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ABSTRACT

Real-time prediction of tidal level is of great significance for
activities of human beings in the fields of marine and coastal
engineering. However, the disturbance factors of tidal level are
very intricate, which deteriorate the tidal prediction accuracy. To
improve the accuracy of real-time tidal-level prediction, a mod-
ular real-time tidal-level prediction approach is proposed based
on the grey group method of data handling (Grey-GMDH)
neural network. The modular model is composed of astronom-
ical tide parts caused by celestial bodies’ movement and the
nonastronomical tide parts caused by various meteorological
and other environmental factors. The GMDH is a polynomial
network that is commonly used in prediction and pattern recog-
nition. However, GMDH is sensitive to nondeterministic time
series, which would result in low accuracy of prediction. In this
study, the grey prediction theory is introduced into the GMDH
prediction model to alleviate the unfavorable effects of uncer-
tainty caused by various environmental factors and the adverse
effects caused thereby on the prediction accuracy. In this study
of tidal prediction, the Grey-GMDH model is used to predict the
nonastronomical tide parts, whereas the conventional harmonic
analysis model is used to predict the astronomical tide parts.
The final prediction result is achieved by combining the estima-
tion outputs of the harmonious analysis model and the Grey-
GMDH model. Measured tidal-level data of San Diego tidal
station is selected as the testing database. Simulation and
experimental results confirm that the proposed approach can
achieve real-time predictions for tidal level with high accuracy,
satisfactory convergence and stability.

Introduction

Tidal-level prediction is an indispensable activity for the design of coastal
constructions such as wharves and harbors. Real-time tidal prediction also
has a great influence on the decision-making procedures of vessels or drilling
platforms in offshore areas. Accurate real-time tidal prediction is particularly
crucial in operation scheduling, such as making navigating plan of ships
through shallow water or bridge. Under these conditions, decision, taking
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into account the under-keel clearance or the water depth under bridge, can be
adopted based on the hourly tidal-level forecast. Furthermore, tidal informa-
tion is a significant influential factor for navigation scheduling of a platform’s
operation planning. Consequently, the accurate real-time forecasting of tidal
level in the fields of coastal and ocean engineering is an issue of concern.

In recent years, the most popular technique in tidal research is the
harmonic analysis method, in which the components of tides can be
expressed as the superposition of several sinusoidal constituents determined
by the harmonic analysis method. In addition, the harmonic analysis method
remains the basis for long-term tidal-level prediction (Lee 2006; Lee and Jeng
2002). Nevertheless, there are some drawbacks in practical applications of the
harmonic analysis method. First of all, the necessary components of harmo-
nic analysis need to be determined by a considerably long period of tidal-
level records. However, long-term tidal-level records may not be obtained
owing to the high cost of the in situ monitoring data. Second, the only
consideration of this prediction model is the effects of celestial bodies and
coastal topography like the framework of the coastline and the profile of the
seabed. Consequently, it cannot express the complicated time-varying
meteorological impacts on tide, which are produced by meteorological ele-
ments like sea wind, atmospheric temperature and pressure, sea ice, sea
rainfall, etc. In addition, there are some other time-varying factors such as
river discharge and fluctuation, which will also have an impact on tidal level
at the estuary region. Consequently, the prediction accuracy of the harmonic
analysis model is quite low under some circumstances.

Nowadays, with the rapid development of artificial intelligence technology
such as neural network and fuzzy logic, the artificial intelligence technology has
been widely used in the fields of engineering computation and simulation (Yin
and Wang 2013; Yin et al. 2014) due to its strong nonlinear mapping and self-
learning ability. Artificial neural networks (ANNs) have proved to be of versatile
utility in engineering optimization and computation fields (Haykin 1999), owing
to their excellent abilities of nonlinear mapping, generalization and self-learning.
The neural network based on error back propagation (BP) is the most popular
and practical neural network, and it is widely used in tide forecasting (Lee 2004,
2008). Variable-structure radial basis function neural network constructed by
sequential learning is proposed for tidal prediction (Yin, Zou, and Xu 2013).
One-day-ahead tide prediction of the west coast of India New Mangalore tide
station was carried out using neural networks (Jain and Deo 2007); the estima-
tion of monthly mean significant wave heights using ANN and regression
methods (Giinaydin 2008) and the development of a regional neural network
were proposed for coastal water-level predictions (Huang et al. 2003).

The group method of data handling (GMDH) neural network (Farlow 1981,
1984) is also referred to as polynomial neural network. GMDH network is a
kind of learning model based on heuristic self-organizing theory, which was
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proposed by AG Ivakhnenko in 1967. It is a kind of local feedforward network
commonly used in prediction (Kordnaeij et al. 2015; Najafzadeh, Barani, and
Azamathulla 2014, 2013). Unlike the fixed structure of traditional error BP
neural network, the GMDH network structure is variable, which is constantly
changing in the process of simulation training. The structure of the GMDH
prediction model is determined according to the input and output informa-
tion. The relationship between the dependent variable and the independent
variable is obtained based on the regression method. The main mechanism of
GMDH is to build an analytical function in a feedforward network based on a
quadratic node transfer function, whose coefficients are obtained using the
regression method combined with emulation of the self-organizing approach
(Farlow 1984). Actually, the model parameters of the GMDH network are
estimated utilizing the least square algorithm. Hwang (2006) used a fuzzy
GMDH-type neural network model for the prediction of mobile communica-
tion, and it was proved that the proposed method was suitable for the predic-
tion of complex systems. Srinivasan (2008) used the GMDH network for
energy demand prediction, and it was significantly more precise and less
labor-intensive than conventional time-series and regression-based models.
The GMDH model is the optimal simplified model that possesses higher
accuracy and simpler structure than conventional neural network models
(Ketabchi et al. 2010). However, the conventional GMDH network is sensitive
to the nondeterministic time series, which deteriorate its prediction accuracy.

To overcome these drawbacks and facilitate its practical applications, a
modular Grey-GMDH prediction model is proposed to improve the perfor-
mance of the conventional GMDH network. Modularization is the process of
dividing the system into several modules with different attributes when
analyzing and solving a specific problem (Knoernschild 2012). The tidal
component is divided into astronomical tide parts and nonastronomical
tide parts. The harmonic analysis method (Vladimir 2004) is used to predict
the astronomical tidal parts, whereas the Grey-GMDH forecasting method is
used to predict the nonastronomical tidal parts with strong nonlinearity. The
proposed method combines the advantages of the two methods: the harmo-
nic analysis model can achieve long-term, stable astronomical tide forecast
and the Grey-GMDH model can complete the nonlinear fitting and predic-
tion of tides with high accuracy. In this study, the grey predicting model is
introduced in the GMDH tidal prediction model, which will weaken the
impacts of various uncertain environmental factors. In addition, the correla-
tion analysis is utilized to analyze the time series of the tidal-level data for
determining the input dimensions of the Grey-GMDH prediction model; the
final prediction result is achieved by combining the estimation outputs of the
harmonious analysis model and the Grey-GMDH model. The observed tidal-
level data of San Diego tidal station is selected as the testing database. The
results of the simulation have confirmed that the proposed novel method can
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provide predictions for real-time tidal level with high accuracy, excellent
convergence and satisfactory stability.

The rest of the paper is organized as follows. A brief description about
harmonic analysis is given in section 2; the basic principle and structure of
the Grey-GMDH model is represented in section 3; the modular prediction
model is provided in section 4; simulation results and detailed discussions are
displayed in section 5; and conclusions are provided in the last section.

Harmonic analysis

Theoretically explaining, tides are periodic vertical movements of the sea
level. The origin of tide is the tide-generating force of celestial bodies in
space, which is a combination of the centrifugal and gravitational forces
between the earth and the celestial bodies.

The most commonly and widely utilized approach is the harmonic analysis
method in practice. The harmonic analysis approach decomposes the com-
plicated tides into a couple of periodic constituents, each of which is gener-
ated by a hypothetical celestial body. At moment ¢, for a definite tide station
with the height of tide h(t), it can be expressed as

h(t) = Hy + kaHk cos[oxt + (vo + u); — g/ (1)
k=1

where H, is the mean sea level, f; is the node factor, oy is the angular
velocity of tidal components, (vo + u); is the initial phase of the tidal
components, Hy, is the amplitude of tidal components, g is the time interval
from the moments the celestial body passes the upper transit meridian to
the moments when high water occurs and Hy and g are the harmonic
analysis constants.

In practical theory, the quantity of tidal components may be quite huge;
fortunately, most of the tidal components can be ignored because of their
smaller amplitude (Hy) and longer period (gx). In actual calculation, Eq. (1)
can be rewritten as

n

h(t) = Hy + Z hy cos(wit — ¢y.) (2)

k=1

where Hj is the mean sea level, n is the number of components, Ay is the
amplitudes of tidal components, wy is the angular velocity of tidal compo-
nents and ¢ is the initial phase of the tidal components.

The harmonic analysis method is widely used in tide prediction because of
its stable prediction performance and simple calculation process. Although
the harmonic analysis method is extensively used for tidal-level prediction,
the drawback of the conventional harmonic analysis method is quite
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apparent: the harmonic constant of this approach requires a large number of
measured tidal data, which is a laborious and time-consuming process.

GMDH model
GMDH neural network

GMDH is a technology based on evolutionary computation, and it is based
on the dimension of the input variables, the structure of the network model
and the network parameters to carry out a series of evolution, heredity, and
variation and selection operations (Ivakhnenko 1971, Ivakhnenko and
Ivakhnenko 2000). The typical training GMDH model is shown in Figure 1.

When establishing the GMDH network model, the sample data is divided
into two parts: training data set and checking data set. For the establishment
of the predictive control model, the sample data is divided into training sets,
checking sets and predicting sets. One of the remarkable features of the
GMDH model is the utilization of external information. The training data
set is used for modeling (parameter estimation and structure synthesis),
whereas the information of the checking data set is used only when selecting
the optimal complexity model. The basic theory of the GMDH model is that
the sample data that influences the system are used to generate a number of
candidate models, and an optimal complexity model is selected from the
candidate model sets based on the external criterion. The multilayer algo-
rithm of the GMDH algorithm is introduced in this study, and the main
implementation step of the multilayer algorithm includes two important
links: the utilization of internal criteria for establishing a competitive model

. Dead neuron
O living neuron

input layer intermediate layer output layer

Figure 1. Structure of the GMDH neural network.
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(intermediate candidate model) and the utilization of the external criteria
(selection criterion) for selecting the optimal complexity model. The external
criterion of the GMDH algorithm is a quite significant section; taking into
account the particularity of the prediction and control (Mozaffari et al. 2016;
Najafzadeh, Barani, and Hessami-Kermani 2015) of the tidal level, the root
mean square error (RMSE) is chosen as the standard of the external criterion.

According to the theory of GMDH network, a GMDH model is repre-
sented as a large number of neurons in which different pairs of neurons in
each layer are joined by a quadratic polynomial and thus generates new
neurons in the new layer. For the sake of generating output value y for a
certain input vector X = (x3, X,, X3 ... X,,) as close as possible to its real output
value y, the basic definition of the identification problem of the model is to
figure out a function f that can be substituted for the realistic function f
approximately. Consequently, for a given set of measured data in a multi-
input and single-output model:

yi = f(xj1, X2, X3, - - Xjn) = 1,2,3 ... M) (3)

The GMDH network can be trained to predict output value y for any
certain input vector X = (xﬂ, Xjo Xj3. .. xjn), that is,

¥ =1 (%51, %2, %35+ -, xn) (j = 1,2,3... M) @

The simulation purpose of the whole network model is to ensure that the
predictive value y can be more close to the measured value y; the square of
the differences between the measured data and the predicted data is utilized
to determine the GMDH neural network, that is,

M
Z [f/(xilaxiZaxBa “ ) Xin) —y,-]z — min (5)
i=1

Generally, the relationship between the input and output variables of the
GMDH network can be represented by a complex discrete form of the
Volterra functional series (Ivakhnenko 1971):

m m m m m

y=ap+ Z aix; + Z Z aiixixj + Z Z Z aixixixy + - (6)
— — e

i= i j=1 i=1 j=1 k=1

where (6) is the Kolmogorov-Gabor polynomial (Ivakhnenko 1971). X = (x;,
X2 X3 ... Xpp) represents the input vector, y represents the output variable and
the number of input variable m is set to 4, which is based on the correlation
analysis of the tidal-level data in this study. The transfer functions of the
network, which connects neurons in different layers, can be represented in
the form of

y/ _ G(Xi, xj) = ao + a1x; + axXj + asx;x; + a4xl~2 + 615ij (7)
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The coefficients a;, which are initialized to random number at the begin-
ning of the program in (7), are calculated by the least squares regression
means (Amanifard et al. 2008). In the fundamental formation of the GMDH
algorithm, the linear regression polynomial that optimal fits the measure-
ments (y;) in the form of (6) is established by utilizing all the possibilities of
two input variables in the total of »n input variables. Several optimal neurons
that meet the chosen criterion (external criterion) between the outputs of the
first layer are selected as the input into the second layer with all combina-
tions of different pairs of them. The new generation (layer) of the network is
obtained by the combination of the lower-order polynomials at each genera-
tion (layer) by employing the GMDH algorithm. The basic steps of the self-
organizing algorithm are briefly summarized as follows: establishing the
input and associated output sample data for the GMDH prediction model
and dividing them into learning and checking data sets, determining the
dimension of input data and computing coefficients of the regression poly-
nomial for each pair of input variables (x; x;) together with the correspond-
ing output variables in the learning data sets by using the least square
method. Calculating the m(m - 1)/2 high-order variables of the initial
input vector X = (x5, x5 X3 ... xp7) to evaluate the output y, m is the
dimension of the input variables. The learning algorithm produced a large
number of new variables (neurons): z1, zp, .. ., Zim, (m; = m;_y(m;_; — 1)/2) in
the previous generation (layer), where m; denotes the dimension of input
variables for the I generation (layer). Each of these new generated variables is
evaluated by judging which variable is the optimal estimation of the depen-
dent variable. The columns of the new generated variable z; are sorted. A
random critical value R is determined by model analysis. Each column of z;
with RMSE; > R is eliminated, where j is the number of the network layer.
The remaining z; variables are selected as the input variables for the next new
generation (layer). This procedure is repeated until the introduction of new
neurons cannot induce an obvious enhancement in the approximation cap-
abilities of the model or the stop criterion is set in advance (Chao, Ferreira,
and Liu 1988; Widrow and Lehr 1990).

Grey-GMDH neural network

The theory of the grey system was proposed by professor Deng (Deng 1986). The
grey system model is based on the principle of “Grey Box” with small samples
and incomplete information, which implies that the available information is not
sufficient. The grey model can reveal the inherent regularity of a raw data
sequence by using the data-mining and analysis methods. Practical results
have proved the effectiveness of the Grey prediction model (GPM) in processing
poor information with limited amount of data (Ma and Liu 2015; Tien 2009).
Generally speaking, GPM consists of three essential processes: (1) accumulated
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generation operation (AGO) by accumulating the raw time-series data; (2) grey
prediction based on the accumulated newfound time-series data in GPM, where
the GPM is replaced by the GMDH model in this study, respectively; and (3)
inverse accumulated generation operation (IAGO), where the time series in
GPM, which is substituted for the Grey-GMDH model, is converted back to its
original form to realize the predicted result. The GPM (1, 1), with a single
variable, is normally the most commonly used forecasting model. The brief
description of the prototype of GPM (1, 1) is as follows:

X(O) = (x(o)(l)ax(()) <2)a o -,x(0)<i), o 'ax(O)(n)) (7)

where x¥(i) represents the time-series database in primary time series x'* at
time step of i, and the bracketed number in the superscript stands for the
order of the GPM.

A newfound time series x") is generated by the AGO process:

A = (0 (1),x(2), - -, 2D (@), - - -, xV () (8)
k

where xV(k) = Zx(o)(i)-
i=1

By means of the AGO procedure, the preceding asymmetric and disor-
dered database could become exponentially preformed so that the system
performance can be characterized by the implementation of the differential
equation. The time-response solution for forecast is subsequently completed
by solving the differential equation:

dxD
1 —
7 + ax b 9)
(1) (0) bl —ak b
X(k+1)=|x (1)—ae —1—; (10)

Eq. (10) is the solution of Eq. (9).
Finally, the prediction result is achieved by the IAGO process:

é:| (e—ak o e—a(k—l)) (11)

O +1)=xVk+1) —xV(k) = [x<°)(1) -

where a and b are completed by means of the linear least squares (LLS)
method. XV(k + 1) and ¥ (k) are the prediction results of *P(k + 1) and xV
(k); and ¥O(k + 1) is the prediction result of O + 1).

The schematic of the GMDH model based on the grey prediction system is
shown in Figure 2.

Modular tide prediction model

Depending on the origin of the tide, tidal-level prediction can be divided into
two parts: astronomical tide parts caused by celestial bodies’ movement and
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sample AGO | GgllDtH | 1aco prediction
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Figure 2. Schematic of Grey-GMDH prediction systems.

nonastronomical tide parts caused by various meteorological factors such as
sea wind and sea wave. Astronomical tide, which is mainly caused by the
tidal force of celestial bodies, has a notable time-varying characteristic,
whereas nonastronomical tide shows strong nonlinearity. In this study, the
conventional harmonic analysis method is implemented to predict the astro-
nomical tide section, and the residual tide section is predicted by the Grey-
GMDH prediction model. The residual section is a complicated association
caused by the topography as well as hydrological and meteorological factors
such as sea wind, sea wave and seawater temperature. The Grey-GMDH
prediction model could fit the residual tide section, which shows obvious
nonlinear performances accurately. The final prediction model is composed
of the harmonic prediction model and the Grey-GMDH prediction model.
The composition and the training process of the final modular prediction
model are shown in Figure 3.

In the modular prediction model, the observed tidal data y(¢), y(¢t-1),...
y(t-q) is set as the input of the model. Here yy, yu(t-1), ..., yu(t-q) is the
tidal prediction value obtained by the harmonic prediction method and
Yr» Yr(t-1), ..., yr(t-q) is the difference between y and yy. Finally, the
ultimate modular prediction model is the combination of the harmonic
prediction model and the Grey-GMDH prediction model. Eventually, the
predictive tidal level y(t + 1) is the association of yy(¢# + 1) and ygr(t + 1).

@
1)

y-g+D) ||
Yt-q)

Measured tidal data

IR(Y)
YR(t-1)

Qﬁ IR(tg+1)

IR(t-q)

model

—{ yr(t+1)

Grey-GMDH
I+ ]

yu(®)
yu(t-1)

st

by Harmonic
|

yu(t-g+1) [
yutt-g) RG]

Predicted tid

|

Figure 3. Flow chart of the modular tidal prediction model.
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Simulation of the tidal-level prediction
Tidal data analysis

The concept of correlation analysis (Young and Shellswell 1972) originates from
signal processing and analysis; correlation analysis reflects how the correlation
between any two values in a time series is changed over time. In addition,
autocorrelation analysis depicts the correlation between neighboring variables
of the time series. Autocorrelation function and partial autocorrelation function
are an effective way of analyzing and dealing with complex time series (Nezli and
Li 2003; Zhao et al. 2014): the autocorrelation function describes the relationship
between the adjacent variables of time series, whereas the partial correlation
function eliminates the influence of other intermediate variables in time series. In
tidal data analysis, the time series of the tidal level is affected by many variable
factors that are difficult to be measured by nautical equipment, thereby making it
difficult to calculate the contribution to tidal level. Consequently, the correlation
analysis method is utilized to analyze the correlation between the time series of
tidal level and then to determine the input dimension of the Grey-GMDH
prediction model. In this study, a correlation value of 0.5 is selected as a reference
standard to determine the input dimension, and the analysis results are shown in
Figures 4 and 5. Figure 4 shows that the autocorrelation coefficient of the tidal-
level time-series data is tailing. Meanwhile, the autocorrelation coefficient
reaches gradually closer to zero and tends to be stable. Furthermore, Figure 5
shows that the partial autocorrelation coefficient is four-order truncation. To
summarize, the correlation analysis demonstrates that the time-series value from
t-1 to t-4 moment has a significant relevance with the time-series value of
moment ¢, which can be selected as the input of the modular prediction model.

Experimental measurements of San Diego tidal station over the duration from
1 January 00:00 GMT, 2015, to 7 September 23:00 GMT, 2015, with a time
resolution of 1 h, with a total of 6000 pairs of observed tidal-level data, are
chosen as the testing and training database. The modular model accomplishes

Autocorrelation value

-0.8

50 100 150 200
Time delay (h)

Figure 4. Autocorrelation analysis of tidal data.
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Time delay (h)

Figure 5. Partial autocorrelation analysis of tidal data.

initialization training stage by employing the advanced 4200 samples of mea-
sured tidal data, which includes 70% of the training data and 30% of the
checking data, and the residual sections are supplied to the modular prediction
model for a one-step-ahead prediction. The linear least square algorithm is
chosen as the internal criterion of the prediction model, which is the generation
principle of the intermediate candidate model. Moreover, the RMSE is chosen as
the standard of the external criterion. All the measured tidal-level data applied in
this study can be obtained from the website http://co-ops.nos.noaa.gov/.

In this study, the structure of the prediction model, which includes one input
layer of four-input-nodes, four hidden layers and one output layer of one-output-
nodes, is set to total six layers; the maximum number of neurons in each inter-
mediate layer is limited to 25 in order to prevent the GMDH from tending to
produce an exceedingly complicated network when it comes to highly nonlinear
models owning to its limited general structure (quadratic two-variable polynomial)
(Park et al. 2004).

For a further comprehensive comparison of the simulation result, the RMSE,
the mean square error (MSE), the mean absolute error (MAE), the standard
deviation (SD) and the mean error (ME) are introduced as an evaluation
indicator to evaluate the performance of the proposed prediction model. The
concepts of RMSE, MSE, MAE, SD and ME are described in Egs. (12)-(16):

(12)

(13)
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1 n
MAE = —Z abs(yk — Vi) (14)
Ni=

SD = \/%Z (v — )’ (15)
k=1

ME:%Z()’:« — J) (16)
=1

where 7 is the number of sample data, y represents the arithmetic mean value
of the observed data, y, represents the value of the observation and yj
denotes the value of prediction.

Tidal-level prediction using the harmonic analysis model

The tidal-level prediction of San Diego tidal station using the harmonic
analysis prediction method is illustrated in Figure 7 together with the
observed ones, which are exhibited on the website of NOAA, with a time
resolution of 1 hour.

It can be clearly seen from Figure 7 that the predicted value of the tidal
level falls below the observation value from the beginning to the end, which
explains that the tidal level could be affected by unexpected factors of
environmental changes, such as the rough sea or heavy sea-surface wind.
In addition, there exists a comparatively large sustained deviation with the
correlation coefficient (CC) of 0.9973, which is illustrated in Figure 8. The
sustained offset between the predicted and observed tidal levels reaches up to
1 foot, and the prediction error of the harmonic analysis model is in the

Figure 6. Location map of the tidal-level station on the California coast of the United
States. (Source: http://co-ops.nos.noaa.gov/)
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Figure 7. Simulation results using the harmonic analysis method. (one-step-ahead prediction of
San Diego tidal station)
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Figure 8. Scatter diagram of the measured and predicted results using the harmonic method.

range of [-0.1,1], which can be seen from the error diagram in Figure 7. In
addition, the distribution center of the prediction error of the prediction
model is centered on about 0.4 feet, instead of tending to zero, and the
harmonic prediction model also has a larger prediction error, which can be
seen from the error histogram analysis in Figure 7.
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Figure 8 is the scatter diagram of the measured and predicted results by
using the harmonic analysis method. The red line in Figure 8 denotes the
measured value of the tidal level and the green mark in Figure 8 represents
the predicted value of the tidal level using the harmonic analysis method.

Tidal-level prediction using the GMDH model

Figure 9 is the simulation diagram of the GMDH model. It can be analyzed
from Figure 9 that the fitting consistency between the GMDH prediction
value and the measured value is obviously better than the harmonic analysis
model; the prediction error of the GMDH model is in the range of [-0.4,0.4],
which can be seen from the error diagram in Figure 9. Furthermore, the
distribution center of the prediction error of the GMDH model is basically
concentrated in about 0. Nevertheless, the error distribution of the GMDH
model is not uniform, and the error fluctuation range is relatively larger,
which can be seen from the error histogram analysis in Figure 9.

Tidal-level prediction using the modular GMDH model

It can be apparently recognized from Figure 10 that the prediction values
produced by the modular GMDH prediction method coincide well with the
observed tidal data than the harmonic method or the GMDH method. The
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Figure 9. Simulation results using the GMDH model. (one-step-ahead prediction of San Diego
tidal station)
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Figure 10. Simulation results using the modular GMDH model. (one-step-ahead prediction of
San Diego tidal station)

modular prediction model consists of two sections: the harmonic analysis
prediction model, which takes into consideration the celestial bodies’ move-
ment, and the GMDH prediction model, which considers the residual sec-
tions. Consequently, the prediction results of the tidal level are more accurate
than merely utilizing the harmonic analysis method or the GMDH method.
Furthermore, the prediction error of the modular GMDH prediction model
is in the range of [-0.3, 0.3], which can be seen from the error diagram in
Figure 10. It illustrates that the prediction accuracy is significantly improved
compared with the direct prediction model of GMDH and the harmonic
prediction model. Moreover, the distribution of the error of the modular
model gradually tends to be uniform and smooth, the error distribution
center is almost 0 and the error distribution is symmetrical with respect to
the distribution center.

Tidal-level prediction using the Modular Grey-GMDH model

The 1-h-head tidal-level forecasting results using the Modular Grey-GMDH
method are represented in Figure 11, together with the real observations. It
can be noticed from the error diagram in Figure 11 that there is no large
continuous offset between the forecasted values and the measured ones. In
addition, the forecasted results locate around the actual ones conformably,
which can also be obtained from Figure 12. The closeness between the
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Figure 11. Simulation results using the modular Grey-GMDH model. (one-step-ahead prediction
of San Diego tidal station)
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Figure 12. Scatter diagram of the measured and predicted results by the modular Grey-GMDH
model.

observed tidal values and the forecasted ones can be further validated by the
corresponding higher CC of 0.9993, as indicated in Figure 12. In addition,
the prediction error of the Modular Grey-GMDH model is in the range of [-
0.2, 0.2], which can be seen from the error diagram in Figure 11. Moreover,
the error distribution center almost completely tends to 0, the error
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distribution is more uniform, the center is almost completely symmetrical
with respect to the error distribution center and the error fluctuation range is
significantly reduced compared to the previous three models, which is illu-
strated from the error histogram analysis in Figure 11. In conclusion, this
proposed model significantly improves the prediction accuracy of tidal level.

Figure 12 is the scatter diagram of the measured and predicted results by
using the modular Grey-GMDH method, in which the red line denotes the
measured value of tidal level and the green mark represents the predicted
value of tidal level by using the modular Grey-GMDH method.

To further quantitatively validate the predictive performance of the mod-
ular Grey-GMDH prediction model proposed in this study, comparative
simulations are conducted by using methods of harmonic analysis, GMDH
and modular GMDH. Detailed simulation results based on the same simula-
tion environment, the same simulation parameters and the same measured
tidal data of San Diego tidal station are shown in Table 1.

It is clearly seen from Table 1 that the corresponding error value of the
modular Grey-GMDH prediction model is the smallest one of the four
prediction models. As a consequence, the experimental results demonstrate
that the proposed modular GMDH model has a higher forecasting accuracy
for tidal-level prediction.

Different time spans of time-series prediction will affect the magnitude of
prediction error. To further compare the accuracy of the conventional GMDH
model and the modular Grey-GMDH model in the prediction of tidal level,
simulation experiments of different time spans are carried out based on the same
observed tidal-level data. Simulation results are represented in Tables 2 and 3.

It can be noticed from Table 2 that the RMSEs of tidal-level prediction
using the conventional GMDH method are 0.2793 and 0.4508 for 1-hour-
ahead and 2-hours-ahead forecasting, respectively. In addition, the values

Table 1. Tidal-level simulation results of San Diego tidal station.

Model RMSE(ft) MSE(ft) Mean error(ft) Standard deviation(ft)
Harmonic analysis 0.4583 0.2100 0.4388 0.1322
GMDH 0.1216 0.0147 0.0143 0.1208
Modular GMDH 0.0906 0.0082 0.0006 0.0908
Modular Grey-GMDH 0.0638 0.0040 0.0050 0.0636

Table 2. Tidal prediction results for San Diego using the conventional GMDH model.

Prediction time RMSE MAE MSE  Mean error Standard deviation Times
span (ft) (ft) (ft) (ft) (ft) CC  Steps (s)

1-h-ahead 0.2793 0.2195 0.0780 0.0543 0.2741 0.9868 1800 1.6443
2-h-ahead 0.4508 0.3570 0.2033 0.1432 0.4276 0.9678 1800 2.0528
3-h-ahead 0.7199 0.5626 0.5182 0.3428 0.6332 0.9292 1800 1.9866
6-h-ahead 1.0116 0.8145 1.0233 0.5754 0.8323 0.8720 1800 1.9870
12-h-ahead 1.0370 0.8357 1.0753 0.5798 0.8600 0.8617 1800 1.9778
24-h-ahead 0.3175 0.2504 0.1008 0.0173 0.3171 0.9822 1800 2.2911

48-h-ahead 0.5917 0.4723 0.3501 0.0493 0.5898 0.9377 1800 2.0225
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Table 3. Tidal prediction results for San Diego using the modular prediction model.

Prediction time RMSE MAE MSE ~ Mean error Standard deviation Times
span (ft) (ft) (ft) (ft) (ft) CC  Steps (s)

1-h-ahead 0.0926 0.0086 0.0085 0.0121 0.0918 0.9985 1800 1.6859
2-h-ahead 0.1019 0.0812 0.0104 0.0161 0.1006 0.9984 1800 2.1701
3-h-ahead 0.1076 0.0862 0.0116 0.0197 0.1058 0.9984 1800 2.0221
6-h-ahead 0.1134 0.0906 0.0129 0.0228 0.1111 0.9985 1800 2.0910
12-h-ahead 0.1053 0.0838 0.0111 0.0247 0.1024 0.9982 1800 2.0963
24-h-ahead 0.0912 0.0716 0.0083 0.0211 0.0887 0.9986 1800 2.0955
48-h-ahead 0.1209 0.0930 0.0146 0.0356 0.1156 0.9977 1800 2.0187

of RMSE are in the range of 0.2793 and 1.0370 for 3 or more hours-ahead
predictions. Furthermore, the RMSE values of tidal-level prediction by
using the modular Grey-GMDH method for 1-hour-ahead and 2-hours-
ahead predictions are 0.0926 and 0.1019, respectively, which can be
obtained from Table 3, and the values of RMSE are in the range of
0.0926 and 0.1209 for 3 or more hours-ahead forecasting, which illustrates
that the proposed novel modular prediction method is able to provide
stable and reliable prediction results for tidal-level forecast with satisfac-
tory prediction accuracy. In addition, with the increase of the forecasting
time interval, the proposed novel method also exhibits higher forecasting
accuracy compared with the conventional GMDH method, which can also
be obtained from the corresponding error value illustrated in Table 2 and
Table 3. Moreover, the time consumption of the whole simulation process
has no obvious increase, which validates the high efficiency of the pro-
posed approach.

Performance of tidal-level prediction

To validate the prediction accuracy, universality and generalization ability for
longer time scope tidal-level prediction, simulation experiments were carried
out based on the observed tidal-level data of six different tidal stations
located on the west coast of California in America. Simulation results of
multistep tidal prediction based on the same simulation environment and the
same simulation parameters are shown in Table 4. The time duration of the
observed tidal-level data of the six tidal stations is the same as that of the San
Diego tidal station. It is revealed in Table 4 that the proposed approach can
achieve stable and accurate tidal predictions for the observed tidal data of the
six different tidal stations, which are shown in Figure 6. Furthermore, the
simulation results also illustrate that the proposed modular prediction
method is able to provide stable and reliable prediction results for tidal-
level forecast with satisfactory prediction accuracy. It is also noticed that the
number of network layers of the GMDH optimal complex model is set in
advance and the same network parameters are used for tidal prediction of
different tidal stations in this study. As a consequence, an optimal method
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Table 4. Tidal prediction results using the modular prediction model based on the Grey-GMDH
model.

Prediction RMSE MAE MSE  Mean error Standard Times

Tidal station span(h) (ft) (ft) (ft) (ft) deviation (ft) CC  Steps  (s)
Port San 1 0.0925 0.0739 0.0086 6.4733e-04 0.0925 0.9980 6000 6.6730
Luis 12 0.1160 0.0931 0.0135 6.4282e-04 0.1160 0.9972 6000 6.5464
24 0.1145 0.0909 0.0131 -0.0023 0.1145 0.9977 6000 6.5078
48 0.1360 0.1072 0.0185 0.0011 0.1360 0.9964 6000 6.5019
Qil Platform 1 0.0713 0.0564 0.0051 0.0037 0.0712 0.9991 6000 5.0594
Harvest 12 0.1214 0.0968 0.0147 0.0098 0.1210 0.9974 6000 6.4995
24 0.0950 0.0737 0.0090 0.0082 0.0947 0.9988 6000 6.5068
48 0.1218 0.0960 0.0148 0.0121 0.1212 0.9978 6000 6.5432

LA jolly 1 0.0601 0.0477 0.0036 -0.0026 0.0601 0.9993 6000 6.6511
12 0.0927 0.0746 0.0086 -0.0078 0.0924 0.9985 6000 6.5352
24 0.0840 0.0670 0.0071 -0.0045 0.0839 0.9988 6000 6.6129
48 0.1135 0.0904 0.0129 -0.0105 0.1130 0.9974 6000 6.5923
Los Angeles 1 0.0722 0.0572 0.0052 0.0038 0.0721 0.9989 6000 6.5510
12 0.0572 0.0445 0.0033 0.0018 0.0571 0.9992 6000 5.1688
24 0.0964 0.0760 0.0093 0.0076 0.0961 0.9983 6000 6.5643
48 0.1184 0.0920 0.0140 0.0173 0.1171 0.9971 6000 5.0855
Santa 1 0.1008 0.0788 0.0102 -0.0013 0.1008 0.9979 6000 6.5954
Barbara 12 0.1210 0.0953 0.0146 -0.0017 0.1210 0.9971 6000 6.6003
24 0.1186 0.0934 0.0141 -0.0018 0.1186 0.9972 6000 6.5698
48 0.1315 0.1038 0.0173 -0.0014 0.1315 0.9970 6000 5.1939
Santa 1 0.0769 0.0609 0.0059 0.0028 0.0768 0.9987 6000 6.5839
Monica 12 0.1026 0.0817 0.0105 0.0075 0.1023 0.9981 6000 6.5542
24 0.0970 0.0771 0.0094 0.0045 0.0969 0.9983 6000 6.5200
48 0.1155 0.0916 0.0133 0.0125 0.1148 0.9975 6000 5.1360

for self-selection of the network layers and further adjustment of the network
parameters should enhance the performance of the proposed approach.

Conclusion

A modular tidal-level prediction model is proposed based on the combina-
tion of the harmonic analysis method and the Grey-GMDH method, which
takes advantages of both of them. The harmonic analysis model and the
Grey-GMDH model denote the effects of celestial bodies and meteorological
elements, respectively. The effectiveness and feasibility of the proposed
model are demonstrated by the experimental results of real-time tidal-level
prediction. Furthermore, the experimental results also confirm that the
proposed model can produce accurate predictions with high operating
speed. In this study, simulation and experiment results indicate that the
proposed modular Grey-GMDH model could be a suitable tool that can be
utilized for real-time tidal-level prediction.
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