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ABSTRACT

The load flow solution using optimal power flow algorithm is gaining the importance in
open market for operating the electrical network in optimal way. The optimal power flow is
a power flow problem in which certain controllable variables are adjusted to minimize the
objective function while satisfying the constraints on the physical state variables and
operating limits. Many attempts were made through various algorithmic steps to obtain
the global solution quickly using conventional and evolutionary methods. Evolutionary
methods like Genetic Algorithm with its own advantages finds its own utility in optimal
power flow solutions. Genetic Algorithm is simple to implement but has global
convergence difficulties with slow convergence rate for optimal power flow problems.
This paper presents three algorithms with an effect of selection of control variables on the
convergence of OPF. Different sets of control variables are used to detect their
usefulness in the OPF solutions. Statistical parameter based study is also provided to
visualize the effect of selection of control variables on OPF convergence with solution
time and improved value. Extensive study is provided on IEEE 30 bus system to draw
certain important conclusions.
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1. INTRODUCTION

OPTIMAL POWER FLOW (OPF) is the optimal procedure which minimizes the generating cost
or power loss as a objective function considering the operating constraints of the system.
OPF is helpful for improvement in electrical systems to reduce the electricity prices to the
end consumer and in congestion management [1,2]. Optimal power flow algorithms are
basically categories in two parts i) DC OPF and ii) AC OPF or Security constrained OPF. In
DC OPF the transmission loss is assumed to be zero with the voltages magnitude of buses
tied to 1.0 pu, which in turn linearised the power system load flow equations.

While, security based OPF is complex and detailed mathematical formulation of power flow,
in which the objective function is minimized under the equality and inequality constraints i.e.
security constraints. Considering non-linear nature of power system equations many
algorithms were often used to solve the security based optimal power flow problem.

In solving the OPF problem, method’s categorization is mainly on the objective function used
and search direction used for optimal solution. The mathematical programming are used
such as a Linear programming (LP) [3], nonlinear programming (NLP) [4,5] and the quadratic
programming (QP) [6]. To solve the equality-constrained optimization problems, the Karush–
Kuhn–Tucker (KKT) used a set of nonlinear equations, for solving a Newton-type algorithm.
In Newton OPF [7], the inequality constraints are added as quadratic penalty terms to the
problem objective, multiplied by appropriate penalty multipliers. Interior point (IP) methods
[8] the nonnegative slack variables are used to convert the inequality constraints to equality.
To get the solution which gradually reduces towards the zero, a logarithmic barrier function
of the slack variables is added to the objective function [9].

To solve OPF problem researcher used GA in many approaches such as GA OPF, real
coded GA, Modified Cataclysmic GA, GA Mat power OPF, Simple GA, Hybrid GA. A real-
coded GA chromosome consists of four regions, one for each subset of control variables.
Those subsets are generator-bus voltage magnitudes and angles, synchronous condensers
reactive powers, transformer tap settings, and shunt admittances and then calculate
complex voltages at load-buses. With these voltages, directly Calculate injected power at
each of the generator-buses, regardless of the number of generators at the bus.  The non
uniform mutation parameter is used and set to very high at beginning and low at ending of
process [10]. The modified cataclysmic genetic Algorithm (MCGA) overcomes the traditional
genetic algorithm (GA) shortcomings such as long computational time and easily converge
into global solution and has the optimization process is short. Dynamic node number
optimization method, which reduces every power flow calculation time, thus speeding up the
calculation speed of whole optimization process [11]. A simple genetic algorithm can give a
best result using only simple genetic operations such as proportionate reproduction, simple
mutation, and one-point crossover in binary codes are used [12].  GA Mat power means
Hybrid GA is divided into two parts GA is applied in first part to obtain a near global solution
and in second part Mat power is applied by using the solution from GA as an initial point and
search using gradient information to obtain a solution which is closer to the global solution
The method employs advantage of the GAs which can provide a near global solution at the
beginning. Then Mat powers which can tune the control Variables to obtain the global
solution are applied [13]. Hybrid genetic algorithm (GA) based approach, continuous
variables are designed using real-coded GA and discrete variables are processed as binary
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coded GA. Binary coded GAs decision variables are coded in finite length strings and
exchanging portions of two parent strings easier to implement and visualize. Whereas Real
Coded GA has real parameters can be used intact and crossover and mutation operators
are applied directly to real parameter values. Since the selection operator works with the
fitness value, any selection operator used with binary coded GAs can also be used in real
parameter GAs [14]. In mixed – integer GA the chromosome is the real-coded representation
that contains a mixture of continuous and discrete control variables. Considering the
generation power and bus voltage as continuous variable and desecrate variables as
transformer tap setting and shunt admittance, the length of individuals short, the
computational time can be reduced significantly. Dynamic programming, non-linear
programming, and interior point method are not effective approach to obtain the optimal
solution, because these techniques cannot offer great freedom in objective functions or the
types of constraints that may be used [15]. For fast convergence of algorithm in case of
Evolutionary programming OPF (EP-OPF) the steepest descent method is used of
determining the global optimum solution to the OPF for a range of constraints and objective
functions. The approach used in the EP-OPF is to handle the reactive power limits on all PV
nodes other than the slack node by the conventional method of switching, which is applied
within the load flow stage. When a PV node has been switched to a PQ node, it is no longer
possible to control the voltage at that bus and as a result the algorithm does not adjust the
voltage of a switched PV node [16]. In Enhanced GA (EGA) [17] the control variables and
constraints included in the OPF and switchable shunt devices and transformer taps are
modeled as discrete control variables. Variable binary string length is used for different types
of control variables, keeping the size of GA chromosome short for minimization of
computational time.

After introduction this paper is organized as follows – Section II gives information about GA.
In section III Application of GA in OPF is explained, Section IV deals to the problem
definition, in Section V result of case study is discussed and Section VI summarizes the
conclusion.

2. OPTIMAL POWER FLOW PROBLEM STATEMENT

The optimal power flow is the power flow solution of system in which certain control variables
are adjusted to minimize an objective function while satisfying physical and operating limits
on state and control variable.

The minimum fuel cost problem is stated as

Minimize   
gN

i
giigii cPbPaF 2 $/hr (1)

The above optimization function is subject to

1. Active power balance in the network

0PP),V(P digii  i = 1, 2 ….Nb (2)
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2. Reactive power balance in the network

0QQ),V(Q digii  i=Nv+1, Nv+2 …Nb (3)

3. Security related constraints

a. Limits on real power generation.

max
gigi

min
gi PPP  i= 1, 2... Ng (4)

b. Limits on voltage magnitude

max
ii

min
i VVV  i= Nv+1, Nv+2 …Nb (5)

c. Limits voltage angles

max
ii

min
i  i = 1, 2 ….Nb (6)

4. Functional constrain

a. Limits on reactive power

max
gigi

min
gi QQQ  i = 1, 2 ….Ng (7)

b. Limits on line flow
max

TLPTLP0  (8)

Limits on imaginary power flow

max
TLQTLQ0  (9)

The real power flow equation is





bN

1i
)ijsinijBijcosijG(jViV),V(iP (10)





b
N

1i
))
ij

cos(ijB)ij
sin(ijG(jViV),V(iQ (11)

Let us assume that  uxg , be the set of equality constraints equation given by (2)-(3) can
be arranged as
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  0, uxg (12)

And let  uxh , be the set of inequality constraints and defined as

  0, uxh (13)

Where u is control variable which define the system and govern the evolution of system
from one state to another state, while x is the state variable which describes the behavior
or status of the system on any stage.

Hence in optimal power flow method, the problem is to find a set control variable such that
the total objective function over any stage is minimized subject to set of constraints on
control and state variable.

3. BRIEF INTRODUCTION TO GENETIC ALGORITHM

It is an evolution process based on the theory of survival of the fittest. Evolutionary
Programming seeks the optimal solution by evolving a population of candidate solutions over
a number of generations or iterations. Genetic Algorithm is used for global function/control
optimization. It follow a non-systematic search procedure with diversity of population is an
important concern.

The genetic algorithm works on three basic operators-

 Reproduction
 Cross-over
 Mutation

The first step of any GA is to generate the initial population. A binary string of suitable length
L is associated to each member (individual) of the population. This string usually represents
a solution of the problem. A sampling of this initial population creates an intermediate
population.

Crossover is the primary genetic operator, which explores new regions in the search space.
Crossover is responsible for the structure recombination (information exchange between
mating chromosomes) and is usually applied with high probability (0.5 – 0.9).

Mutation is used both to avoid premature convergence of the population (which may cause
convergence to a local, rather than global, optimum) and to fine-tune the solutions. The
mutation operator has defined by a random bit value change in a chosen string with a low
probability of such change.

The process of genetic algorithm is summarized below.

1. Initialization: Randomly generate a population of chromosomes and evaluate the
fitness of each.

2. Selection: Select chromosomes from population for Re-production based on fitness
values.

3. Crossover: Produce offspring from parents using crossover technique.
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4. Mutation: Perform mutation on offspring.
5. New generation: Replace current population with offspring and evaluate fitness of

each chromosome.

To minimize fitness function is equivalent to getting a maximum fitness value in the
searching process. A chromosome that has lower cost function should be assigned a larger
fitness value. The objective of OPF has to be changed to the maximization of fitness to be
used in the simulated roulette wheel.

Fitness Function 2f1

1
ff


 (14)

Where,

    u )( x,2g2Pu )( x,2h1Pcff (15)

4. PROPOSED ALGORITHMS FOR SOLUTION OF OPF

Generally, solution of optimal power flow is obtained through the adjustment of control
variables u in a specific search direction to obtain the optimal objective function by satisfying
the equality and inequality constraints given in equation (1). Convergence and time for
convergence of the solution depends upon the technique and selections of the control and
state variables. Conventionally, the voltages of buses with (minimum and maximum
magnitude limits) are considered as the control variables, which are varied in a certain
direction to obtain the state variables, which satisfies all constraints with optimal objective
function. Here time required to obtain the solution depends on the size of the system.

Application of the genetic algorithm to optimal power flow with voltages as control vectors
possesses a slow convergence problem, as GA is random population based search
algorithm. In this case, the GA utilizes large generations and without guaranteed
convergence. Considering, the disadvantages of it, this paper suggests, four algorithms
which speeds the solution and accuracy.

Let,

 Q,P,,VU  (16)

Where,

V be the set voltage magnitudes of buses in a power system
δ be the set  angles of buses in a power system
P be set of active power

Q be the set of reactive power

Let, B is set defined as,

 T,TL,C,L,GB  (17)
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Where,

G is set of generating buses G
L is set of load buses and
C be set of controlled buses
TL is the set of transmission lines
T is set of transformers

Let, MG Є G, is maximum generation capability bus. In this paper, it is assumed that this bus
will supply the losses in power system.

The set of control variables and state variables can be chosen from these set for GA based
optimal power flow. The proposed algorithms suggested for optimal power flow using the
classical methods and Genetic Algorithm are illustrated below sequentially.

4.1 Classical Approach: LMMS

Solution to OPF problem using Langrange Multiplier method with a new set of control and
state variables is given below:

The problem statement of OPF presented in the section II, equations (1-13) are solved using
Langrange multiplier method with slack variables (LMMS) introduced in inequality
constaraints , in which the control variables are considered to be-

 ,Vu  (18)

The transformed unconstrained problem can be stated as

      2,,, yuxhuxguxfL TT   (19)

Where, y is the set slack variable

The change in the control variable can be obtained by forming Jacobian and Hessian matrix
as-

  
T

y

LLLL

V

LTyVH 
























 (20)

The Kuhn-Tucker condition for the optimal

0
mp

1k kgk
m

1j jhjf 





 (21)

0jjh j=1,2,3….m (22)

0jh j=1,2,3….m (23)
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0kg k=1,2,3….p (24)

0k k=1,2,3….p (25)

Where,  and are Langrange multipliers for   0, uxg and   0, uxh set of constraints
equations.

The algorithm for solution of optimality is given below:

1. Read the system data
2. Obtain the bus admittance matrix
3. Assume the control variables

puVi 0.1 and 0i i=1,2………..Nb

4. Initialize the and

5. Let  TyVX  (26)
6. Calculate the Jacobian and Hessian matrix elements and let

 TyVX 
(27)

7. Calculate the change in
yandV 

using equation (20)
8. Check the converge of

If X
(28)

Go to step 11
Else go to step 9

9. XXX 
10. Go to step 5and update the solution
11. Stop

4.2 GA Based Approach

4.2.1 Algorithm (A)

Genetic algorithm is emerged as a global optimization technique for many optimization
applications. The conventional algorithm of OPF suffers from disadvantage of getting
trapped into local optimum; hence the GA is used to obtain the solution of OPF. But basically
GA suffers from slow convergence rate for large number OPF variables; therefore selection
of control variables is critical issue in GA application of OPF. In this paper ,various
combination of  control  variables were tested extensively to find the effect of control variable
on the convergence of Simple Genetic Algorithm(Appendix-B). The proposed algorithms
developed from the various combinations of control variable are presented below.
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Algorithm (A):

The wide spread control variables used are chosen to find the optimum solution as

 TGPGVu 
(29)

 TGQLVTLQTLPX 
(30)

The penalty function is used to improve the convergence criterion of Simple GA in this
algorithm. The fitness function which is to be minimized is given by

     2m

1j
u,xjhineq

2p

1i
u,xigeqPc

fF 




 (31)

OR

     2
1

,
2

1
, 







m

j
uxjHineqP

p

i
uxiGeqPc

fF Where (32)

    ux
i
guxiG ,22,  (33)

    
2

u,xjh,0max2u,xjH 













(34)

Where eqP and ineqP are the Penalty terms for the equality and inequality constraints.

For the assumed control variables, the state variables X of system are obtained by using fast
decoupled load flow solution, by iteratively solving the equation

























VL0
0H

Q
P

(35)

to get the load flow solution.

The obtained load flow solution is used to obtain fitness function given in (31 OR 32). The
cross-over and mutation are carried out on the population to change the search direction. In
this algorithm PV-PQ switching is not allowed during the fast decoupled load flow (FDLF)
calculations, as limits of reactive power capabilities of generator are considered under
inequality constraints.

Equation (31 or 32) indicates that while minimizing the objective function F, a positive
penalty is added whenever the constraint is violated, the penalty being proportional to
square of the amount of violation.
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4.2.2 Algorithm (B)

This algorithm is similar to the algorithm (A) except for PV-PQ bus switching. In this
algorithm PV-PQ bus switching is allowed during the fast decoupled load flow calculations.

4.2.3 Algorithm (C)

In this algorithm, more practical set of control variables are chosen as-

 
 TLCMGGTLTL

T
CGGGM

VVVQPx

QQPV



u

(36)

Fast decoupled load flow applied to obtain the state variables using control variables
considered all possibilities of power system including PV-PQ bus switching.

5. CASE STUDY

An extensive study was made to understand the effect of various combinations of control
variables on the convergence of optimal power problem (OPF). The classical approach and
simple genetic approach as discussed in section III are used to study the effect of
widespread control variables on the OPF solution of IEEE-30 bus system. The details of
IEEE-30 bus system can be obtained from reference [18]. The suggested algorithms are
tested under both normal and contingent conditions. Total 41 contingencies of one
transmission line each are considered during the study. Various conditions of simulations
studies are listed in Table 1.

Table 1. Assumed conditions for parametric study

Parameter Specification
Gene length 8
Maximum generation 100
Crossover probability 0.1 to 1
Mutation probability 0.1 to 1
Population size 50
Maximum runs 10
Parent selection Roullete wheels selection
Voltage regulation ±5 %
Penalty term for equality constraints 10
Penalty term for in-equality constraints 100
Tolerance on constraint and functional variables 1e-10
Processor Intel i3
CPU Speed 2.4 GHz
RAM Capacity 2 GB

All the study is carried out on the computer having specifications given in Table 2.
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Table 2. CPU Specifications

Parameter Specification
Processor Intel i3
CPU Speed 2.4 GHz
RAM Capacity 2 GB

The cross-over and mutation probabilities are varied in the step of o.1 to 1.0. For each
ordered pair of (cross-over probability, mutation probability), 10 runs were taken for each
case of system conditions i.e. normal or contingency. The result obtained are analyzed and
presented below.

5.1 Cost of Generation

The objective function of OPF is to provide a system conditions, where minimum objective
function to be obtained. In this specific study, fuel cost is considered as objective function.
The minimum fuel cost is considered as objective function (Appendix-A). The minimum fuel
cost leads to the lesser tariff rate to the end users. Average cost of generation under various
contingency conditions obtained after 10 runs for each Algorithm is shown in Fig. 1 for
ordered pair (0.7,0.5). The Algorithm-C provides lesser cost amongst the entire Algorithm
suggested. The fuel cost for cases of contingencies is shown in Fig. 2. During line loss (no.
36), fuel cost reduction of 0.58 $/pu.h is achieved by Algorithm-C in comparison with
Algorithm-A.

The statistical comparison of fuel cost under the no contingency condition for the ordered
pair of cross-over(CV) and mutation probability( µ) of (0.1, 0.1) and (0.7, 0.5) are given in
Table 3.

Table 3. Fuel cost comparison based on statistical parameters under no contingency
condition

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 88.65 88.59 88.49 88.53 88.53 88.53
Minimum 88.55 88.47 88.46 88.47 88.48 88.45
Maximum 88.77 88.73 88.52 88.68 88.56 88.75
Kurtosis 2.044 1.578 1.44 3.195 1.267 3.08
Skewness 0.324 0.0514 -0.50 1.4602 0.259 1.38
Std. deviation 0.081 0.1063 0.0267 0.0879 0.0387 0.123

Algorithm-C has the tendency to converge towards global optimum, as the spread of
convergence values (standard deviation) of fuel cost found to be minimum for this algorithm
than all others. The classical approach solution provides the minimum fuel cost value of $
88.47/pu.h. The Algorithm–C provides better estimate of average value $ 88.49/pu.h for
CV=0.1 and µ=0.1and $ 88.53/pu.h for CV=0.7 and µ=0.5. Minimum and maximum values
attained by different algorithms show that, Algorithm-C achieves the values less than the fuel
cost achieved by LMM and Algorithm-A and Algorithm-B. While, Algorithm-A and Algorithm-
B achieves minimum and maximum values more than the LMM algorithms. Skewness
parameters shows that Algorithm-A and Algorithm-C are skewed than Algorithm-B.
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Fig. 1. Fuel cost comparison for different GA based Algorithms

Fig. 2. Fuel cost comparison for different GA based Algorithms for selected
contingent conditions (derived from Fig. 1)

Under contingent condition of transmission line 36, the performance of various GA based
algorithms indicated in terms of statistical parameters is given in Table 4. Here also,
Algorithm-C provides better estimate of fuel cost in comparisons with other algorithms. The
standard deviation of objective function obtained for Algorithm-c in 10 runs is 0.12 and 0.04
under ordered pair (0.1, 0.1) and (0.7, 0.5) respectively. Under this situation kurtosis is
approximately equal for all algorithms if ordered pair is (0.7, 0.5).

Table 4. Fuel cost comparison based on statistical parameters under contingency
condition of transmission line no. 36

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 88.90 88.97 88.91 89.48 89.38 88.86
Minimum 88.81 88.84 88.76 89.13 89.10 88.80
Maximum 89.07 89.15 89.10 89.76 89.54 88.89
Kurtosis 2.95 1.58 2.28 2.53 2.58 1.85
Skewness 1.20 0.13 0.51 -0.44 -0.92 -0.57
Std.
deviation
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Fig. 3 provides the sample convergent plot of best value and mean value  of  fuel cost per
generation Vs number of generation obtained for one of the sample run for Algorithm-A. The
mean value is average value of population size in each generation. Similar plots are shown
for Algorithm–B and Algorithm-C in Figs. 4 and 5 respectively.

Fig. 3. Convergence plot for Algorithm-A

Fig. 4. Convergence plot for Algorithm-B

Fig. 5. Convergence plot for Algorithm-C

For the Algorithm-A, from the convergence plot it can be observed that the peak overshoot
for mean fitness is found to be approximately $ 133, while the convergence time is found to
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be 52 generations. For the Algorithm-B, peak overshoot is found to be $ 135 and
convergence time of 52 generations. The convergence plot for Algorithm-C indicates that
peak overshoot of $ 190 occurs in initial parts of generations and decays exponentially and
settles quickly towards the equilibrium position, which is indication of high damping exerted
on system variables.

Table 5 provides comparative fuel cost values for the various GA and classical approach
based Algorithms under specific transmission line contingencies (TLC). Under no
contingency condition (TLC=0) Newton Based OPF (NBOPF) provides best estimation of
fuel cost, while other provides slightly higher estimates.  In TLC=2, the NBOPF provides the
better estimate and proposed Algorithm LMMS fails to provide any answer to under this
condition i.e. solution is do not converge (NC) to any specific equilibrium state. While in
transmission line contingency no. 36, both classical approach Algorithms fails to converge.
This shows the utility of GA based algorithm in solution of OPF. For this specific condition
Algorithm-C provides minimum average fuel cost $/pu.h(88.86) amongst the all other
algorithms. Hence, comparative study reveals the importance of choosing control variables
for the solution of OPF in power system. Fig. 6 shows the variations of fuel cost in population
of last generation for each algorithm Computation time indicates the time required by the
method to obtain the optimum solution. Comparative average time required for various
proposed algorithms are shown in Fig. 7. Referring to the Figs. 3-5, it can be seen that
generation required for getting optimum solutions are approximately same, but as number of
control variables for Algorithm-C are more than the other GA based algorithm, hence
Algorithm-C requires more computation time as is can be seen from Fig. 7.  The classical
approaches like NBOPF and LMMS, requires lesser computation time than GA based
algorithm, but these algorithms do not converge in line contingency number 2 and 36 (as
also given  in Table 5), these are appearing as peaks in Fig. 7 represented with data labels.

Table 5. Comparative fuel cost for all proposed algorithms

TLC Algo-A Algo-B Algo-C NBOPF LMMS
0 88.53 88.53 88.53 86.46 87.74
2 89.25 89.19 89.33 86.47 NC
36 89.48 89.39 88.86 NC NC

Fig. 6. Fuel cost during last population
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Fig. 7. Comparative chart for average solution time required by all Algorithms

After 10 run, average, minimum and maximum computational time obtained by various GA
based algorithms under no contingency and contingency conditions for various ordered pairs
are given in Table 6 and Table 7 respectively. Algorithm-C requires lesser average
computational time as compared other methods. Average computational time for Algorithm A
and B rises with increased cross-over and mutation probabilities. For Algorithm-C, the
computational time decreases with increased probabilities.

Table 6. Computational time comparison based on statistical parameters under no
contingency condition

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 29.09 29.39 25.33 29.85 29.70 24.49
Minimum 27.83 28.18 24.57 27.69 28.48 23.68
Maximum 30.15 30.24 25.83 32.60 32.40 25.17

Table 7. Computational time comparison based on statistical parameters under
contingent condition of line 36

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 33.22 32.63 25.28 30.99 32.94 23.24
Minimum 27.64 29.64 23.16 27.85 26.95 21.76
Maximum 40.96 35.10 30.73 34.66 42.68 23.68

Under multi-equilibrium positions, it may possible that solution of optimization methods may
produce the optimal solution which is not practical feasible to implement, hence forth here
we will investigate the feasibility of optimal solution provided by the various GA based
algorithm comparatively.

From the previous section, we observe that the Algorithm-C founds better estimate of
objective functions under the contingency condition with less computational or solution time
as compared to the other GA based algorithms. The analyses of system conditions are
presented below are the results where minimum fuel cost is obtained in 10 runs.
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5.2 Allocation of Real Power Generation

Under the no contingency condition and contingent condition, the percentage generation
allocation for each generating bus is given in Tables 8 and 9 respectively.

Table 8. Percentage share of each generator towards load under no contingency
condition

Bus/Algorithm % Share of Real Power Generation
Algo-A Algo-B Algo-C

1 38.42 38.39 36.73
2 5.7 10.69 15.91
5 14.75 11.47 32.82
8 17.29 10.44 3.25
11 14.86 17.18 13.30
13 10.59 13.58 0.71
% Total Gen. 101.61 101.75 102.71
% Load 100 100 100
% Loss 1.61 1.75 2.71
Fuel cost $/pu.h 88.47 88.48 88.45

Table 9. Percentage share of each generator towards load under contingent line
number 36 conditions

Bus/Algorithm % Share of Real Power Generation
Algo-A Algo-B Algo-C

1 38.44 38.34 38.48
2 17.14 16.53 9.99
5 11.54 8.30 11.24
8 14.46 15.64 15.62
11 12.70 10.30 17.61
13 8.13 13.48 9.24
% Total Gen. 102.40 102.60 102.17
% Load 100.00 100.00 100.00
% Loss 2.40 2.60 2.17
Fuel$/pu.h cost 89.13 89.10 88.80

From Tables 8 and 9, it can be seen that, under normal or no contingency condition
Algorithm-C chooses the system condition which increase the loss in the system, while
under contingent condition, it chooses the system states so that loss will be minimum
amongst all other algorithms. From Table 8, Algorithm-C loads the costlier generator located
at bus number 5 to its highest capacity, and still keeps the cost of generation minimum i.e.
$88.45 as compared to other algorithms. While the other algorithms cater the load
requirement by drawing maximum share of real power from less costly generators i.e. from
bus no 2,8,11 and 13.

Comparative charts are provided for various algorithm in Figs. 8 and 9 under no contingency
and contingent conditions for share of costlier and cheaper generating stations.
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Fig. 8. Comparison chart for share of generation under no contingency condition

Fig. 9. Comparison chart for share of generation under contingency condition

5.3 Bus Voltage Profile

The voltage profile obtained during study are presented in Figs. 10 and 11 under normal and
contingent conditions respectively. It can be observed that voltages achieved in Algorithm-C
during normal operating condition are slightly lower than those obtained in the Algorithm-A
and Algorithm-B. In contingent condition, Algorithm-C achieves the higher voltages than the
Algorithm-A and Algorithm- B, by adjusting the reactive power within their limits at the
generating buses. The reactive power share by each generating station under this
contingent condition is shown in Fig. 12. Here, the +ve sign is considered for injection of the
reactive power into bus and -ve sign is vice-versa of it.

In Algorithm-A and Algorithm-B voltage profile is almost same.
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Fig. 10. Comparison chart for voltage profile of buses under no contingency condition

Fig. 11. Comparison chart for voltage profile of buses under contingency condition

Fig. 12. Comparison chart for reactive power at generating buses

6. SIMULATION STUDIES ON 220KV TRANSMISSION NETWORK

The extensive study like IEEE-30 bus system is also been carried out on the Indian 220 kV
Washi-Zone transmission line system consists of 52 buses and 86 transmission line.

90

95

100

105

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Vo
lta

ge
 k

V

Bus Number

ALGORITHM-A ALGORITHM-B ALGORITHM-C

80

90

100

110

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Vo
lta

ge
 k

V

Bus No.

ALGORITHM-A ALGORITHM-B ALGORITHM-C

-0.4

-0.2

0

0.2

1 2 5 8 11 13

Re
ac

tiv
e 

po
w

er
 in

 p
u

Generating Bus Number

ALGORITHM-A ALGORITHM-B ALGORITHM-C



British Journal of Applied Science & Technology, 4(2): 279-301, 2014

297

6.1 SGA Based OPF using Fixed Penalty

The analysis of proposed algorithms on this system is presented in the form of-
 cost of generation,
 computation time,

6.1.1 Cost of generation

The performance of the SGA based proposed algorithms with fixed penalty under without
contingency condition is given in Table 10.

Table 10. Fuel cost comparison based on statistical parameters under without
contingency condition

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 8.90 9.46 8.96 9.67 9.39 8.95
Minimum 8.90 8.85 8.86 9.15 9.09 8.91
Maximum 8.90 9.53 9.59 10.19 9.42 8.96
Kurtosis 1.00 8.11 7.88 1.00 8.11 3.47
Skewness -1.00 -2.66 2.59 -0.003 -2.66 -1.22
Std. deviation 0.00 0.215 0.22 0.54 0.105 0.016

Algorithm Algo - C has the tendency to converge towards global optimum, as the spread of
convergence values (standard deviation) of fuel cost found to be minimum for this algorithm
than all others at higher CV(cross-over) and µ (mutation probability). The algorithm Algo - C
provides better estimate of average value Rs. 8.96/KWh for CV=0.1 and µ=0.1and Rs. 8.95
/KWh for CV=0.7 and µ=0.5, from Table 10.

6.1.2 Computation time

After 10 runs, average, minimum and maximum computational time obtained by various GA
based algorithms under no contingency conditions for various probability ordered pairs are
given in Table 11.

Table 11. Computational time comparison based on statistical parameters under no
contingency condition

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
Algo-A Algo-B Algo-C Algo-A Algo-B Algo-C

Average 81.63 94.22 69.44 77.98 97.17 59.93
Minimum 80.20 86.01 39.57 52.78 88.12 54.01
Maximum 83.25 144.5 87.21 94.39 110.84 64.35

6.2 SGA Based OPF using Fuzzy Penalty

For further improvement of the convergence criterion of SGA based proposed algorithms the
fuzzy based penalty is being implemented on the 220 kV systems. Table 12, shows the
comparison of the statistical parameters obtained after 10 runs of Algo - C for sample
probability ordered pair (0.1, 0.1) and (0.7, 0.5). The performance of algorithm in terms of
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function value further improves with fuzzy based penalty at the cost of slight increase in
computational time as observed from Table 13.

Table 12. Comparison of fuel cost for fixed and fuzzy penalty for Algo – C (without
contingency)

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
With Fixed
Penalty

With Fuzzy
Penalty

With Fixed
Penalty

With Fuzzy
Penalty

Average 8.96 8.19 8.95 8.27
Minimum 8.86 8.17 8.91 8.23
Maximum 9.59 8.23 8.96 8.34
Kurtosis 7.88 2.62 3.47 2.86
Skewness 2.59 0.919 -1.22 1.12
Std. deviation 0.22 0.019215 0.016 0.038

Table 13. Comparison of computational time for fixed and fuzzy penalty for Algo - C
(without contingency)

Parameter CV=0.1, µ=0.1 CV=0.7, µ=0.5
With Fixed
Penalty

With Fuzzy
Penalty

With Fixed
Penalty

With Fuzzy
Penalty

Average 69.44 74.49 59.93 60.75
Minimum 39.57 56.09 54.01 53.35
Maximum 87.21 99.17 64.35 66.875

7.  CONCLUSION

In this paper, an extensive study was carried out to visualize the effect of control variables
on the convergence of OPF using simple genetic algorithm. Overall best three suited set of
control variables were suggested and their results are compared with classical approach like
Langrange multiplier based OPF (LMMS) and Newton based OPF (NBOPF). This extensive
study proves that set of control variables provided in Algorithm-C proved to be effective in
obtaining global solution under normal and contingent conditions. In certain contingent
conditions, it is found that the conventional approach fails to provide the desired solution but
SGA based approach i.e. Algorithm-C has prove its suitability with global optimal solution
and minimum computational time. Effect of solution obtained by these algorithms are also
been analyzed for generation allocation and bus voltage profile. It is found that solution
provided by Algorithm-C is realistic.
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APPENDIX-A

Fuel Cost Curve Coefficients Used

Gen. no. 1 2 5 8 11 13
a 0.14 0.2 0.14 0.2 0.2 0.2
b 20.4 19.3 20.4 19.3 19.3 19.3
c 5.00 5.00 5.00 5.00 5.00 5.00
.
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APPENDIX-B

Flow Chart for SGA Based Algorithm
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