Taylor & Francis
Taylor & Francis Group

APPLIED ~
Al Applied Artificial Intelligence

An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Metaheuristic Algorithm for State-Based Software
Testing

Ramzi A. Haraty, Nashat Mansour & Hratch Zeitunlian

To cite this article: Ramzi A. Haraty, Nashat Mansour & Hratch Zeitunlian (2018) Metaheuristic
Algorithm for State-Based Software Testing, Applied Artificial Intelligence, 32:2, 197-213, DOI:
10.1080/08839514.2018.1451222

To link to this article: https://doi.org/10.1080/08839514.2018.1451222

% Published online: 09 Apr 2018.

N\
[:J/ Submit your article to this journal &

||I| Article views: 394

A
& View related articles &'

prn

() view Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaai20

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2018.1451222
https://doi.org/10.1080/08839514.2018.1451222
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1451222
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1451222
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1451222&domain=pdf&date_stamp=2018-04-09
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1451222&domain=pdf&date_stamp=2018-04-09

APPLIED ARTIFICIAL INTELLIGENCE lor & .
2018, VOL. 32, NO. 2, 197-213 Taylor &Francis
https://doi.org/10.1080/08839514.2018.1451222 Taylor & Francis Group

N Checkfcrupdates‘
Metaheuristic Algorithm for State-Based Software Testing

Ramzi A. Haraty @, Nashat Mansour, and Hratch Zeitunlian

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

ABSTRACT

This article presents a metaheuristic algorithm for testing soft-
ware, especially web applications, which can be modeled as a
state transition diagram. We formulate the testing problem as
an optimization problem and use a simulated annealing (SA)
metaheuristic algorithm to generate test cases as sequences of
events while keeping the test suite size reasonable. SA evolves
a solution by minimizing an energy function that is based on
testing objectives such as coverage, diversity, and continuity of
events. The suggested method includes a “significance weight”
assigned to events, which leads to important web pages and
ensures coverage of relevant features by test cases. The experi-
mental results demonstrate the effectiveness of simulated
annealing and show that SA yields good results for testing
web applications in comparison with other heuristics.

Introduction

Web applications have evolved significantly in the recent decade. A new dimension
of web technology, known as Web 2.0, is depicted where web applications are no
longer static pages but lighter client applications. In Web 2.0, the web is
approached as a platform, and software applications are built upon the web as
opposed to being built upon the desktop (O’Reilly 2005). Web 2.0 applications are
heavily built around several technologies such as AJAX, rich media content,
widgets, and third-party applications that can be executed within webpages,
Webparts, Portlets, and similar HTML units. Applications developed with AJAX
technology provide the user with a rich dynamic interface that enables responsive
interaction through light client software where the user is capable of controlling the
content of the website through asynchronous requests and responses resulting in a
new page that is updated dynamically through the Document Object
Model (DOM).

The new web technology introduces additional challenges to the already hard
task of web application testing. In addition to the searchability and accessibility, we
have to test the dynamic user interface elements and states to find abnormalities
and errors (Marchetto, Tonella, and Ricca 2008). For example, with Web 2.0, not

CONTACT Ramzi A. Haraty () rharaty@lau.edu.lb &) Department of Computer Science and Mathematics
Lebanese American University Beirut, Lebanon 1102-2801.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/UAAI.
© 2018 Taylor & Francis

http://orcid.org/0000-0002-6978-3627
http://www.tandfonline.com/UAAI
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1451222&domain=pdf&date_stamp=2018-04-05

198 (&) R.A. HARATY ET AL.

every dynamically generated page has a unique uniform resource locator (URL).
Furthermore, not every state change has a distinct uniform resource identifier
(URI), and therefore, not all navigation paths to different states of web pages are
available. Thus, existing web testing methods (Andrews, Offutt, and Alexander
2005; Di Lucca et al. 2002; Tarhini., Mansour, and Fouchal 2010) are not adequate
to test Web 2.0 applications.

In this article, we propose an effective state-based testing method, which can be
used for the Web 2.0 application. For example, this method can be based on
deducing web page states and generating the equivalent state transition chart.
Then, we use a metaheuristic approach based on simulated annealing (SA) to
simultaneously generate a controlled number of test cases with maximum diversity
and coverage. SA is a single-solution-based well-established metaheuristic that has
been used for solving many real-world problems. It has exhibited faster processing
than population-based metaheuristics (Mansour, Isahakian, and Ghalayini 2011).
Although the method will be presented for and applied to examples of web
applications, it is appropriate for software applications that can be modeled by
“weighted” state graph.

In the next section, we review related works on testing web applications. In
Section 3, we present the specificities pertaining to testing web applications.
Section 4 describes how to build a state-based model for web applications. In
Section 5, we present the simultaneous-operation simulated annealing (SO-SA)
algorithm. Experimental results are discussed in Section 6, and in Section 7, we
conclude the article.

Related work

In an effort to reduce application testing costs and improve software quality,
numerous works have been done on automating testing techniques
(Ferguson and Korel 2006). One of the approaches used to automate test
case generation is based on state machine model or even flow model (Nikolik
2006). State-based testing is ideal when dealing with sequences of events. In
some cases, the sequences of events can be potentially infinite, which of
course exceeds testing capabilities; thus, there is the need to come up with a
design technique that allows handling sequences of random lengths. State-
based testing model has proved to be a successful approach especially when
dealing with graphical user interface (GUI) testing. However, the approach is
considered resource intensive especially while generating the model due to
the significant manual intervention needed. To improve the cost-effective-
ness of the method and reduce the number of possibilities, state-based testing
is extended to be formulated on a feedback strategy. When using state
machines to model a Web 2.0 application, states represent the user interfaces
and the state transitions represent the events triggering the transition. A test
case is a sequence of events that correspond to a path in the finite state

APPLIED ARTIFICIAL INTELLIGENCE ’ 199

machine (FSM). FSM representation of Web 2.0 applications, like all modern
applications, has a scaling problem because of the large number of candidate
states and transitional events. Several suggestions were proposed by research-
ers to handle the scalability issue based on path search algorithms. Several
variants of FSMs have also been used for testing. The mutations are driven
from the main aim to reduce the total number of states, and algorithms
traverse these machine models to generate sequences of events as test cases.
These techniques require an initial test suite to be created, either manually or
automatically. Then, the test suite is to be executed and subsequently eval-
uated. The feedback resulting from the evaluation is used to permute the
initial configuration to automatically enhance or generate new test cases. The
evaluation of feedback strategy is formulated mainly around the optimization
algorithm used to target a specific goal. The targeted goal can be one of
many; however, usually it is code coverage, state coverage, or diversity to
improve the overall performance of the test suite (Kolawa and Huizinga
2007; Mansour, Zeitunlian, and Tarhini 2013).

In contrast to the FSM, which can be used to generate test suites that
guarantee complete fault coverage, or a complete test suite within the
bounds to detect mutant FSMs within a predefined number of states, an
extended finite state machine (EFSM) can often be viewed as a com-
pressed notation of an FSM. It is possible to unfold it into a pure FSM
by expanding the values of the parameters, assuming that all the domains
are finite. However, this expansion should be carefully designed so as not
to fall into the same trap of state explosion. Petrenko and Boroday (2004)
call the state of unfolded EFSM as “configuration” and investigate the
problem of constructing a configuration of sequences from an EFSM
model, specifically when unfolded EFSM states result in generation of
sequences that are different from sequences obtained from the initial
configurations or at least they are not in the maximal subset. The authors
generalize the problem into a search problem-generating configurations
sets. They demonstrate how the problem can be tackled and EFSM
reduced so that existing testing methods, which rely on FSM, can handle
the configurations as input. They present a theoretical framework for
determining configuration-confirming sequences based on EFSMs.
Moreover, they elaborate on different derivation strategies. The authors
argue that the proposed approach of confirming sequence generation can
be used to improve any existing test derivation tool that typically uses a
model checker mainly to derive executable preambles and postambles.

Memon and Pollack worked on artificial intelligence planning to manage the
state-space explosion by eliminating the need for explicit states (Memon,
Pollack, and Soffa 2001). In their work, the GUI description is manually created
by a tester in the form of planning operators, which model the preconditions and
postconditions of each GUI event. The planner automatically generates test

200 (&) R.A.HARATY ET AL.

cases using pairs of initial and destination transitional states. The authors proved
the efficiency of the system and suggested that it be integrated with all FSM-
based modeling techniques.

Liu et al. (2000) proposed a formal technique that models web application
components as objects and generates test cases based on data flow between
these objects. Ricca and Tonella (2001) presented a test generation model
based on the unified modeling language. These techniques extend traditional
path-based test generation and use forms of model-based testing. They can
be classified as “white-box” testing techniques since the testing models are
generated from the web application code.

The major challenges for the techniques of testing web applications with
dynamic features are how to model the application and what algorithm can be
used in order to select the test cases from a huge range of possibilities. Not
much research has been reported on testing web applications with dynamic
features using state transition diagrams. Marchetto, Tonella, and Ricca 2008
proposed a state-based testing technique designed to address the new features
of Web 2.0 applications. In this technique, the DOM manipulated by AJAX
code is abstracted into a state model where callback executions triggered by
asynchronous messages received from the web server are associated with state
transitions. The test cases are generated from the state model based on the
notion of semantically interacting events. Empirical evidence shows the effec-
tiveness of this type of testing in finding faults. However, this technique
generates a very large number of test cases that could limit the usefulness of
the test suites. Another proposal by Marchetto et al. (Marchetto, Tonella, and
Ricca 2009) addressed this problem. They proposed a search-based approach
based on a hill-climbing algorithm to generate test sequences while keeping the
test suite size reasonably small. In order to preserve a fault revealing power
comparable to that of exhaustive test suite, they aimed to maximize the
diversity of the test cases by introducing a measure of test case diversity instead
of exhaustively generating all test cases up to a given length K and by selecting
the most diverse test cases, without any constraint on their length K.

The industry also proposed several functional testing tools for testing web
application. Some tools rely on capture/replay facilities, which allow functional
testing (Web Application Testing Tools). They record the interactions that
users have with the graphical interface and repeat them during regression
testing. However, they do not detect the failures in meeting the functional
requirements. Other tools rely on discovering and systematically exploring
website execution paths that can be followed by a user in a web application
(Benedikt, Freire, and Godefroid). Further approaches to functional testing are
based on user session data to produce test suites (Elbaum et al. 2005). Others
are based on HttpUnits where the application is divided to HttpUnits and
tested by mimicking web browser behavior (Fejes). HttpUnit can be used for
unit testing and it is best suited for the implementation of functional tests and

APPLIED ARTIFICIAL INTELLIGENCE ’ 201

acceptance tests; however, it is not practical for typical web layer components
such as JSP pages, servlets, and other template components.

Testing Web applications

Testing is an essential part of the software development cycle. It is used to
detect errors and to ensure the quality of the software. Web applications
differ from traditional software development where they follow the Agile
software development model (Szalvay 2004), which has shorter develop-
ment time. Because of the short development time, web applications
usually lack necessary documents during the development and the user
requirements often change, and testing and maintaining web applications
becomes a more complex task compared to traditional software.

During the past decade, radical changes were introduced to the development of
web applications and even the concept of the web. The web is approached as a
platform where software applications are built upon, hence, the emergence of a
new generation of web applications and web systems known as Web 2.0. Web 2.0
applications are based on highly dynamic web pages, build around AJAX technol-
ogies, which, through the asynchronous server calls, enable the users to interact
and affect the business logic on the servers. AJAX technology created an umbrella
under which the Web 2.0 applications are able to provide high level of user
interaction and web page dynamics. Google Maps, Gmail, and Google
Documents are a few examples of Web 2.0 applications.

The objective of our research is to develop a more effective state-based
testing for a Web 2.0 application that will cover its dynamic features. This
testing approach is based on a search-based algorithm rather than exact graph
algorithms for traversing the events in the state-based graph model.

State graph modeling

Extracting a state graph from a Web 2.0 application is not a direct and simple
task. The main challenge is the absence of traditional navigational paths. This
is because in Web 2.0, there is no unique URI assignment to a specific variant
of the dynamic page, unlike traditional web applications where each web page
state in the browser has an explicit URI assigned to it. Moreover, an entire Web
2.0 application can be created from a single web page where the user interface
is determined dynamically through changes in the DOM initiated by user
interaction through asynchronous server calls. Furthermore, the Web 2.0
application may contain third-party HTML units, user-shared data, widgets,
and media content that are added to the application simultaneously during
execution. To overcome the above-mentioned challenges, our testing mechan-
ism will reconstruct the user interface states and generate static pages having
navigation paths each with a unique URL. These static pages will be used to

202 (&) R.A. HARATY ET AL.

conduct state-based testing (Ricca and Tonella 2001). To attain the static like
pages, we need a tool that will execute client-side code and identify clickable
elements which may change the state HTML/DOM within the browser. From
these state changes, we will build our state graph that captures the states of the
user interface, and the possible transitions between the states.

Building the state graph

Our model reveals the user interface state changes in the Web 2.0 applica-
tion. Thus, the model records all navigation paths/semantically interacting
event of the DOM state changes. This is represented by a state graph for a
Web 2.0 site A, which is a 4 tuple <r,V,C,E> where:

(1) r is the root node representing the initial state after A has been fully
loaded into the browser.

(2) V is a set of vertices representing the states. Each v € V represents a
run-time state in A.

(3) Cis a set of clickable elements that enable the transition from one state
to another.

(4) E is a set of edges between vertices. Each (v;,v,) € E represents a
clickable ¢ € C connecting two states, if and only if state v, is reached
by executing c in state v;.

Events e; and e, are interacting semantically if there exists a state Sy such that
their execution in S, does not commute; i.e., the following conditions hold:

SO = > ele2 S]
So=> cze1 S2

$:<>S,

where Sy, S5, and S, are any states in the state graph of the web application.
The notion of a pair of semantically interacting events can be easily general-
ized to sequences. The event sequence (e;...e,) is a sequence of a semantically
interacting event if every pair of events in the sequence is a pair of semantically
interacting events.

Figure 1 depicts the visualization of the state graph for a simple Web 2.0
application responsible for managing online photo albums. Its main functionalities
are creating an album, deleting an album, selecting an album, editing an album,
saving an album, adding photo, deleting photo, and displaying album. Moreover,
the figure shows the three main states of the application: SI, starting state; S2,
where at least one photo is selected; and S3, an album is selected. It illustrates how
the three different states can be reached.

APPLIED ARTIFICIAL INTELLIGENCE ’ 203

Two issues are to be considered while building the state graph. First, we
need to detect the event-driven elements; next, we need to identify the state
changes. The state graph is created incrementally; initially, the state graph
contains only the root state. Additional states are appended to the graph as
event-driven elements are traced/invoked in the application and state changes
are analyzed. In the following subsections, we detail how event-driven ele-
ments are detected and state changes are identified.

In order to detect even-driven elements, we suggest a candidate list of elements
that responds to events (clickable events). For example, <div>, <input>, <a>, and
others may respond to events like (Click, Doubleclick, and Mouseover). Once an
HTML page is loaded, we access the HTML elements through the DOM and detect
the event-driven elements by checking whether each element in the DOM belongs
to the suggested candidate list of clickable events.

Once a candidate element is detected, we execute the event attached to that
element. In order to determine whether the execution of the event results in state
change, we compare the DOM-tree version after executing the event and the
DOM-tree version just before executing that event. If the execution of the event
results in a state change, we check whether the resulting state is already covered in
the graph. If the state was not previously covered, the new state is added to the
graph, and an edge representing the executed event will connect the two states. If
the state is already covered, an edge will be added between the states. Figure 2
shows the DOM-tree before an event is executed. This state is characterized by
having the entire HTML element set to null or empty. Figure 3 shows the state of
the DOM after “Select Album” event is executed. Note the change in the element
 before and after the event execution; such a state is
identified as a new state. The obtained state, being a new state, will be added to the
FSM and an edge marking the event select album will be added between the states.
Next, the clickable element <input type = “submit” name = “btnShowAlbum™> is
detected and the “Show Album” event is executed. The execution of this event
forces dynamic changes to DOM and a transition to a new state. The new DOM
state representation is depicted in Figure 4. The figure shows that at least one photo
—an image element with nonempty image source and text element containing the
description of the photos in addition to the name of the album. Comparing this
state with the previously obtained states, it is marked as new and added to the FSM.
Similarly, all clickable elements will be detected and executed, and the FSM
generated covering all functionalities of the Web 2.0 application is included.

Simulated annealing algorithm

The SA algorithm simulates the natural phenomenon by a search (perturba-
tions) process in the solution space optimizing some cost function (energy)
(Kirkpatrick, Gelatt, and Vecchi 1983). It starts with some initial solution at a
high (artificial) temperature and then reduces the temperature gradually to a

204 (&) R.A. HARATY ET AL.

freezing point. In the following subsections, we describe how we generate test
sequences of semantically interacting events using the SA algorithm; an
outline of the SA algorithm is given in Figure 5. In our work, we choose
SA, in contrast with hill climbing (Marchetto, Tonella, and Ricca 2008), in
order to generate test sequences because it allows uphill moves, which will
force the solution to jump out of a local minimum in a controlled way.
Interested readers are directed to Zeitunlian (2012) for more information
regarding the details of the algorithm.

Solution representation

Our proposed solution is represented as a configuration C, which is implemented
as an array of variable-length test cases. Each test case is represented by a sequence
of a maximum of K events derived from the state graph. The length of the array is
KxN, where N is the maximum number of test cases required in the solution. To
allow the variable length of test cases, we introduce a random number of fake edges
into our set of valid events. These fake edges, called “No Edge,” will play the role of
space holder in the array.

Energy function

The energy function measures how good the current configuration is. We
based the energy function on three major weighted factors. The weights
represent the importance of each factor. The three factors are continuity,
diversity, and coverage.

Edit Album

v

() ;‘
AR .4
\—/ Pop up Form 1 Save
I Album State S2

Album Delete

Description : NotVoid
List of pictures : NotVoid
Album : Not Void

Initial State S1

Create Album
Start Album

Description : Void
List of pictures : Void
Album : Void

L
L
Q
g
L

Start Album S3

} Photo Add |
Pop Up Form 2
Description : Void

List of pictures : Void
Album : Not Void

Figure 1. An example of a state graph model of a web application.

APPLIED ARTIFICIAL INTELLIGENCE . 205

Continuity

When testing event-based applications, it is very important to test a contin-
uous set of events. In fact, test cases with longer continuous sequences of
events have higher capability of revealing faults. In our SA strategy, we want to
minimize/eliminate the discontinuity (DC) of events in a test case. We calcu-
late discontinuity by checking the events in every test case and incrementing
the value by one whenever discontinuous events are found.

Diversity

Diversity is an important factor which guarantees that test cases will cover events
from the entire scope of the web application, and not just concentrate on events
from a certain part. Hence, we guarantee equally distributed events within the
entire test suite. In this work, we will be minimizing the lack of diversity by
calculating the average frequency of events in the entire test suite. Thus, given a
test suite S, composed of a set of test cases based on semantically interacting
sequences of events, its lack of diversity (LDiv) is computed as follows:

iv = | Y (Fe— Fug)’

ecEvents

v<div id="upAjaxContent">
v <div>
<input type="submit" name="btnSelect" value="Select" id="btnSelect">
"submit” name="btnDelete"” value="Delete" id="btnDelete">
"submit"” name="btnEdit@" value="Edit" id="btnEdite">
<input type="submit" name="btnShowAlbum" value="Show Album” id="btnShowAlbum">
v<div>
v<div>

<textarea name="txtDescription" rows="2" cols="20" id="txtDescription" style="height:75px;width
499px;"></textarea>
</div>
<fdiv>
</div>
</div>

Figure 2. Initial state—no album selected.

v<div id="upAjaxContent">
¥<div>
<input type="submit" name="btnSelect" value="Select" id="btnSelect">
<input type="submit" name="btnDelete"” value="Delete" id="btnDelete">
<input type="submit" name="btnEdit@" value="Edit" id="btnEdite">
<input type="submit" name="btnShowAlbum" value="Show Album" id="btnShowAlbum">
v<div>
v<div>
Lunch with friends

<textarea name="txtDescription" rows="2" cols="20" id="txtDescription" style="height:75px;width
499px; ">< /textarea>
</div>
</div>
</fdiv>
</div>

Figure 3. Start Album state—an album is selected.

206 (&) R.A.HARATY ET AL.

v<div id="upAjaxContent">

¥ <div>
<input type=" " name=" " value="Select" id="btnSelect">
<input type="submit" name=" " value="Delete" id="btnDelete">

<input type= it" name="btnEdit@" value="Edit" id="btnEdit8">
" " name="btnShowAlbum" value="Show Album" id="btnShowAlbum">

v<div>
Lunch with friends
<img id="Imagel" src="http://localh style="width:58@px;"

rt:59327 WebSite2/lunchtime%20011.ipg"
<textarea name=" txtDescrlptlcn " cols="2@8" id="txtDescription" style="height:75px; nldth
499px, >Hratch and George sitting at the balcony enjoying their lunch</textarea>

Figure 4. DOM of Album state—at least one picture selected.

where e is an event that belongs to the set of events Events, F, is the execution
frequency of event e, and F,,, is the average frequency of event e computed
over the entire test suite.

Weighted coverage

In Web 2.0 applications, end users and third parties can change the content of a
web page dynamically by injecting HTML code or web widgets through their
interaction with the site. Thus, some events would have higher importance than
other events. Accordingly, we may control or even limit some functionality from
being included in our testing plan by allowing a measure of importance of events
that are part of the original web application, compared to injected events or
functionality into the web application. The importance of events is represented
by predefined weights assigned to every event. Again, we want to minimize the
value of the unimportant events, and this value is calculated by checking if an
event is covered in the test suite and multiplying it with its importance or weight.
The weighted coverage is given by

WC = Z(We * C,),where e ¢ Events

The energy function, E, is represented as:
E X ! + B x LDiv+y x DC
=axX — iv
WC y

where a, 8, and y are user-defined weights for weighted coverage, diversity,
and discontinuity, respectively. Note that different values can be assigned to
the weights in E. These weights are important for selecting test cases. They
might be contradictory; that is, by increasing one of these weights, say «, the
solution will improve in minimizing one factor (discontinuity) while it might
increase the other factors. These weights will allow flexibility in using our
proposed algorithm to suit the user’s particular choices or requirements for
different instances of the problem.

APPLIED ARTIFICIAL INTELLIGENCE ’ 207

initial configuration = sequence of events from the state graph;
determine initial temperature T(0);
determine freezing temperature Tr;
while (T(i) > Tr and not converged) do
repeat
generate_function();
until several times(multiple of the number and size of required test cases)
save_best_sofar();
T(i) =6 * T();

endwhile

procedure generate_function()
perturb();
if (AOF1 <0) then
update() /* accept */
else
if (random() < e AOF1/TD) then
update() /* accept */
else

reject_purturbation();

Figure 5. Outline of the simulated annealing algorithm.

Metropolis step and feasibility

An iteration of the Metropolis step, generate_function(), consists of a perturba-
tion operation, an accept/reject criterion, and a thermal equilibrium criterion.
Perturbation in our strategy is performed randomly by selecting an event within
a test case and substituting it with a randomly chosen event from the events set.

The acceptance criterion checks the change in E due to the perturbation. If the
change decreases the objective function, the perturbation is accepted and C is
updated. However, if the perturbation causes the objective function to increase, it is
accepted only with a probability e "7, The main advantage of this Monte
Carlo algorithm (Motwani and Raghavan 1995) is that the controlled uphill moves
can prevent the system from being prematurely trapped in a bad local minimum-
energy state. Note that for lower temperature values 7T(i), the probability of
accepting uphill moves becomes smaller; at very low (near-freezing) temperatures,
uphill moves are no longer accepted. The perturbation—acceptance step is repeated

208 (&) R.A.HARATY ET AL.

many times at every temperature after which thermal equilibrium is considered to
be reached.

Perturbations can make C infeasible if they violate the definition of con-
tinuity. But, the formulation of the energy function E accounts for this
infeasibility problem. The last term in E, DC, can be assigned a large weight,
y, so that infeasibility is severely penalized. Thus, infeasible test cases will be
prevented at low temperatures.

Cooling schedule

The cooling schedule is determined by running a heuristic algorithm that deduces
the starting and freezing temperatures with respect to the number of uphill jumps.
The initial temperature T(0) is the temperature that yields a high initial acceptance
probability of 0.93 for uphill moves. The freezing point is the temperature at which
such a probability is very small (2-30), making uphill moves impossible and
allowing only downhill moves. The cooling schedule used in this work is simple:
TG + 1) = 6 x T(i), with 6 = 0.95.

As the annealing algorithm searches the solution space, the best-so-far solution
(with the smallest energy value) found is always saved. This guarantees that the
output of the algorithm is the best solution it finds regardless of the temperature at
which it terminates. Convergence is then detected when the algorithm does not
improve on the best-so-far solution for a number of temperatures, say 20, in the
colder part of the annealing schedule.

Experimental results

In this section, we present the results of generating test cases using our
proposed SO-SA algorithm and compare them with the results of incre-
mental simulated annealing (INC-SA), greedy, and genetic algorithms
(GA). Incremental SA generates test cases one at a time (rather than all
tests simultaneously) containing a maximum of K events at each iteration
and adds the test case to the final configuration of the test suite.
Incremental SA makes use of the same energy function. However, at the
end of each iteration, the event frequency, coverage, and diversity
matrices are saved, to be used by the energy function on the next itera-
tion. The greedy algorithm accepts only the changes that decrease the
value of the objective function, and do not allow uphill moves. It deals
with the entire test suite over a number of iterations. The GA generates
chromosomes, which are evaluated using the fitness function, for a num-
ber of generations using genetic operators (Alander 2008).

The four algorithms are applied on a state graph with 270 events as shown
in Figure 6. We generated a test suite of 40 test cases, where each test case
have a maximum of K test events. To simulate variant-length test case size,

APPLIED ARTIFICIAL INTELLIGENCE . 209

Figure 6. State graph of a web application.

we appended 10% fake edges (“No Edge”) to the list of events. We ran the
four algorithms with different test case sizes K = 10, 15, 20, and repeated the
execution for each K value 10 times, for statistical purposes.

The SO-SA, incremental, and GA algorithms successfully generated 40 test
cases, consisting of a continuous sequence of events. Close examination of the
results reveals that the three algorithms successfully cover all the events in the

210 (&) R. A. HARATY ET AL.

application. More importantly, they are able to generate a diversity suite that
ensures testing the different parts of the Web 2.0 application. However, the
performance of the SO-SA and GA algorithms are superior to the others, with
SO-SA having a slight edge over the GA. This is due to yielding lower energy
values when using the same test suite size with test cases of the same K. The
greedy algorithm resulted in an unoptimized test suite. The greedy algorithm
failed to generate continuous sequences of events in the test cases. The energy
value converges fast within the initial iteration; however, no further improve-
ments were obtained.

Tables 1-3 and Figures 7-9 show the comparison between the best, worst, and
average energy function for the four strategies (SO-SA, incremental SA, greedy
algorithm, and GA) obtained for different maximum event numbers in a specific
test case. Table 4 depicts the standard deviation of the energy values.

The results show that SO-SA converged to the best energy values in all
cases followed by GA. The greedy algorithm failed tremendously in
comparison with the others. The results also show that the incremental
SA limits its search by the early decisions on test case selection (made in
early iterations) in contrast with the SO-SA that simultaneously generates
test cases. Also, it shows that as the test case length, K, increases, the
energy values for the four algorithms increase since it becomes harder to
maintain relative diversity.

Table 1. Best final energy values of 10 runs for different test case sizes—K.

Maximum number of Simultaneous-operation Incremental Greedy Genetic
events in test cases SO-SA INC-SA algorithm algorithm
K=10 1.214 1.353 31.000 1.268
K=15 1.729 1.819 56.160 1.828
K =20 2.194 2413 83.320 2.732

Table 2. Worst final energy values of 10 runs for different test case sizes—K.

Maximum number of Simultaneous-operation Incremental Greedy Genetic
events in test cases SO-SA INC-SA algorithm algorithm
K=10 1.382 1.968 37.478 1.374
K=15 1.828 2.503 68.600 1.924
K=20 2.834 2.860 93.791 3.240

Table 3. Average final energy values of 10 runs for different test case sizes—K.

Maximum number of Simultaneous-operation Incremental Greedy Genetic
events in test cases SO-SA INC-SA algorithm algorithm
K=10 1.289 1.776 35.080 1.311
K=15 1.762 2.170 61.578 1.870

K=20 2.330 2.781 88.662 2.922

APPLIED ARTIFICIAL INTELLIGENCE ’ 211

2.5
2
—; /
bo
g 15
S e Greedy
g 1
= = = INC-SA
K]
0.5 — SO-SA
./ A
0
10 15 20
Test case size k
Figure 7. Best final energy values.
2.5
- 2
&
g 15
S === SO-SA
S 1
P = = INC-SA
- 05 - =T s Greedy
0 GA
10 15 20
Test case size k
Figure 8. Worst final energy values.
2.5
2
=
5 15
e~ Greedy
=3
g = = INC-SA
1]
2 === SO-SA
0.5 =
_:;‘::___’:_,.—— GA
0
10 15 20

Test case size k

Figure 9. Average best energy values.

Table 4. Standard deviation of final energy values of 10 runs for different test case sizes—K.

Maximum number of Simultaneous-operation Incremental Greedy Genetic
events in test cases SO-SA INC-SA algorithm algorithm
K=10 0.041 0.199 2,012 0.037
K=15 0.030 0.237 3.280 0.033

K=20 0.174 0.140 3.735 0.179

212 (&) R. A. HARATY ET AL.

Conclusion

We presented an optimization metaheuristic method for testing web applica-
tions. We also modeled the dynamic features of Web 2.0 using state transition
diagrams. We used a SA algorithm to generate test cases as long sequences of
semantically interacting events. Test cases were generated as sequences of
semantically interacting events. We also formulated an energy function that
is based on the capability of these test cases to provide high coverage of events,
high diversity of events covered, and definite continuity of events. Our experi-
mental results show that the proposed SO-SA algorithm yields better results
than the incremental SA, competitive results with the GA, and significantly
better results than a greedy algorithm. Future work aims to improve the
components of the energy function based on larger applications, and to
compare the SA algorithm with more metaheuristics.

ACKNOWLEDGMENT

The three authors contributed equally to this paper. The work was partially supported by the
Lebanese American University.

ORCID

Ramzi A. Haraty @ http://orcid.org/0000-0002-6978-3627

References

Alander, J. T. 2008. An indexed bibliography of genetic algorithms in testing. Technical
Report 94-1-TEST, University of Vaasa, Vaasa, Finland.

Andrews, A., J. Offutt, and R. Alexander. 2005. Testing web applications by modelling with
FSMs. Software and System Modelling 4 (3):326-345, July.

Benedikt, M., J. Freire, and P. Godefroid. VeriWeb: Automatically testing dynamic Web sites.
Accessed July 18, 2013. http://www2002.org/ CDROM/alternate/654/.

Di Lucca, G. A., A. R. Fasolino, F. Faralli, and U. D. Carlini. 2002. Testing Web applications.
Proceedings of the International Conference on Software Maintenance, Montreal, Canada,
October. IEEE Computer Society.

Document Object Model (DOM). 2005. Accessed March 23, 2017. http://www.w3.org/DOM.

Elbaum, S., G. Rothermel, S. Karre, and M. Fisher. 2005. Leveraging user session data to support
Web application testing. IEEE Transactions of Software Engineering 31 (3):187-202.
doi:10.1109/TSE.2005.36.

Fejes, B. 2004. Test Web applications with HttpUnit”. March 23, 2017. http://www.javaworld.
com/javaworld/jw-04-2004/jw-0419-httpunit.html.

Ferguson, R., and B. Korel. 2006. The chaining approach for software test data generation.
ACM Transactions on Software Engineering Methodologies 5 (1):63-86. doi:10.1145/
226155.226158.

Kirkpatrick, S., C. Gelatt, and M. Vecchi. 1983. Optimization by simulated annealing. Science
220:671-80. doi:10.1126/science.220.4598.671.

http://www2002.org/CDROM/alternate/654/
http://www.w3.org/DOM
http://dx.doi.org/10.1109/TSE.2005.36
http://www.javaworld.com/javaworld/jw-04-2004/jw-0419-httpunit.html
http://www.javaworld.com/javaworld/jw-04-2004/jw-0419-httpunit.html
http://dx.doi.org/10.1145/226155.226158
http://dx.doi.org/10.1145/226155.226158
http://dx.doi.org/10.1126/science.220.4598.671

APPLIED ARTIFICIAL INTELLIGENCE ’ 213

Kolawa, A., and D. Huizinga. 2007. Automated defect prevention: Best practices in software
management. Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press. ISBN
0470042125.

Liu, C, D. Kung, P. Hsia, and C. Hsu. 2000. Structural testing of Web applications.
Proceedings of the 11th IEEE International Symposium on Software Reliability
Engineering, San Jose, CA, USA. 84-96, October.

Mansour, N., V. Isahakian, and I. Ghalayini. 2011. Scatter search technique for exam time-
tabling. Applied Intelligence 34 (2):299-310. doi:10.1007/s10489-009-0196-5.

Mansour, N., H. Zeitunlian, and A. Tarhini. 2013. Optimization metaheuristic for software
testing. In EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation II. Advances in Intelligent Systems and Computing, ed. by :
Schiitze O. et al., Vol 175, Berlin, Heidelberg: Springer.

Marchetto, A., P. Tonella, and F. Ricca. 2008. State-based testing of AJAX Web applications.
Proceedings of IEEE International Conference on Software Testing (ICST), Lillehammer,
Norway, April.

Marchetto, A., P. Tonella, and F. Ricca. 2009. Search-based testing of AJAX web applications.
Proceedings of IEEE Search Based Software Engineering, Windsor, UK, May.

Memon, M., M. Pollack, and L. Soffa. 2001. Hierarchical GUI test case generation using
automated planning. IEEE Transactions on Software Engineering 27 (2):144-55.
do0i:10.1109/32.908959.

Motwani, R., and P. Raghavan. 1995. Randomized algorithms. New York: Cambridge
University Press. ISBN 0-521-47465-5.

Nikolik, B. 2006. Test diversity. Information and Software Technology 48:1083-94.
doi:10.1016/j.infsof.2006.02.001.

O’Reilly, T. 2005. Design patterns and business models for the next generation of software.
Accessed March 23, 2017. http://oreilly.com/web2/archive/what-is-web-20.html.

Petrenko, A., S. Boroday, and R. Groz. 2004. Confirming Configurations in EFSM Testing.
Software Engineering, IEEE Transactions 30:29-42. doi:10.1109/TSE.2004.1265734.

Ricca, F., and P. Tonella. 2001. Analysis and testing of Web applications. Proceedings of the
International Conference on Software Engineering, Toronto, Ontario, Canada. 25-34,
May.

Szalvay, V. 2004. An introduction to agile software development. Wien, Austria: Danube
Technologies Inc.

Tarhini., A., N. Mansour, and H. Fouchal. 2010. Testing and regression testing for Web
services based applications. International Journal of Computing and Information
Technology 2 (2):195-217.

Web Application Testing Tools. 2001. Accessed July 18, 2013. http://logitest.sourceforge.net/
logitest/index.html.

Zeitunlian, H. 2012. Metaheuristic Algorithm for Testing Web 2.0 Applications. Master’s
Thesis. Lebanese American University.

http://dx.doi.org/10.1007/s10489-009-0196-5
http://dx.doi.org/10.1109/32.908959
http://dx.doi.org/10.1016/j.infsof.2006.02.001
http://oreilly.com/web2/archive/what-is-web-20.html
http://dx.doi.org/10.1109/TSE.2004.1265734
http://logitest.sourceforge.net/logitest/index.html
http://logitest.sourceforge.net/logitest/index.html

	Abstract
	Introduction
	Related work
	Testing Web applications
	State graph modeling
	Building the state graph

	Simulated annealing algorithm
	Solution representation
	Energy function
	Continuity
	Diversity
	Weighted coverage

	Metropolis step and feasibility
	Cooling schedule

	Experimental results
	Conclusion
	ACKNOWLEDGMENT
	References

