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Missing Data Imputation for Supervised Learning
Jason Poulos and Rafael Valle

Departments of Political Science and Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA, USA

ABSTRACT
Missing data imputation can help improve the performance of
prediction models in situations where missing data hide useful
information. This paper compares methods for imputing miss-
ing categorical data for supervised classification tasks. We
experiment on two machine learning benchmark datasets
with missing categorical data, comparing classifiers trained
on non-imputed (i.e., one-hot encoded) or imputed data with
different levels of additional missing-data perturbation. We
show imputation methods can increase predictive accuracy in
the presence of missing-data perturbation, which can actually
improve prediction accuracy by regularizing the classifier. We
achieve results comparable to the state-of-the-art on the Adult
dataset with missing-data perturbation and k-nearest-neigh-
bors (k-NN) imputation.

Introduction

Supervised learning has become an increasingly attractive methodology and
proven to be effective in social science applications, such as studies of
international and civil conflict (Beck, King, and Zeng 2000; Hill and Jones
2014; Muchlinski et al. 2016) and election fraud (Cant and Saiegh 2011;
Montgomery et al. 2015). For supervised classification tasks, the objective is
to fit a model on labeled training data in order to categorize new examples.
However, the ability of researchers to accurately fit a model and yield
unbiased estimates may be compromised by missing data.

Our objective is to compare the out-of-sample performance of three
popular machine learning classifiers—decision trees, random forests, and
artificial neural networks (ANNs)—trained on imputed or non-imputed
(i.e., one-hot encoded) machine learning benchmark datasets that contain
various degrees of missing-data perturbation. Researchers analyzing survey
data typically choose decision trees or random forests for classification tasks,
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largely because these models require neither imputing missing data nor
encoding categorical variables, unlike ANNs or other classifiers.

The primary contribution of this paper is to provide guidance to applied
researchers on how to handle missing data for supervised learning tasks.
First, we show that imputation methods can increase predictive accuracy in
the presence of missing-data perturbation. Second, we show that adding
missing-data perturbation prior to imputation can actually improve predic-
tion accuracy by regularizing the classifier. We achieve results comparable to
the state-of-the-art on the Adult dataset with missing-data perturbation and
k-nearest-neighbors (k-NN) imputation. Lastly, we show that classifiers
trained on one-hot encoded data generally yield higher predictive accuracy
when the data are not additionally perturbed. For example, a simple one-hot
encoded random forests outperforms the state-of-the-art on the
Congressional Voting Records (CVRs) dataset with no missing-data
perturbation.

The following section describes missing data mechanisms and imputation
methods; the ‘Experiments’ section describes our experiments on two bench-
mark datasets and discusses the results; and the ‘Conclusion’ section con-
cludes and offers possibilities for future research.

Missing data and imputation methods

In this section, we describe the missing data mechanisms underlying patterns
of missing data common to survey-based datasets. We then review popular
methods of handling missing data.

Missing data patterns and mechanisms

It is important to first distinguish betweenmissing data patterns, which describe
observed and missing values, and missing data mechanisms, which relate the
probability of missingness (Little and Rubin 2014, Chap. 1). Common missing
data patterns in surveys typically include unit nonresponse, where a subset of
participants do not complete the survey, and item nonresponse, where missing
values are concentrated on particular questions. In opinion polls, nonresponse
may reflect either refusal to reveal a preference or lack of a preference (De
Leeuw, Hox, and Huisman et al. 2003).

Following the notation of Little and Rubin (2014, Chap. 1), let Y ¼ yij be a
ðn� KÞ dataset with each row yi ¼ ðyi1; . . . ; yiKÞ the set of yij values of
feature Yj for example i. Let Yobs define observed values of Y and Ymis define
missing values. Let M define the missing data identity matrix M ¼ mij, where
mij ¼ 1 if yij is missing and mij ¼ 0 if yij is nonmissing. The missing data
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mechanism is missing completely at random (MCAR) if the probability of
missingness is independent of the data, or

f ðMjY; ϕÞ ¼ f ðMjϕÞ "Y; ϕ;

where ϕ denotes unknown parameters. The missing at random (MAR)
assumption is less restrictive than MCAR in that the probability of missing-
ness depends only on the observed data, f ðM Y; ϕÞ ¼ f ðMj jYobs; ϕÞ for all
Ymis; ϕ. The missing not at random (MNAR) assumption is that the prob-
ability of missingness may also depend on the unobserved data,
f ðM Y; ϕÞ ¼ f ðMj jYmis; ϕÞ for all Ymis; ϕ. Researchers typically assume data
are MAR, which mitigates the identifiability problems of MNAR because the
probability of missingness depends on data that are observed on all indivi-
duals (Tsiatis 2007, Chap. 6).

Imputation methods

Complete-case analysis (i.e., discarding examples with missing values) wastes
information and biases estimates unless the missing data are MCAR. Since there
is no way to distinguish whether the missing data are MCAR or MNAR from the
observed data, a natural strategy is to impute missing values and then proceed as
if the imputed values are true values. Imputation methods that rely on explicit
model assumptions include mean or mode replacement, which substitutes miss-
ing values with the mean (for quantitative features) or mode (for qualitative
features) of the feature vector, and prediction model imputation, which replaces
missing values with the predicted values from a regression of Ymis on Yobs.

Explicit modeling methods assume the data are MAR while implicit model-
ing methods, which are algorithmic in nature and rely only on implicit assump-
tions, generally do not assume the underlying missing data mechanism. Implicit
methods include random replacement, where an example with missing data is
randomly replaced with another complete example randomly sampled, and hot
deck imputation, where missing values are replaced by “similar” nonmissing
values. Hot deck imputation can be implemented by computing the k-NN of an
example with missing data and assigning the mode of the k-neighbors to the
missing data. Batista and Monard (2003) use this procedure and find k-NN
imputation can outperform summary statistic imputation and internal methods
used by decision trees to treat missing data.1

In related work, Silva-Ramrez et al. (2011) compare imputation using
ANNs with mean/mode imputation, regression models (logistic regression
and multiple linear regression), and hot deck, finding the ANNs model
performs the best on datasets with categorical variables.
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One-hot encoding

Another natural strategy in dealing with missing data for supervised learning
problems is one-hot encoding. Instead of imputing missing data, one-hot
encoding creates a binary feature vector that indicates missing values. For
categorical features, one-hot encoding simply treats a missing value symbol
(e.g., “?”) as a category when the categorical features are binarized. For
continuous features, missing values are set to a constant value and a miss-
ingness indicator is added to the feature space. One-hot encoding for missing
data yields biased estimates when the features are correlated, which is often
the case with survey data, even when data are MCAR (Jones 1996).

Experiments

In this section, we describe our experiment on two machine learning bench-
mark datasets with missing categorical data, comparing three popular classi-
fiers—ANNs, decision trees, and random forests—trained on either one-hot
encoded or imputed data with different degrees of MCAR perturbation.

Benchmark datasets

We experiment on two benchmark datasets from the UCI Machine Learning
Repository: the Adult dataset and CVRs dataset (Lichman 2013). The Adult
dataset contains N ¼ 48; 842 examples and 14 features (6 continuous and 8
categorical). The prediction task is to determine whether a person makes
over $50,000 a year. The CVRs dataset contains N ¼ 435 examples, each the
voting record of a member of the U.S. House of Representatives for 16 key
roll call votes. The dataset contains 16 categorical features with three possible
values: “yea”, “nay”, and missing. The prediction task is to classify party
affiliation (Republican or Democrat). In contrast to the Adult dataset, in
which only a few features are highly correlated, many of the roll call votes in
the CVRs dataset exhibit strong correlations (Figures SM-1 and SM-2).

The state-of-the-art for the Adult dataset is a naive Bayes classifier that
achieves a 14.05% generalization error after removing examples with missing
values (Kohavi 1996). The CVRs dataset donor claims to achieve a 5–10%
error rate using an incremental decision tree algorithm called STAGGER,
although it is unknown to the authors what train-test split is used or how
missing values are handled (Schlimmer 1987; Schlimmer and Granger 1986).

Patterns of missing data

Uncovering missing data patterns in the datasets will help to identify possible
missing data mechanisms and select appropriate imputation methods.
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Figure SM-3 analyzes patterns of missing data in the Adult dataset, in which 7%
of the examples contain missing values. Missing data in the Adult dataset is due
to item nonresponse, as missing values are concentrated in three of the cate-
gorical features—Work class, Occupation, and Native country—and no exam-
ples contain entirely missing data. It is unlikely that the data are MCAR because
observations that are missing in Work class are also missing in Occupation
(about 6% of examples have missing values in both).

Missing values in the CVRs dataset are not simply unknown, but represent
values other up-or-down votes, such as voted present, voted present to avoid
conflict of interest, and did not vote or otherwise make a position known.
Close to half of the CVRs data contains missing values, which are present in
every feature (Figure SM-4). About a quarter of missing data is in the feature
South Africa, which captures a controversial vote to amend the Export
Administration Act to bar U.S. exports to South Africa’s apartheid regime.
Twelve percent of missing data are in the feature Water, which is a water
projects authorizations bill, and 7% of missing data rest in the feature
Exports, which is a tariff bill. The data are unlikely to be MCAR because
12% of the data are missing in just South Africa and less than 1% of examples
are missing across all features. It is most likely in this case that the CVRs data
are MNAR because the probability of missing a vote or voting present on one
important bill should not theoretically be influenced by observed votes on
other important bills.

Preprocessing

After randomly splitting each dataset (2=3 for training and 1=3 for testing),
we perturb the training data so that the proportion of missing values in the
set of categorical features Ycat follows δ ¼ 0:1; 0:2; 0:3; 0:4f g according to the
MCAR mechanism

PrðM ¼ 1jYcat; ϕÞ ¼ δ for allYcat:

We use missing-data perturbation to study the impact of larger amounts of
missing data; however, it is also a form of dropout noise that can be used to
control overfitting during the training process and improve the generaliz-
ability of the model (Wager, Wang, and Liang 2013).

After one-hot encoding the categorical variables in the training data, we
implement each of the following imputation techniques, discussed in the
“Imputation methods”: k-NN, prediction model (logistic regression, random
forests, or SVMs), mode replacement, and random replacement. We then stan-
dardize continuous features by subtracting themean and dividing by the standard
deviation of the feature. The test data are preprocessed in the same manner, with
the exception that we do not perturb categorical features in the test data.2
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Model training

We train three different classifiers on the preprocessed data: decision trees,
random forests, and ANNs. The ANNs consist of four layers, each of the two
hidden layers having 1024 nodes, and updates with the adaptive learning rate
method Adadelta (Zeiler 2012). We explore the hyperparameter space—
momentum schedule, dropout regularization, and learning rate—using
Bayesian optimization (Snoek, Larochelle, and Adams 2012), which selects
optimal models using the mean training error rate as our objective function.
Figure SM-5 shows the exploration of hyperparameter space during Bayesian
optimization for both datasets. Random forests and decision trees are trained
with preselected hyperparameters.

Results

We assess the performance of the classifiers in terms of test set error rate on one-
hot encoded or imputed data and for various levels of MCAR perturbation. The
results on the Adult dataset and CVRs dataset are plotted in Figures 1 and 2,
respectively, with error bars representing � 1 standard deviation from the test
error rate.

One-hot-encoded decision trees outperform the state-of-the-art on the
CVRs dataset by over 2% (0:027� 0:006). The ANNs classifier trained on
data imputed with k-NN yields the lowest generalization error (0:144� 0:06)
on the Adult dataset with 10% of the categorical feature values perturbed,
which is comparable to the state-of-the-art. In comparison, a random forests
classifier trained on non-perturbed and one-hot encoded data yields a test
error rate of 0:152� 0:02. This comparison shows that the classifiers can
overfit the data and, in the case of imputed models, perturbation improves
prediction accuracy by regularizing the classifier.

Overall, the results show imputation methods can increase predictive
accuracy in the presence of missing-data perturbation. For both datasets,
one-hot encoded models trained in the absence of perturbation perform as
well as imputed models trained on non-perturbed data. In the case of the
Adult dataset, imputation clearly improves accuracy in the presence of
MCAR-perturbed data. In contrast, each of the three classifiers trained on
the one-hot encoded CVRs dataset perform relatively well across different
levels of perturbation. The general pattern of results holds when the classi-
fiers are trained on MNAR-perturbed data (Figures SM-6 and SM-7).

Conclusion

This paper compares methods for imputing missing categorical data for
supervised classification tasks. We compare the out-of-sample performance
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Figure 1. Error rates on the Adult test set with (bottom) and without (top) missing data
imputation, for various levels of MCAR-perturbed categorical training features (x-axis). For
ANNs, prediction intervals are obtained from the standard deviation of test set errors of ANNs
trained with different convergences (Heskes 1997). For random forests and decision trees,
prediction intervals follow from the variation created by varying the maximum depth of the
decision trees, and for random forests, the number of trees and decision rule for the number of
features to consider when looking for the best split.
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of ANNs against decision tree and random forest classifiers trained on
datasets with one-hot encoded or imputed data, across different levels of
MCAR-perturbed training data. Our results are comparable to the state-of-
the-art on the Adult dataset using an ANNs classifier, k-NN imputation, and
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Figure 2. Error rates on the CVRs test set with (bottom) and without (top) missing data
imputation. See footnotes for Figure 1.
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MCAR data-perturbation. k-NN imputation likely performs well in this case
because it is an implicit modeling method that does not assume the under-
lying missing data mechanism. This result is in line with Batista and Monard
(2003), who find k-NN imputation can outperform explicit modeling meth-
ods for supervised learning tasks.

We conclude from the results that the performance of the classifiers and
imputation strategies generally depend on the nature and proportion of
missing data. For the Adult dataset, ANNs trained on imputed data generally
outperform other classifiers and imputation methods across different ratios
of perturbed data, while classifiers trained on one-hot encoded data perform
very poorly on perturbed training data.

The results of the present study show that perturbation can help increase
predictive accuracy for imputed models, but not one-hot encoded models.
Future work can identify the conditions under which missing-data perturba-
tion can improve prediction accuracy. Interesting extensions of this paper
include evaluating the benefits of using missing-data perturbation over more
popular regularization techniques such as dropout training (Hinton et al.
2012; Maaten et al. 2013; Wang and Manning 2013).

Notes

1. Li et al. (2004) propose a hot deck imputation method based on fuzzy k-means.
2. When imputing the missing data with mode replacement, we use the training set mode.

We also use the training set mean and standard deviation to standardize test set
features.
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