in (tj, tj+1).

The last term in equation (36) adds an L2 penalty term on the coefficients of f which tends to reconstruct
smoother and smaller-magnitude sources as λ is increased. Other forms of regularization such as L1 can also
be considered [58]. In the presence of noise, an L1 regularization further drives small expansion weights to
zero, yielding an inferred source fN described by fewer nonzero weights.

Since the reconstructed heat source f N is expressed in terms of a spectral expansion in equation (35), and
minimizing the loss function equation (36) depends on the global information of the observation u, f at any
location x also contains global information intrinsic to u. In other words, for such inverse problems, the
s-PINN approach extracts global spatial information and is thus able to reconstruct global quantities. We
consider an explicit case in the next example.

Example9 (Source recovery). Consider the canonical source reconstruction problem [59–61] of finding f(x, t)
in the heat equation model in equation (26) for which observational data are given by equation (34) but
evaluated at tj + cs∆t. A physical interpretation of the reconstruction problem is identifying the heat source
f(x, t) using measurement data in conjunction with equation (26). As in example 5, we numerically solve the
weak form equation (28). To study how the L2 penalty term in equation (36) affects source recovery and
whether increasing the regularization λ will make the inference of f more robust against noise, we minimize
equation (30) for different values of λ and σ.

We use a neural network with 13 layers and 100 neurons per layer to reconstruct fi(t) in the decomposition
equation (35) with N = 16, i.e. the neural network outputs the coefficients hi at the intermediate timesteps
tj + cs∆t. The basis functions ϕβi,xL(x) are chosen to be Hermite functions Ĥ

β
i,xL

(x). For simplicity, we consider
the problem within only the first time interval [0,0.2] and a fixed scaling factor β= 0.8 as well as a fixed
displacement xL = 0.
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Table 5. The error SSE0 from equation (31) and the error of the reconstructed source equation (37), (in parentheses), under different
strengths of data noise and regularization coefficients λ.

λ
σ 0 10−3 10−2 10−1

0 0.1370, (1.543× 10−8) 0.1370, (1.368× 10−5) 0.1477, (0.00132) 0.3228, (0.0888)

10−3 0.1821, (2.837× 10−6) 0.1818, (2.736× 10−5) 0.1702, (1.387× 10−3) 0.3222, (0.08964)

10−2 1.0497, (0.001517) 1.0383 (1.579× 10−3) 0.8031, (6.078× 10−3) 0.3434, (0.1168)

10−1 11.505, (0.2976) 11.458, (0.3032) 8.2961, (0.6905) 1.3018, (2.9330)

Figure 8. Example 9: source recovery. SSE0 plotted against the reconstructed heat source ∥hN∥2 as given by equation (36), as a
function of λ for various values of σ (an ‘L-curve’). When λ is large, the norm of the reconstructed heat source ∥hN∥2 always
tends to decrease while the ‘error’ SSE0 tends to increase. When λ= 10−1, ∥hN∥2 is small and the SSE0 is large. A moderate
λ ∈ [10−2,10−3] could reduce the error SSE0, compared to using a large λ, while also generating a heat source with smaller
∥hN∥2.

In table 5, we record the L2 error ∥∥∥∥∥ f(x, t)−
16∑
i=0

hi(t;Θ)Ĥβ
i,xL

(x)

∥∥∥∥∥
2

(37)

the lower-left of each entry and the SSE0 in the upper-right. Observe that as the variance of the noise increases,
the reconstruction of f via the spectral expansion becomes increasingly inaccurate. In the noise-free case, tak-
ing λ= 0 in equation (36) achieves the smallest SSE0 and the smallest reconstruction error. However, with
increasing noise σ, using an L2 regularization term in equations (36) can prevent over-fitting of the data
although SSE0 increases with the regularization strength λ. When σ = 10−3, taking λ= 10−2 achieves the
smallest reconstruction error equation (37); when σ = 10−2,10−1, λ= 10−1 achieves the smallest reconstruc-
tion error. However, if λ is too large, coefficients of the spectral approximation to f are pushed to zero. Thus, it
is important to choose an intermediate λ so that the reconstruction of the source is robust to noise. In figure 8,
we plot the norm of the reconstructed heat source ∥hN∥2 and the ‘error’ SSE0 which varies as λ changes for
different σ.

5. Summary and conclusions

In this paper, we propose an approach that blends standard PINN algorithms with adaptive spectral methods
and show through examples that this hybrid approach can be applied to a wide variety of data-driven
problems including function approximation, solving PDEs, parameter inference, and model selection. The
underlying feature that we exploit is the physical differences across classes of data. For example, by
understanding the difference between space and time variables in a PDE model, we can describe the spatial
dependence in terms of basis functions, obviating the need to normalize spatial data. Thus, s-PINNs are ideal
for solving problems in unbounded domains. The only additional ‘prior’ needed is an assumption on the
asymptotic spatial behavior and an appropriate choice of basis functions. Additionally, adaptive techniques
have been recently developed to further improve the efficiency and accuracy, making spectral decomposition
especially suitable for unbounded-domain problems that the standard PINN cannot easily address.
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Table 6. Advantages and disadvantages of traditional and PINN-based numerical solvers. This table provides an overview of the
advantages (‘+’) and disadvantages (‘–’) associated with different methods and solvers. Finite difference (FD), finite-element (FE), and
spectral methods can be used in a traditional sense without relying on neural networks.

Solvers
Methods Traditional PINN

Non-spectral

+ Leverages existing numerical methods + Easy implementation
+ Low-order FD/FE schemes easily implemented + Efficient deep-neural-network training
+ Efficient evaluation of function and derivatives + Easy extrapolation
−Mainly restricted to bounded domains + Easily handles inverse-type problems
− Complicated time-extrapolation −Mainly restricted to bounded domains
− Complicated implementation of higher-order
schemes

− Less accurate

− Algebraic convergence, less accurate − Less interpretable spatial derivatives
−More complicated inverse-type problems − Limited control of spatial discretization
−More complicated temporal and spatial
extrapolation

− Expensive evaluation of neural networks

− Requires understanding of problem to choose
suitable discretization

− Incompatible with existing numerical
methods

Spectral

+ Suitable for bounded and unbounded domains + Suitable for both bounded and unbounded
domains

+ Spectral convergence in space, more accurate + Easy implementation
+ Leverage existing numerical methods + Spectral convergence in space, more accurate
+ Efficient evaluation of function and derivatives + Efficient deep-neural-network training
− Information required for choosing basis
functions

+More interpretable derivatives of spatial
variables

−More complicated inverse-type problems + Easy extrapolation
−More complicated implementation + Easily handles inverse-type problems
−More complicated temporal extrapolation in
time

+ Compatible with existing adaptive
techniques

− Usually requires a ‘regular’ domain e.g.
rectangle, Rd, a ball, etc

− Requires some information to choose basis
functions

− Expensive evaluation of neural networks
− Usually requires a ‘regular’ domain

We applied s-PINNs (exploiting adaptive spectral methods) across a number of examples and showed
that they can outperform simple feedforward neural networks for function approximation and existing
PINNs for solving certain PDEs. Three major advantages are that s-PINNs can be applied to unbounded
domain problems, more accurate by recovering spectral convergence in space, and more efficient as a result
of faster evaluation of spatial derivatives of all orders compared to standard PINNs that use
autodifferentiation. These advantages are rooted in separated data structures, allowing for spectral
computation and high-accuracy numerics. Straightforward implementation of s-PINNs retains most of the
advantageous features of deep PINN architectures, making s-PINNs ideal for data-driven inference
problems. However, in the context of solving higher-dimensional PDEs, a tradeoff is necessary when using
s-PINNs instead of PINNs. For s-PINNs, the network structure needs to be significantly widened to output
an exponentially increasing (with dimensionality) number of expansion coefficients, while in standard
PINNs, the network structure remains largely preserved but an exponentially larger number of trajectories
are needed for sufficient training. We found that by restricting the spatial domain to a hyperbolic cross space,
the number of outputs required for s-PINNs can be appreciably decreased for problems of moderate
dimensions. While using a hyperbolic cross space cannot reduce the number of outputs sufficiently to allow
s-PINNs to be effective for very high-dimensional problems, the standard PINNs approach to problems in
very high dimensions could require an unattainable number of samples for sufficient training.

In table 6, we compare the advantages and disadvantages of the standard PINN and s-PINN methods.
Potential improvements and extensions include applying techniques for selecting basis functions that best
characterize the expected underlying process and inferring forms of the underlying model PDEs [62, 63].
While standard PINN methods deal with local information (e.g. ∂xu,∂2xu), spectral decompositions capture
global information making them a natural choice for also efficiently learning and approximating nonlocal
terms such as convolutions and integral kernels. Potential future extensions of our s-PINN method may
include adapting it to solve higher-dimensional problems by more systematically choosing a proper
hyperbolic space or using other coefficient-reducing techniques, as well as using wavelets as activation
functions [64] to solve nonlinear differential equations. Also, recent Gaussian–process–based smoothing
techniques [65] can be considered to improve robustness of our s-PINN method against noise/errors in
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measurements, and noise-aware physics-informed machine learning techniques [66] can be incorporated
when applying our s-PINN for inverse-type PDE discovery problems. Finally, one can incorporate a recently
proposed Bayesian-PINN (B-PINN) [67] method into our s-PINN method to quantify uncertainty when
solving inverse problems under noisy data.
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