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Abstract
Neutron computed tomography (NCT), a 3D non-destructive characterization technique, is
carried out at nuclear reactor or spallation neutron source-based user facilities. Because neutrons
are not severely attenuated by heavy elements and are sensitive to light elements like hydrogen,
neutron radiography and computed tomography offer a complementary contrast to x-ray CT
conducted at a synchrotron user facility. However, compared to synchrotron x-ray CT, the
acquisition time for an NCT scan can be orders of magnitude higher due to lower source flux, low
detector efficiency and the need to collect a large number of projection images for a high-quality
reconstruction when using conventional algorithms. As a result of the long scan times for NCT, the
number and type of experiments that can be conducted at a user facility is severely restricted.
Recently, several deep convolutional neural network (DCNN) based algorithms have been
introduced in the context of accelerating CT scans that can enable high quality reconstructions
from sparse-view data. In this paper, we introduce DCNN algorithms to obtain high-quality
reconstructions from sparse-view and low signal-to-noise ratio NCT data-sets thereby enabling
accelerated scans. Our method is based on the supervised learning strategy of training a DCNN to
map a low-quality reconstruction from sparse-view data to a higher quality reconstruction.
Specifically, we evaluate the performance of two popular DCNN architectures—one based on
using patches for training and the other on using the full images for training. We observe that both
the DCNN architectures offer improvements in performance over classical multi-layer perceptron
as well as conventional CT reconstruction algorithms. Our results illustrate that the DCNN can be
a powerful tool to obtain high-quality NCT reconstructions from sparse-view data thereby
enabling accelerated NCT scans for increasing user-facility throughput or enabling high-resolution
time-resolved NCT scans.
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1. Introduction

Neutron computed tomography (NCT) is a powerful tool for non-destructive 3D characterization of samples
relevant to various sciences [1, 2]. In order to conduct an NCT scan, the sample is ‘illuminated’ with an
almost parallel beam of neutrons and a collection of projection images are measured by rotating the sample
about a single axis. After standard pre-processing, the collection of projection images are processed using an
algorithm in order to obtain the 3D reconstruction. NCT is usually conducted at specialized scientific user
facilities that rely on a nuclear reactor or an accelerator-based pulsed neutron source to generate the neutron
beam. While synchrotron-based x-rays are the most widely used sources for CT scans at various user
facilities, neutrons can penetrate heavy elements such as metals and are sensitive to certain light elements
such as hydrogen, thereby offering a complementary 3D imaging capability to x-rays. However, due to the
limitations of the source flux, detection efficiency of the detectors for certain neutron energy ranges [3], or
the need to scan large parts, a typical NCT scan take a significantly longer time to measure compared to a
typical synchrotron-based x-ray CT scan. For example, an attenuation-based CT scan using current limited
flux source and detector technology can take on the order of several hours (at reactors) or even days (at
spallation sources, multiple CT scans are collected at different neutron energies simultaneously) to complete
in order to produce reconstructions of sufficient quality when conventional tomographic reconstruction
algorithms are used. In summary, while NCT is a unique technique offered at neutron user facilities, it is
time-consuming to conduct and hence limits the number of samples (overall throughput) that can be
measured in a given time frame.

Over the last few decades, the topic of accelerating CT scans for various applications has been widely
researched especially from the point of view of designing new algorithms. The most straight-forward
approaches to accelerate the acquisitions are to either decrease the exposure time per projection image
(resulting in low signal-to-noise ratio (SNR) data) or to decrease the number of projection images
(sparse-view data) acquired in the course of a scan. However, the first generation of CT reconstructions
relied almost exclusively on the filtered back-projection (FBP) algorithm and its Fourier space variants [4];
these can produce reconstructions with significant artifacts from low SNR or sparse-view data. The
advantage of the FBP algorithm is that it can rapidly produce a reconstruction from large data sets
encountered at user facilities and is easy to implement. In order to overcome the drawbacks of the FBP
method, regularized inversion methods such as model-based image reconstruction (MBIR) [5] algorithms
have been developed over the past few decades. MBIR algorithms involve casting the reconstruction as
minimizing a cost function that balances a data-fidelity term (that accounts for a physics-based model for the
imaging system, and a noise model for the detector) and a regularization term (that is based on a ‘prior
model’ for the underlying sample to be imaged). MBIR techniques have demonstrated that it is possible to
obtain high-quality CT reconstructions from noisy and/or sparse-view data for a wide range of applications
including medical x-ray CT [6], ultrasound CT [7], magnetic resonance imaging (MRI) [8], synchrotron
based x-ray CT [9, 10], electron-tomography [11] and NCT [12–14]. Despite of the commercial success of
MBIR type techniques in medical imaging [15], they have not been adopted in the user-facilities community
for routine experiments. Indeed, a cursory literature survey of research publications from CT beam-lines
over the last five years indicates that beam-lines are still collecting a large number of projection images and
processing their data using the FBP (and related) algorithms despite of several research publications
developing MBIR for user facilities applications including for NCT [9, 13, 16]. We surmise that this is
because of a mixture of factors including—familiarity with the FBP algorithm (inertia to change); the high
computational cost of running MBIR methods (that may require investing in significant computing
resources to obtain reconstructions is reasonable amounts of time) and the challenge of choosing
appropriate regularization/prior-model parameters for each experiment. In summary, while new CT
reconstruction algorithms have been developed to enable potential acceleration of the measurement process,
these techniques have not been widely adopted for NCT.

The past few years have seen an explosion of research on using deep neural-networks (DNNs) for
improving CT systems by allowing faster scans (thus reducing dose), and improving the noise-resolution
performance [17, 18] by enabling reconstructions from challenging sparse-view and noisy data sets. These
methods typically rely on the availability of a sufficient amount of training data; and use this data to train a
neural network to produce high-quality 3D reconstructions from sparse-view and noisy measurements.
Broadly, the DNN-based algorithms can be classified into iterative and non-iterative techniques. The
non-iterative techniques are designed so that they can obtain a reconstruction quality comparable to or better
than baseline MBIR algorithms but with the computational complexity that is closer to the FBP algorithm;
and hence, can be computed rapidly using modern parallel computing platforms like graphics processing
units (GPUs). The iterative reconstruction techniques that rely on DNNs are more robust and are typically
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geared towards improving image quality over baseline MBIR methods while the computational complexity
may be of the same order. For the purposes of this manuscript, we focus on the non-iterative DNN based
reconstruction algorithms because of their simplicity, appealing computational complexity and promising
performance in several applications. The neural network—filtered back projection (NN-FBP) [19], a shallow
neural network, was developed to non-linearly combine several baseline low-quality FBP reconstructions
obtained by adjusting the filter parameters and map it to a high-quality reconstruction. In contrast to the
NN-FBP technique, a host of DNN methods (that have dramatically larger numbers of parameters) have
been developed that effectively map a low quality image/reconstruction to a higher quality target. A U-Net
[20] type architecture was developed in [21] to map from a low-quality sparse-view 2D tomographic
reconstruction to a high-quality reconstruction. The filtered back projection convolutional neural network
(FBPConvNet) [22] also uses a similar architecture to map between a low-quality sparse-view tomographic
reconstruction to a full-view reconstruction and was applied to medical x-ray CT and MRI data. The work in
[23] makes use of a network to de-noise the acquired low-dose data and map it on to an image that resembles
a high-dose acquisition; followed by the use of the FBP algorithm to produce the 3D reconstruction for
synchrotron-based x-ray CT (SXCT). The 2.5D artificial intelligence CT (AI-CT) [24–27], a neural network
that exploits the ‘3D’ structure of the problem, was developed to approximate a high-quality reconstruction
(e.g. MBIR) starting from a noisy FBP reconstruction for medical and industrial x-ray tomography.
TomoGAN [28], another neural network architecture for 3D tomographic denoising, uses a generative
adversarial network (GAN) in order to obtain a high-quality output from a low-quality input image and was
applied to SXCT. Another popular network to obtain high-quality images from sparse-view and noisy data is
the mixed-scale dense network (MSD-Net) [29, 30] that is based on learning various dilated convolutional
filters that are then combined to map from a low-quality to a high-quality 3D volume. One of the attractive
features of MSD-Net compared to most other DNNs, is that it has dramatically fewer parameters to train and
has been shown to be effective for SXCT when we do not have large training databases; a scenario typical at
other user facility based CT applications. Despite the rapid development of neural network-based algorithms
for accelerating CT acquisition, there have been very few efforts adapting them to NCT. One note-worthy
work is that of [31], which uses the NN-FBP network to map a sparse-view data set to a higher-quality
reconstruction. However, that method is based on a simple multi-layer perceptron and does not exploit the
3D structure of the tomographic reconstructions leaving open the scope to further improve image quality by
the use of DNNs. In summary, there are several promising neural network-based approaches developed to
accelerate tomographic acquisitions mainly at synchrotron-based user facilities and they have not been
adapted to NCT. Furthermore, there has not been a study of the performance of different DNN architectures
on the reconstruction quality that can be obtained for such large-scale tomographic applications.

In this paper, we propose to use deep convolutional neural network (DCNN)-based non-iterative
algorithms to obtain high-quality reconstructions from sparse-view and noisy NCT data sets in order to
accelerate the acquisition and enable more efficient use of the allocated beam time. Our method uses the
popular approach of training a neural-network (NN) with pairs of low-quality and high-quality
reconstructions from a reference sample, and then applying the trained network to suppress artifacts in
subsequent reconstructions obtained from sparse-view data sets. Hence the method effectively involves the
design of a data-driven artifact-suppression NN that is specifically adapted to the type of samples being
scanned for the experiment. Specifically, we explore two powerful ‘3D’ artifact removal networks—(a) the
2.5D AI-CT [24–26] network that is trained on image/volumetric patches; and (b) the MSD-Net [29, 30]
that is trained on whole images—in order to study the impact of different networks on the reconstruction
quality. We empirically evaluate (a) how the networks perform when the projection data is significantly
sub-sampled and (b) the ability of these trained networks to generalize to different measurement scenarios,
i.e. how the image quality is impacted when the network trained for one sub-sampling factor is applied to
measurements from a different sub-sampling factor. We apply the DNN-based algorithms to two scenarios:
(a) a NCT study of a collection of four meteorite rocks, (b) a time-resolved CT scan of a plant-root system;
and demonstrate that it is possible to obtain high-quality reconstructions using the DCNN-based algorithm
while being able to accelerate acquisitions time by about a factor of 4 compared to the traditional approaches
for our data sets. We emphasize that the possible acceleration factor depends on the sample, the SNR ratio
and the end goal of the experiment. We also compare the DCNN-based approach to the simpler
NN-FBP[31]algorithm that has been used for NCT, observing that the proposed approaches improve
reconstruction quality and generalize better compared to NN-FBP, at the cost of a higher amount of training
time for the same amount of training data.

The rest of this paper is organized as follows. In section 2, we describe the proposed approach including
the details of the two DCNN architectures used. In section 3, we present extensive results from experimental
data followed by conclusions in section 4.
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Figure 1. Illustration of the deep neural network based non-iterative reconstruction framework. The framework involves a two
stage approach in which a reference scan is performed in order to train a neural network, after which the trained network can be
applied to reconstruct subsequent samples. During the inference stage, the first step is to invert the data using a baseline
reconstruction algorithm followed by a deep neural network to suppress artifacts and noise that are present in the slices due to
sparse sampling and the low signal-to-noise ratio of the measurements.

2. Deep-neural networks for accelerated neutron CT

The conventional approach for an NCT experiment at a user-facility involves determining the number of CT
scans to be performed, finding the number of projection images to be measured for each scan, and then
performing the measurements. The number of projection images and exposure settings for each scan are
chosen so that when conventional reconstruction algorithms are applied to the data, they result in a
sufficiently high-quality result to meet the end user’s need. Often, the number of projection images is
determined based on the available beam time and so that the number is close to the Nyquist-rate for the
given sample [32]. The Nyquist-rate for high-resolution detectors is large (typically over 1000) and using this
criterion results in only a few CT scans being performed in a given amount of time because of the need to
collect a large number of projection images for each scan. In contrast to the conventional approach, we
propose a measurement framework as shown in figure 1 that is applicable when users want to measure a
collection of similar samples or are performing time-resolved NCT studies. Specifically, we propose to make
a conventional measurement on a sub-set of the samples, and using this data to obtain pairs of low-quality
and high-quality reconstructions which are then used to train a neural network that learns a mapping
between the low-quality and high-quality reconstructions (training stage in figure 1). The reference pairs
needed to train the neural networks can be obtained either by sub-sampling the acquired projection data or
acquiring the data at different dose rates (exposure times). The extent to which the data can be
sub-sampled/acquired at a low dose depends on the sample itself and the end-task the user desires from the
NCT study. Once the neural network has been trained, the rest of the CT scans can be made at the
sub-sampled rate thereby significantly reducing the overall measurement time for the experiment while
ensuring similar outcomes for the end user. In summary, the proposed machine-learning driven approach
offers a fundamentally different framework to how experiments are planned and performed at NCT facilities
by tightly integrating the details of the specific measurement along with algorithms to reduce the overall
measurement time leading to a more productive beam time by enabling more samples to be measured.

Specifically, we use the supervised learning approach of training deep neural networks to suppress
artifacts that occur when applying standard reconstruction algorithms to sparse-view tomographic data.
Once the training data is available, the neural network is trained using the pairs of low-quality/high-quality
3D reconstructions to determine the network parameters by minimizing a loss-function of the form

c(θ;y,x) =
1

N

N∑
i=1

l(yi, fθ(xi)), (1)
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Figure 2. The schematic of the 2.5D AI-CT network. In order to suppress noise and artifacts in a single slice of the low-quality 3D
input(potentially from a FBP reconstruction), the network operates on a collection of adjacent slices (five in the above figure) and
produces the predicted noise in the center slice. The final output is obtained by subtracting the predicted noise from the noisy
input slice.

with respect to θ, where yi is the high-quality target, xi is the noisy input, fθ represents the neural network
with parameters θ, N is the total number of training examples and l(·) is a penalty function on the difference
between the output of the neural network and the reference. Once the optimal θ is determined, the
reconstructed output from a new data set is determined by

x̂← fθ̂(xin), (2)

where xin is the low-quality input image and θ̂ is the optimal parameter set from the neural network
training.

Contrary to instruments designed for very specific applications like medical x-ray CT, MRI, medical
ultrasound, etc user facilities scientific tomography instruments are used to scan a wide variety of samples.
As a result there are not sufficient ‘previous’ scans that can be used to train a machine learning algorithm and
merely apply the trained model to every new sample scanned at these facilities to produce a reliable
reconstruction. Instead, we foresee DNN based methods being useful when the users are interested in
scanning a collection of similar samples, or to measure gradual changes in a sample using time-resolved CT.
In such a context, the core method involves scanning one representative sample and preparing a pair of
low-quality and high-quality reconstructions which can potentially take a long duration. Once such a pair(s)
of 3D volumes are available, we can train a ‘3D’ DCNN to suppress artifacts and be able to map from the
low-quality to high-quality output. Because we may only have a single low-quality/high-quality pair of 3D
reconstructions available in a typical user-facility based CT application, it is not feasible to train a fully 3D
CNN that would exploit the non-local correlations across the entire volume. Such a network would require
several examples of 3D volumetric pairs, along with a non-local network with a large number of parameters.
Instead, we use a technique of training ‘2.5D’ deep neural networks that are trained to remove noise and
artifacts from a single slice of the 3D volume by using a few adjacent slices in 3D (see figure 2). The trained
network can then be applied to the rest of the sample which are acquired using an accelerated sparse-view
scanning protocol. Thus the overall time required to scan the collection will be significantly decreased
especially if the users are interested in scanning a large collection of samples. Alternately, in the case of
time-resolved NCT, this can translate to users being able to rapidly acquire data and see a high-quality
reconstruction in near-real time because of DCNNs can be easily implemented using commodity GPU
platforms.

In this paper we focus on using two popular deep convolutional neural network architectures for fθ in
equation (1). The first is the 2.5D AI-CT network [24] and the second is the mixed-scale dense network
(MSD-Net) [30]. We choose these two networks for NCT because they have been demonstrated to perform
well for other applications, have a smaller number of training parameters compared to large networks like
the U-Net, generative adversarial networks (GAN), etc and hence, are easier to train. Next, we summarize the
key components of these two networks.

2.1. 2.5D AI-CT
The 2.5D AI-CT network that we use in this work, was developed by Ziabari et al [24–26] inspired by deep
residual denoiser [33]. This deep neural network is designed to learn the non-linear mapping between pairs
of low/high-quality reconstruction of 3D volumes by exploiting the correlations that exist in volumetric data.
The term 2.5D was used in [24] because unlike traditional image de-noisers based on deep neural networks,
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Figure 3. A schematic showing the core components of the MSD-Net. The input data is convolved with a set of dilated filters
(3× 3 in the schematic) in order to process features from a large receptive field. The output of each of these stages is combined so
the size of the feature map grows along the channel dimension as we proceed through the layers. In the last stage, the output of the
final feature map is combined to produce a single image using 1× 1 convolutions (dashed lines).

this network considers neighboring slices from a 3D volume in-order to de-noise a single slice. The
experiments in [24] using this architecture showed that this type of a network had significantly reduced
computational complexity compared to a fully 3D convolutional neural network while enabling similar
performance.

Figure 2 shows a schematic of the 2.5D AI-CT network. The aim of this network is to find a non-linear
mapping that transforms a low-quality input volume (say from the FBP algorithm) into an accurate
approximation of the higher quality reconstruction of the volume by processing the input volume one chunk
(collection of slices) at a time. In order to train the network, a higher quality CT reconstruction for training
the network can be obtained from a FBP reconstruction of data measured using a longer scan time (high
SNR), or a dense set of projection images, or by using a sophisticated reconstruction algorithm such as
model-based iterative reconstruction (MBIR) on a sparse-view data set.

The 2.5D AI-CT network we propose to use in this work consists of 17 layers. The convolution kernel in
each layer has the form (3× 3)×Ni×No, corresponding to a (3× 3) convolution kernel with N i input and
No output channels. The number of input channels in the first layer was set to 5, which means each slice and
4 neighboring slices are the input to the network. The first layer applies 64 convolutional filter kernels
followed by rectified linear units (ReLU) to form 64 output channels. Therefore, layer one’s kernel has the
form (3× 3)× 5× 64. Layers 2 to 16 apply a kernel of size (3× 3)× 64× 64 and generate 64 output
channels from the 64 input channels. Each convolution is followed by a batch normalization and ReLU
[34, 35]. The last layer applies a (3× 3)× 64× 1 kernel to generate a single output residual image. For this
network architecture, the 2.5D AI-CT network has a total of 559 361 trainable parameters. In conclusion, the
yi in equation (1) is a vector of representing the residual output error for the ith training sample, xi is a vector
representing the noisy input accounting for the corresponding input slice along with a set of adjacent slices
and θ corresponds to all the trainable parameters of the 2.5D AI-CT network.

2.2. MSD-Net
The MSD-Net, developed by Pelt and Sethian [30], is an image-to-image convolutional network that has
exhibited good performance across a variety of imaging tasks including noise and artifact suppression for
accelerated synchrotron x-ray CT [29]. The MSD-Net architecture repeatedly filters the inputs using dilated
convolutions, i.e. filters that have a large receptive field and hence are able to capture multi-scale and
non-local structures effectively (see figure 3). The size of the ‘feature maps’ through the network is the same
as that of the input image along the row and column dimension, with the size growing along the channel
dimension. In each layer, the input is filtered by a set of dilated convolutions and the output is concatenated
with its input and fed to the next layer, as in a conventional DenseNet [36]. Thus, the tuneable parameters of
this network are only the coefficients of the dilated convolutions and the number of layers. The central
advantage of the MSD-Net is that it is easy to train since it has a very small number of parameters compared
to several popular deep learning architectures with similar receptive fields. For example, an MSD-Net with

6



Mach. Learn.: Sci. Technol. 2 (2021) 025031 S V Venkatakrishnan et al

100 layers, 10 dilations and 3× 3 convolutions has approximately 50000 parameters, about an order of
magnitude smaller than the 2.5D AI-CT network. In contrast to the 2.5D AI-CT network, the MSD-Net can
be trained on the entire image thereby allowing the network to learn global features like streaks that occur
due to sparse-view reconstructions. We use standard rotation and flipping operations in order to augment
the limited training data available in the NCT application. Similarly to the 2.5D AI-CT network, we set the
number of input slices to 5, which means each slice and 4 neighboring slices are the input to the network. In
conclusion, the yi in equation (1) is a vector representing the entire target image, xi is a vector representing
the noisy input for the corresponding slice along with a set of adjacent slices and θ corresponds to all the
parameters of the MSD-Net.

3. Experimental results

We compare the performance of the DCNN-based algorithms for two sets of NCT experiments. In the first
scenario, the goal is to image a collection of similar samples (meteorite rocks) and to do so by reducing the
total acquisition time. In the second scenario, the goal is to improve the reconstruction quality of
time-resolved NCT data sets which have been acquired using a sparse set of projection images in order to
visualize the changes in the sample as a function of time. We compare the results of the proposed DCNN
techniques to a standard post-processing algorithm based on total-variation (TV) denoising [37–39] as well
as a simpler neural network approach, the NN-FBP [19], that has been proposed for accelerated neutron
tomography. The regularization parameter of the TV algorithm is manually adjusted so that the residual
noise in the final reconstruction is similar to those of the DCNN approaches. Specifically, we adjust the
regularization values so that the standard deviation of the noise in a uniform region of the sample is similar
to that from the deep neural network approach. The NN-FBP method is trained in a ‘point-wise’ fashion, i.e.
xi in equation (1) corresponds to a vector of reconstructed voxel values using a collection of filter parameters
of the FBP algorithm. For this paper, we set the number of hidden layers of NN-FBP to 4. The number of
pixels used to train the NN-FBP algorithm is set to 100 000. In contrast to NN-FBP, the DCNNmethods take
into account a large neighborhood around the voxel to be de-noised because of the presence of convolution
operators. For each of the experiments, the data was pre-processed using a median filter to suppress ‘gamma
hits’, followed by tilt-axis correction and a stripe-removal filter was applied to the data in order to suppress
ring artifacts in the reconstruction. All pre-processing routines were performed using the TomoPy tool-box
[40] and the reconstructions were performed using the ASTRA [41, 42] and pyMBIR library [43]. For the
NN-FBP and MSD-Net we use the publicly available software from the first author’s GitHub page
(https://github.com/dmpelt). The images in the results section are best viewed on a screen with the ability to
zoom in to best evaluate the qualitative improvements in image performance.

In the case of 2.5D AI-CT, training on large volumetric data sets encountered in user-facility applications
(of the order of 1000× 1000× 1000 voxels or larger) can be computationally expensive if we provide the
entire image as input to the network. Furthermore, such strategy results in a severe scarcity of training data
since we typically only have a single reference volume available and a large number of parameters to train.
Therefore, we divide the input images to smaller patches and train the network to learn the features from
those patches by typically augmenting the training set using standard techniques such as flipping and
rotation. In this study, we use a patch size of 256× 256 with a stride of 64. In addition, in certain samples
measured at user-facilities, the reconstruction can be unbalanced, i.e. the object only fills a fraction of the
entire volume and most of the voxels are from the background. Therefore, several generated patches will
include only background pixels and have no information about the objects of interest. Such patches may
decrease the training accuracy of the 2.5D AI-CT network; and hence, in order to avoid them, we remove all
the patches that have a mean value smaller than a threshold value determined by using the mean value of all
the patches. The generated patches are then randomly augmented during the training process using
rotation/flip operations in order to increase the number of training samples for the neural network. We use
the ADAM algorithm [44] with a learning rate of 0.001, β1= 0.9, and β2= 0.99. The learning rate is
decreased by a factor of 2X every 70 epochs, or if the validation loss increases for three consecutive epochs,
whichever happens first.

For training the MSD-Net we use a 100 layer network with 10 dilations with filters of size 3× 3. In
contrast to the 2.5D AI-CT network, we do not have to generate or prune patches for training the MSD-Net
since the entire high-resolution image is provided as an input. However, we augment the training data sets by
rotating and flipping the image chunks after normalizing the inputs to have zero mean and unit standard
deviation. The network is trained using a batch size of 1, by using the ADAMmethod [44] with parameters
β1= 0.9, β2= 0.99 and learning rate set to 0.001.
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Figure 4. Top row: (a) Picture of the four meteorites—Parnallee, Murchison, MIL 090010, MIL 090001—to be scanned using
NCT (picture courtesy: Genevieve Martin/ORNL). Bottom row: (b) 3D attenuation-based rendering of one of the meteorite
sample (Murchison) reconstructed using all the acquired data (1162 projection images). (c, d) Single cross section from the FBP
reconstruction using 1

4
the projection data and the full set of projection data, respectively. The reconstruction using 1

4
of the views

are noisy and have strong streak artifacts (see arrows) compared to the full-view reconstruction. The goal of training the CNN is
to suppress such noise and artifacts in the sparse-view reconstruction while preserving the details of the sample.

3.1. Collection of similar samples
A collection of four meteorite samples—three carbonaceous chondrites (two Miller Range meteorites
MIL090001 and MIL090010, and Murchison) and one ordinary chondrite (Parnallee)—were measured at
the CG1-D beam-line at the High Flux Isotope Reactor (HFIR) at ORNL over the course of two sessions
separated by a couple of weeks (see figure 4). For the meteorite CT scans, the aperture was set to 1.6 mm (for
the Murchison and Parnallee meteorites) and 8.2 mm (for the MIL 090010 and 090001 meteorites), yielding
a collimation ratio of 400 and 800, respectively. Each CT scan was performed using a 16-bit Andor iKon-L
936 charge-couple device (CCD) model with a 2048 pixels× 2048 pixels chip, equipped with a 100µm thick
6LiF/ZnS scintillator. For the MIL meteorites, a total of 1162 projections were measured by rotating the
sample from 0 to 360 degrees, with a angular step of 0.31 degrees (to ensure unique projections were
acquired after reaching 180 degrees). The acquisition time per projection image was approximately 63 s,
resulting in a total scan time of nearly 23 h including the measurement of open-beam, dark-current images
for normalization, and counting for the rotation stage movements and the transfer of each radiograph from
the CCD to the data server via USB 2.0. For the Murchison and the Parnallee meteorites, the CT scan was
also performed over an angular range of 360 degrees, with a rotation angle of 0.31 degrees and each
radiograph took 40 s to measure. By opening up the aperture, the CT scan was measured in about 14 h. The
difference in acquisition parameters was motivated by the available time at the beam line, which is often the
case at neutron user facilities and reinforces the importance of the availability of advanced reconstruction
algorithms. In each case, the width of the sample on the detector was about 800 pixels in the horizontal
direction, for which the Nyquist view sampling rate is 800∗π/2≈ 1256 projection images. Thus the acquired
number of projection images is close to the Nyquist rate for this sample. In order to train the neural
networks, we use the data from one meteorite (Murchison) and retro-actively sub-sample it in order to
obtain the sparse-view data set. We cropped the original data to use only 1280 pixels along the horizontal
dimension for reconstruction. The sparse-view and full-view data are then reconstructed using the FBP
algorithm and serve as the training pairs for the neural networks (see figure 4). The parameters for the FBP
algorithm are adjusted manually to attain a reasonable visual quality of the reconstruction. We use 400 slices
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Figure 5. Results of applying the neural networks trained using the Murchison data to reconstruct data corresponding to the
second sample (Parnallee) that has been sub-sampled by a factor of 4. The first row shows a single cross section from the 3D
volume corresponding to the Parnallee sample. The second row shows a zoomed-in section from the original image to better
show details. The third row is the error image between the reconstruction and the reference output that is obtained by applying
the FBP algorithm to the full-view data. The fourth row shows a line profile through the displayed cross section (dotted line in top
left slice). Notice that the DCNN-based approaches use 1

4
the data and produce qualitatively comparable results to the reference

FBP reconstruction. In comparison to the post-processing total-variation method, the DCNN-based approaches preserve the
details better. The MSD-Net and 2.5D AI-CT show a similar performance highlighting the strength of the DCNN compared to the
simpler NN-FBP algorithm which has large errors in some regions of the reconstruction. However, note that the AI-CT method
still has some residual streaks away from the sample (see arrow in the error image) compared to the MSD-Net approach.

to train the networks and 112 slices for validation. Once the networks are trained, we use them to reconstruct
the data from the other three meteorites by retro-actively sub-sampling the acquired data. In each case, we
use the full-set of data in order to produce the reference FBP reconstruction that serves as the ‘ground-truth’
to which we compare the output of our proposed approach. In order to evaluate the output of the different
algorithms we use the visual quality from a representative cross-section and the normalized root-mean
squared error (NRMSE) to gauge quantitative trends across different algorithms.

Our first set of experiments are done in order to evaluate the performance of the different algorithms by
training them to suppress artifacts from sparse-view FBP reconstructions obtained from different
sub-sampling factors. In each case, we train the networks to map between an FBP reconstruction using a
fraction of the data to the FBP from the full set of projection images. Once the networks have been trained,
we evaluate their performance on multiple test data-sets that have been retro-actively sub-sampled at the
same rate as the training data. We choose sub-sampling factors of 2, 4, 8 and 16 in order to evaluate the
algorithms. Figures 5 and 6 show a single cross-section from the 3D reconstruction of the meteorites using
different algorithms for a sub-sampling factor of 4. Notice that the MSD-Net and the 2.5D AI-CT are able to
significantly suppress streak artifacts and noise which are present in the FBP reconstruction of the
sub-sampled data while preserving the features in the reconstruction. In comparison to the post-processing
TV method (which is ‘waxy’ looking as also evidenced in the line profile in figure 5), the deep neural network
approaches are able to better preserve the texture and details while suppressing artifacts in the
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Figure 6. Results of applying the neural networks trained using one meteorite sample to data that been sub-sampled by a factor of
4 corresponding to the third (MIL 090010) and fourth samples (MIL 090001). The first row of each panel shows a single cross
section from the 3D volume. The second row shows a zoomed-in section from the original image to better show details. The third
row is the error image between the reconstruction and the reference output. Notice that the DCNN-based approaches using 1

4
the

data produce qualitatively comparable results to the FBP reconstruction which uses all the data. In comparison to the
post-processing total-variation method, the deep convolutional neural network based approaches preserve the details better
(marked with arrows) while suppressing noise and streaks. The MSD-Net and 2.5D AI-CT show similar performance highlighting
the strength of the DNN compared to the simpler NN-FBP algorithm.

reconstructions. This type of artifact suppression is also highlighted by the error images of the difference
between the output of the network and the reference FBP that was obtained by using all the data from the
scans. We were not able to observe any significant visual differences between the MSD-Net and the 2.5D
AI-CT output in the central region containing the meteorites despite of the limited availability of training
data. However, the MSD-Net was better able to suppress some of the larger streaks (see arrow in figure 5)
which we attribute to the fact that the AI-CT is a trained in a patch-wise manner as compared to the
MSD-Net which is trained using entire images. We also observed that the DCNNmethods (MSD-Net and
AI-CT) improved the reconstructions compared to the simpler NN-FBP algorithm (see also table 1). While
the NN-FBP method resulted in a higher NRMSE than the post-processing TV algorithm, we visually
observe that it preserves the texture better than the TV-based method. We carried out similar experiments
for sub-sampling factors of 8 and 16 and observed similar trends (see figures 7 and 8). However, we also
noticed that all the methods started suppressing some of the finer details (marked with arrows in figures 7
and 8) in the samples compared to the ground-truth reconstructions (i.e. FBP applied to the full set of
projection images).

Next, we evaluate the generalization performance of the trained neural network algorithms on the same
data sets but by using different sub-sampling factor. In each case, we use the networks that have been trained
to effectively reconstruct data that has been sub-sampled by a factor of 4. This was done in order to evaluate
the performance of the neural network based approaches when the test data does not strictly adhere to the
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Table 1. Comparison of the normalized root mean squared error (NRMSE) as a percentage of maximum value of the reconstruction
with respect to the reference reconstruction for various scenarios for the three test samples. In each case, the neural networks were
trained using the same sub-sampling factor as that used for the test data sets.

Paranallee

Sub-samp. Inp. TV NN-FBP MSD-Net AI-CT

16 2.67 1.04 1.20 0.91 0.93
8 1.59 0.81 0.93 0.71 0.71
4 1.05 0.72 0.79 0.56 0.58
2 0.51 0.58 0.69 0.51 0.49

MIL090010

Sub-samp. Inp. TV NN-FBP MSD-Net AI-CT

16 2.95 0.93 1.41 0.90 0.91
8 1.88 0.81 0.92 0.81 .80
4 1.22 0.74 0.82 0.68 .71
2 0.64 0.63 0.68 0.61 0.57

MIL090001

Sub-samp. Inp. TV NN-FBP MSD-Net AI-CT

16 2.58 0.85 1.36 0.73 0.76
8 1.56 0.64 0.68 0.64 0.64
4 1.00 0.57 0.61 0.53 0.61
2 0.49 0.47 0.53 0.46 0.45

Figure 7. Results of applying the trained neural networks using a sub-sampling factor of 8 from one meteorite sample
(Murchison) to the second (Paranelle), third (MIL 090010) and fourth (MIL 090001) meteorite for which the data has been
similarly sub-sampled. The first row of each panel shows a single cross section from the 3D volume. The second row of each panel
shows a zoomed-in section from the original image to better show details. Notice that the DCNN-based approaches produce
qualitatively superior results to the other approaches by suppressing noise and streak artifacts. Specifically, the MSD-Net and 2.5D
AI-CT show a similar performance highlighting the strength of the DNN compared to the simpler NN-FBP algorithm. However,
some of the finer structures in the sample are smoothed out at due to the large sub-sampling factor used (see arrows).
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Figure 8. Results of applying the neural networks trained using a sub-sampling factor of 16 from one meteorite sample
(Murchison) to the second (Paranelle), third (MIL 090010) and fourth samples (MIL 090001) for which the data has been
similarly sub-sampled. The first row of each panel shows a single cross section from the 3D volume. The second row shows a
zoomed-in section from the original image to better show details. Notice that the DCNN-based approaches are able to suppress
streak artifacts and noise compared to the TV method and the NN-FBP algorithm. However, we observe residual streaks and loss
of some details in all the reconstructions for this sub-sampling rate.

accelerated scanning protocols of the training set. Figures 9 and 10 show a single reconstructed cross section
from the three meteorite samples when using sub-sampling factors of 2 and 8. We observe that while the
MSD-Net and AI-CT approaches are able to suppress the streaks and noise in the reconstructions, especially
when the sub-sampling factor is smaller than the training set. They are not as effective (see table 2) when the
sub-sampling factors are higher that what the original networks were trained for. This trend can also be
inferred from the quantitative results in table 2 and by comparing them with the results in table 1. Finally, we
also observed that the DCNN-based approaches are significantly superior to the NN-FBP method, which
produces strong-artifacts (exacerbated due to scaling errors) when applied to out-of-distribution data.

Finally, we provide details of the approximate run time of the different methods presented here. We
emphasize that the goal is not to make a precise comparison of the speed of each method, because each of the
algorithms/software are not optimized for a given compute platform (for example: the publicly available
implementation of MSD-Net does not run on multiple GPUs and loads the data one set of slices at a time
from the disk). Our goal is to provide the reader with an estimate of the time required to train and test the
data for a particular compute platform. Table 3 shows the run time for the different neural network-based
approaches for the training scenario where we use a sub-sampling factor of 4. Notice that the NN-FBP
algorithm can be rapidly trained compared to the DCNN approaches because of the simplicity of its
architecture and the small number of trainable parameters. In contrast, the DCNNmethods (MSD-Net and
AI-CT) took approximately 1 day to train which is comparable to the measurement time for the training
data. However, the inference time of all the methods for the reconstruction of a single meteorite is
dramatically faster than the training time. Thus the DCNNmethods trade off performance, and
generalization with training and inference speed compared to the NN-FBP algorithm. While we have not
used the MBIR method as a comparison for this data set because of the availability of a high-quality FBP
reference, our implementation of MBIR [12] for a 512× 1280× 1280 size volume took approximately 6.7 h
using 150 iterations, which is significantly higher than those of the neural network based approaches if we
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Figure 9. Visualization of a single cross-section from the reconstructed volume for the same three test meteorites, using a
sub-sampling factor of 2 while the original neural networks were trained using a sub-sampling factor of 4. Despite this mismatch
in the training and test data, the DCNNs (MSD-Net and 2.5D AI-CT) are able to effectively suppress the artifacts and reconstruct
the finer structures (see arrow). We observed that the NN-FBP method produces large scaling errors in the reconstruction,
indicating that it is not very effective in generalizing to the out-of-distribution sampling scenarios (all images are displayed in the
same range).

Figure 10. Visualization of a reconstructed cross-section for the three meteorite samples when using a sub-sampling factor of 8
while the original neural networks were trained using a sub-sampling factor of 4. The MSD-Net and AI-CT are more effective
compared to the NN-FBP (which has large scaling errors) in generalizing to this out-of-distribution test data. However, there are
still residual streaking artifacts (see arrows) in these images compared to thematched training scenario of figure 7, indicating that
while these networks can be used to provide some improvement in performance over the base-line FBP reconstruction, they
perform best when the networks are appropriately trained.

only compare the inference time. While there have been several efforts in accelerating MBIR techniques using
modern parallel computing platforms [45–47], their computational complexity (number of forward and
back-projections, terms associated with regularization parameters etc) is much higher than the proposed
neural network approaches (which consists of a single FBP operation followed by a forward-pass through the
network) when considering a sequence of similar samples to be measured.
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Table 2. Comparison of the normalized root mean squared error (NRMSE) as a percentage of maximum value of the reconstruction
with respect to the reference reconstruction for various scenarios for the three test samples. In each case, the neural networks were
trained using one-fourth of the total number of views and then applied to different sparse sampling scenarios for the test data sets in
order to evaluate generalization of the trained networks to different measurement scenarios.

Parnallee

Sub-samp. Inp. NN-FBP MSD-Net AI-CT

16 2.67 4.39 1.85 1.95
8 1.59 3.19 0.77 0.87
2 0.51 5.43 0.47 0.47

MIL 090010

Sub-samp. Inp. NN-FBP MSD-Net AI-CT

16 2.96 4.27 2.22 2.30
8 1.88 3.03 1.21 1.22
2 0.64 4.97 0.55 0.52

MIL 090001

Sub-samp. Inp. NN-FBP MSD-Net AI-CT

16 2.58 4.50 2.05 2.13
8 1.56 2.96 1.01 1.08
2 0.49 3.81 0.42 0.40

Table 3. Approximate time for training and inference for the different algorithms on volumes of size 512× 1280× 1280 voxels.

Algorithm Train time (h) Compute Test time (min) Compute

NN-FBP 4 CPU onlya 7 CPU onlya

MSD-Net 21 CPU+ 1 GPUa 21 CPU+ 1 GPUa

AI-CT 24 CPU+ 4 GPUb 7 CPU+ 1 GPUa

a Intel(R) Xeon(R) CPUE5-2640 v4 @ 2.40GHz, 40 core, 2X Nvidia P100, 24GB GPU.
b 2X 20-Core Intel Xeon E5-2698 v4 2.2GHz, 6X Tesla V100, 16GB GPU.

Figure 11. Illustration of the data used to train the neural networks. Left panel shows a picture of the plant sample used in the
time-resolved NCT study. The stem is clearly visible emerging from the soil. The two panels to the right shows a single cross
section from the sparse-view FBP and MBIR reconstruction corresponding to the first time-step of the CT scan. Both images
show the stem tissue as a white dot; however, the FBP reconstruction is noisy, the edges of the stem are blurred and there are
strong streak artifacts compared to the MBIR reconstruction because only a sparse subset of projection images were acquired in
order to rapidly image the variations in the plant. The goal of training the CNN is to suppress such noise and artifacts in the
sparse-view FBP reconstruction while preserving the details of the sample.

3.2. Time-resolved neutron CT
The goal of a time-resolved CT scan is to study changes in the sample in 3D as a function of time. Because
the sample is changing, typically only a sparse-set of CT measurements can be made corresponding to a
‘time-step’ before the reconstructions start suffering from significant blur. The state-of-the-art algorithms for
time-resolved CT reconstruction are typically MBIR methods which exploit the spatio-temporal correlations
in the data but can be computationally very expensive [10]. In the context of NCT, there has been recent
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Figure 12. Visualization of a single reconstructed slice produced by different algorithms by applying the trained neural networks
from the first time-step on time-resolved CT data acquired approximately 5.25 h after the start of the scan. The first row shows a
single cross section from the 3D volume. The second row shows a patch from the original image to better show the details. The
third row is the error image between the reconstruction and the reference MBIR output. The fourth row is a single line profile
from the displayed cross section. Notice that the NN based approaches produce qualitatively comparable results to the MBIR
method. In comparison to the post-processing total-variation method, the NN based approaches better preserve the details while
suppressing noise. The MSD-Net and 2.5D AI-CT show a similar performance highlighting the strength of the DCNN compared
to the simpler NN-FBP algorithm.

interest to improve the resolution of time-resolved CT mainly by using new detectors and sources [48, 49]
with standard reconstruction algorithms. Here, we instead propose to acquire the sparse projection data and
use it from one (or a small number) of the time-stepped CT scans and obtain a high-quality reference
reconstruction by using an MBIR method. We can then train a DCNN to map between the low-quality FBP
reconstruction from the sparse-view and low SNR data to the high-quality MBIR reconstruction for that
single/few time-steps. Once this network has been trained, we can then rapidly apply it to all the time-steps
in the scan thereby enabling high-quality real-time feedback to the end-user. The reference scan can also be
obtained ‘offline’ prior to the experiment if the sample can be scanned prior to the time-resolved CT study.

Our experiment involved studying the water uptake through the roots of a mulberry weed plant (Fatoua
villosa (Thunb.) Nakai) using time-resolved NCT (see figure 11). Since neutrons are heavily attenuated by
water, they are an ideal tool to conduct such studies. Prior NCT of plant systems over 13 h followed by FBP
reconstruction clearly revealed plant structure above and below-ground, but such long acquisition time
limits assessment of sub-daily 3D water uptake dynamics, instead relying on 2D radiography [50, 51]. The
plant-soil system consisted of a single plant seedling propagated in pure silica sand within a 2 cm wide square
aluminum cylinder (see figure 11). NCT was done at the HFIR CG-1D neutron imaging beamline using the
ANDOR Zyla scientific Complementary Metal-Oxide Semiconductor (sCMOS) detector with 2560 pixels×
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Figure 13. Visualization of a single reconstructed slice produced by different algorithms by applying the trained neural networks
from the first time-step on time-resolved CT data acquired approximately 10.5 h after the start of the scan. The first row shows a
single cross section from the 3D volume. The second row shows a patch from the original image to better show the details. The
third row is the error image between the reconstruction and the reference MBIR output. The fourth row is a single line profile
from the displayed cross section. Notice that the NN based approaches produce qualitatively comparable results to the MBIR
method. In comparison to the post-processing total-variation method, the NN based approaches better preserve the details while
suppressing noise. The MSD-Net and 2.5D AI-CT show a similar performance highlighting the strength of the DCNN compared
to the simpler NN-FBP algorithm.

2160 pixels equipped with a 100 µm thick 6LiF/ZnS scintillator. A collection of 388 projections were
measured by rotating the sample from 0 to 360 degrees. Each projection was acquired in 10 s and each CT
scan took 1.75 h. This process was repeated for approximately 2 days to obtain a large collection of
projections corresponding to water uptake through the sample. The data from the first ‘time-step’
corresponding to 388 views (about 1.75 h) was used to train the DCNNs by reconstructing the data using
FBP and a base-line MBIR algorithm [12] with the parameters chosen to produce a visually high
reconstruction quality. We use a total of 512 slices splitting them into 400 slices for training and 112 slices for
validation. The trained network is then used to reconstruct the data from other time steps by first obtaining
and low-quality FBP reconstruction and then post-processing the results using the DCNN approach. We
compare the results of the proposed DCNN techniques to a standard post-processing algorithm based on
total-variation denoising as well as a simpler neural network approach, the NN-FBP, that has been proposed
for accelerated neutron tomography.

Figures 12 and 13 shows the output of the different reconstruction algorithms on data from time-step 3
(approximately 5.25 h from the start) and 6 (approximately 10.5 h from the start) from the data set. We note
that all the DCNN approaches are able to suppress artifacts in the base-line FBP method while preserving
details in the reconstruction. The pores in the sample are clearly reconstructed using the proposed DCNN
algorithms compared to the base-line FBP and the simple NN-FBP algorithm, resulting in a quality similar to
the MBIR method but with significantly reduced computational complexity. In this case, we do not again
observe a discernible difference in the qualitative performance between the MSD-Net and the 2.5D AI-CT
networks, suggesting that in despite of having limited training data, the 2.5D AI-CT algorithm can be trained
using standard augmentation techniques to have a similar performance to the MSD-Net. While the DCNNs
are better at preserving details compared the NN-FBP method, the performance of NN-FBP is not
significantly degraded compared to the other algorithms as in the case of the meteorite rocks because of the
higher similarity of the acquisition conditions and the CT reconstructions to the training data. In summary,
we illustrate that it is possible to obtain high-quality reconstructions for high-speed (sparse-view) time
resolved NCT by effectively training DCNNs to remove artifacts from noisy FBP reconstructions.

4. Conclusion

In this paper, we use deep convolutional neural network-based tomographic reconstruction algorithms for
obtaining high-quality reconstructions from sparse-view and low SNR neutron computed tomography data
thereby enabling accelerated scans. In our experiments, we demonstrate that two popular network
architectures—2.5D AI-CT and MSD-Net—could be effectively trained to obtain high-quality
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reconstruction from sparse-view and noisy data. Despite the limited amount of training data available in
NCT applications, we observed that the 2.5D AI-CT method was able to perform similarly to the MSD-Net
that is designed to work well with limited training data. We also observed that compared to a simpler neural
network technique, the use of the convolutional neural networks can result in significant improvements in
performance while also being better at generalization. We demonstrated the utility of our method on two sets
of experiments—one for accelerated neutron tomography of a collection of meteorite samples and the other
for a high-speed time-resolved tomography of a plant system. Our results illustrate that non-iterative deep
convolutional neural network based reconstruction algorithms can lead to an efficient use of precious beam
time at NCT facilities by decreasing measurement time and enabling high-speed experiments leading to a
overall throughput close up to a factor of four for the samples considered in the manuscript. Finally, we
caution that as with any reconstruction algorithm, DCNN-based techniques also have known drawbacks
such as poor generalization and the potential to create/blur features [52]. Hence, while using these
techniques it is important to account for these risk factors that might affect downstream analysis.
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