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ABSTRACT ARTICLE HISTORY
Breast cancer is one of the most prevalent types of cancer that Received 27 March 2021
plagues females. Mortality from breast cancer could be reduced Revised 24 October 2021
by diagnosing and identifying it at an early stage. To detect ~ Accepted 28 October 2021
breast cancer, various imaging modalities can be used, such as

mammography. Computer-Aided Detection/Diagnosis (CAD)

systems can assist an expert radiologist to diagnose breast

cancer at an early stage. This paper introduces the findings of

a systematic review that seeks to examine the state-of-the-art

CAD systems for breast cancer detection. This review is based on

118 publications published in 2018-2021 and retrieved from

major scientific publication databases while using a rigorous

methodology of a systematic review. We provide a general

description and analysis of existing CAD systems that use

machine learning methods as well as their current state based

on mammogram image modalities and classification methods.

This systematic review presents all stages of CAD including pre-

processing, segmentation, feature extraction, feature selection,

and classification. We identify research gaps and outline recom-

mendations for future research. This systematic review may be

helpful for both clinicians, who use CAD systems for early diag-

nosis of breast cancer, as well as for researchers to find knowl-

edge gaps and create more contributions for breast cancer

diagnostics.

Introduction

In 2015, the World Health Organization (WHO) announced that cancer is the
second-largest contributor to global deaths. Breast cancer is the leading cause
of cancer-related mortalities among women, trailed by colorectal and lung
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cancers (Mohammed et al. 2018) (Obaid et al. 2018). Breast cancer could be
effectively diagnosed by employing a medical image examination. Various
techniques of medical imaging may be used to examine Infrared
Thermography (IRT), microscopic (histological) images, Magnetic
Resonance Imaging (MRI), Ultrasound (US), and Digital Mammograms
(DMs). To support radiologists in the method of interpreting images and
identifying abnormalities, the usage of these modalities renders the process
more effective by reducing mortality rates by 30-70%. Utilizing computerized
feature extraction and classification that is devised as Computer-Aided
Diagnosis (CAD) can become a beneficial technique for physicians in diag-
nosing and identifying abnormalities (Lahoura et al. 2021).

The primary role of a CAD system is to resolve the challenge of interpreting
DMs. The goals of the system include effectively diagnose cancer and correctly
interpret DMs. The CAD structures were developed to resolve the reliance of
the operator in terms of diagnosis and decrease the cost of medical comple-
mentary technology (Mohanty, Senapati, and Lenka 2013). In the analysis on
detecting cancer cells by CADs, 80% of the diagnosed cells were able to be
detected without CAD, whereas the percent of tested tumor cells that were
detected by CADs improved to 90% inside CAD (Horsch et al., 2011).
Computerized diagnosis assesses the knowledge which a person or a computer
gathers and offers an outcome to decide what kind of lesion is present and
whether that is cancerous or not (Zeebaree et al., 2019).

Medical imaging technology with applying CAD-based Machine Learning
Techniques (MLTs) is becoming common for cancer diagnosis and detection.
To resolve the deficiency and ameliorate the efficiency of the CAD algorithms,
the value of representation learning has been highlighted in recent years (Han
et al., 2015) (Zeebaree et al., 2019). Deep Learning (DL) is one of representa-
tion learning strategies that use the hierarchical representations of image data
as features. The main characteristic of DL is that it can take the content and
encode it in a high-level of function representation (e.g., vector) without the
need for post-processing (LeCun, Bengio, and Hinton 2015).

The main contribution of this review study is to introduce the recently
introduced methods in state-of-art that concentrate on various Deep Learning
Techniques (DLTs) and Machine Learning Techniques (MLTs) utilized in
breast cancer identification based on DMs. The survey seeks to illustrate the
issues that remain as to the applicability of DMs in the early detection of breast
cancer. This study analyzes the most recent works that have discussed this
topic and offers some perspective on current problems. We explore previous
works that tackled these challenges, and eventually gives some observations
and the potential directions of future study that would be taken to enable more
progress. This systematic review is divided in two main parts. The first part
introduces the methodology of this research and the CAD methodology with
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its steps as well as the ML and DL techniques. The second part of this research
presents the review of each phase of the CAD system of the most recent
studies.

Methodology

The main aim of this study is to identify state-of-the-art studies in the context
of CAD systems, especially in the domain of breast cancer identification using
DM images also, both Machine Learning (ML) and Deep Learning (DL)
techniques as classifiers. To find the answer to the following research questions
is the primary purpose of this study:

(1) What are DM breast cancer datasets mostly used on CAD systems?

(2) What techniques are used for each CAD stage?

(3) What challenges that are faced during each stage of CAD?

(4) What enhancement techniques are currently applied in the pre-proces-
sing stage?

(5) What segmentation techniques are applied to derive Region-of-Interest (ROI) in DM
images?

(6) What type of features are extracted from DM images?

(7) What techniques are applied currently to extract features?

(8) What techniques are currently implemented to select the most relevant
teatures?

(9) What classifiers are currently applied on DM breast cancer-based ML?

(10) What DL techniques are recently implemented for identifying breast cancer based
on DM images?

(11) How they do their classification as benign/malignant, normal/abnormal, benign/
malignant/ normal, or Breast Imaging-Reporting and Data System (BI-RADS)?

(12) What are the evaluation measurements used for the evaluation of the
mammogram imaging-based breast cancer CAD systems?

IEEE Xplore, Science Direct (Elsevier), Springer, and other databases were
searched. Furthermore, these keywords and sentences were used:

mammogram breast cancer, mammogram classification, computer-aided
diagnosis using mammogram, computer-aided detection using mammogram,
CAD-based on mammogram, mammogram pre-processing for breast cancer,
breast cancer segmentation using mammogram, breast cancer classification
using mammogram, feature extraction technique for mammogram breast can-
cer, and feature selection technique for mammogram breast cancer.

Table 1 illustrates the number of articles published in each venue. All
publications of this work were investigated and included in (Table) (5 -10)
through the years from 2018 to 2020. Only works that have fulfilled the
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Table 1. Published articles per year and journals.

Year Journal Publications Year Journal Publications

2018 IEEE 15 2019 Springer Link 20
Science Direct 12 Others 1
Springer Link 5 2020 IEEE 8
Others 8 Science Direct 10

2019 IEEE 1 Springer Link 10
Science Direct 1 Others 7

following inclusion requirements are included: (1) Only breast cancer disease
is included; (2) at least one CAD phase is considered; (3) utilized at least one
method-based ML or DL as a classifier; (4) only DM modality is utilized; (5)
the most popular performance measurement of the performed classifiers is
presented; (6) only full published papers are included; (7) published papers
between 2018 and 2020 with only one paper in 2021 are included. We excluded
non-English papers, surveys, and books. At first, we retrieved 260 research
papers, afterward, papers that irrelevant to the inclusion search criteria have
been eliminated. Thus, this research includes only 118 papers (44.86%)
whereas the rest of 145 papers are not well fitted for the quest criteria, then
these papers have been excluded. The flow chart of the publication retrieval
process is shown in Figure 1.

IEEE Xplore

Science direct

SpringerLink
Others

Online Databases
Breast cancer disease
Breast cancer diagnosis-based DM
Breast cancer diagnosis-based computing methods
Published on journal or conference

Published during 2018 to 2020
Total excluded
: ML or DL techniques used for diagnosis publications
equal to 145
Total included publications equal to 115

Figure 1. Flow chart-based summarization of publications selection process.
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In this systematic review, more than hundreds of publications are reviewed
from indexed and referred journals, conference proceedings and papers from
main scientific databases such as IEEE Xplore, Web of Science, and Scopus
previously mentioned. Scientific literature on mammographic image analysis
contains informative and comprehensive studies. This review has been per-
formed based on 12 main question that have been answered during the review
process. We provide a survey-based CAD including pre-processing, segmen-
tation, feature extraction and selection, and classification stages using both
machine learning and deep learning techniques. Scope and algorithm of each
stage has been presented with it is results. In feature extraction the type of
extracted feature as well as the technique that has been used in feature
extraction have been presented. Moreover, this systematic review presents
the classification method, classifying classes and results are addressed. We
also provided the contribution of each surveyed paper with used dataset and
number of images in evaluation. (Sadoughi et al. 2018) artificial intelligence
methods have been used to identify breast cancer utilizing a wide range of
image processing methods. The paper provides relevant information, such as
references, techniques used, work scopes, datasets, and various performance
metrics, for a more comparative analysis between studies. (Oza et al., 2021)
discussed about how to identify and classify suspect areas in mammograms
using low-level image features, ML algorithms, and DL techniques from the
literature utilizing various methods. Bottom-up survey will cover both low-
level image analysis and artificial intelligence methods. Readers will be pro-
vided with everything they require to get started working on this topic right
away after reading this paper. This review has been presented based on four
main question including techniques to extract low-level features, machine
learning methods used in identifying mistrustful region, deep learning meth-
ods in identifying and classifying breast cancer, and public database used in
the evaluation of each work. (Jiménez-Gaona, Rodriguez-Alvarez, and
Lakshminarayanan 2020) this paper conducts a crucial survey of the existing
literature on the use of ultrasound and mammography images in breast tumor
diagnosis using DL algorithms. CAD systems, which are using new DL
methods to realize breast images automatically and improve the accuracy of
radiologists’ diagnoses, are also summarized. Two hundred and fifty research
articles were obtained for this review, of which 59 were eligible for further
examination after an eligibility process between 2010 and January 2020.

CAD Method

Generally, a standard CAD system covers operations encompassing segment-
ing structures, detecting abnormalities, and extracting characteristics of
abnormalities towards classifying the problem. Figure 2 demonstrates algo-
rithms that are commonly implemented in CAD systems (Memon et al., 2021).
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Figure 2. General block diagram of CAD methods.

Several phases in the block diagram include acquisition of the image, pre-
processing, segmenting, extracting features, classifying, and evaluating.
During pre-processing, the filter is applied to the image followed by a trans-
formation towards improving the quality of mammograms and reducing noise
level. Meanwhile, in segmenting, region-of-interest are separated from the
background (Liu et al. 2020). In extracting features, lesions and normal breast
tissue that are represented by certain features are taken for evaluations. While
classifying step categories extracted features into classes of malignant and
benign features. Finally, an algorithm that is proposed will be used to evaluate
the classified features exploiting relevant methodologies. The evaluation step is
critical as human lives and their well-being highly depend on the results of the
assessments (Xi, Shu, and Goubran 2018) (Sajeev, Bajger, and Lee 2018). As
such, any evaluation algorithms for CAD systems must consider sensitivity,
specificity, and evaluation of positive predictions. Table 2 represents the recent
major contributions of various CAD algorithms in the diagnosis of breast
cancer infection. It has been illustrated from this systematic review that the
proposed works was based on MLTs and DLTs.

Table 3 demonstrates that this research field has provided several widely
published articles during the last two decades. An increase in scientific pub-
lications can be due to the improved ability of machines, developed methods
of extracting features from images to perform image classification, and avail-
able more datasets being used in the research. This research performed the
search in 2018 to 2020. Forty papers — 34.7% were published in 2018, 42 papers
- 36.5% were published in 2019, and 32 papers - 27.8% were published in
2020. The research publication number was approximately the same in 2018
and 2019, whereas it has been decreasing slightly in 2020. Moreover, the most
widely utilized datasets of the studies were shown in Table 3. The two most
utilized were the Mammographic Image Analysis Society (MIAS) dataset that
was used in 68 studies (59.13%) that 39 studies used only MIAS whereas 29
studies used MIAS with another dataset. The Digital Database for Screening
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Table 4. Summary of surveyed studies based pre-processing phase in the literature.
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Ref. Technique Scope Evaluation results (%)
(Singh, Singh, and  CCL, morphological operations, Labels and artifact PT 10
Bhatia 2018) adaptive K-means, adaptive suppression, Pectoral
median filter muscle removal, and
noise reduction
(Berbar., 2018) Contrast stretching Contrast ROI PT 10
(Suresh, Rao, and  Intelligibility mammogram Image enhancement PSNR = 9.103MSE = 8.54
Reddy 2018) enhancement method
(Salama, Eltrass, 2-D median filter and connected Remove noise and PT 10
and component labelling artifact sources also to
Elkamchouchi suppress the pectoral
2018) muscle
(Dallali et al. 2018) Histogram equalization and Contrast enhancement MSE = 0.125374
adaptive limited contrast and and pectoral muscle RMSE = 0.354082
thresholding removal PSNR = 4.508960
SSIM = 0.206977
(Tatikonda, Median filter and CLAHE Improve image quality PT 10
Bhuma, and
Samayamantula
2018)
(Shastri, Tamrakar, Normalization and TS-CLAHE Image enhancement PT 10

and Ahuja 2018)
(Goudarzi et al.,
2018)

(Yousefi et al.,
2018Youse)

(Esener et al.,
2019)

(Mughal,
Muhammad,
and Sharif 2019)

(Kaur, Singh, and
Kaur 2019)

(Mabrouk, Afify,
and Marzouk
2019)

(Rahimeto et al.
2019)

(Gong et al. 2019)

(Yu et al,, 2019)

Shayma’a, 2019)

(Pezeshki et al.,
2019)

(Melekoodappattu
et al., 2018)

(Soulami et al.
2019)

(Matos et al., 2019)

(Gherghout, Tlili,
and Souici 2019)

(Wang et al., 2019)

(Karthiga,
Narasimhan,
and Usha 2019)

(AlSalman et al..,
2019)

Thresholding, shrinkwrap, wavelet,  Pectoral muscle, labels, ~ PT 10

HE, and median filter and noise removal also
improving the image
contrast
Nonlinear Anscombe Noise and pectoral PT 10
transformation, adaptive wiener muscle removal also
filter, Hough transform
Median filter Noise reduction PT 8

optimized Bayesian non-local means Unwanted noise removal Sn = 96.6, Sn = 96.4

filter (OBNLM)

Median filter and morphological Reduce image PT 10
operations redundancy

Full-Scale Histogram Stretching to enhance the fineness  PT 10
(FSHS), Histogram Equalization of mammogram image

(HE), Morphological, WT
Wiener filter and Otsu’s thresholding Noise and tags removal ~ PT 8

Otsu threshold Remove unwanted area  PT 10
Morphological operations and Remove noise and region PT 10
threshold of breast extraction

Median filter and SEBHE Noise removal and image PT 10
enhancement

CLAHE enhance the significant ~ PT 10
features of the mass

Wiener filter, CLAHE smoothing, sharpening, PT 10

noise removal and
edge detection

low threshold, labelling, 2D - Artifacts, background, PT 10
median filter and noise removal

Logarithmic transformation Image enhancement PT 10

anisotropic diffusion filter Reduce noise and PT 10

preserve edges

Adaptive mean filter, algorithm avoid the impact of noise, PT 10
(Junior et al. 2019) enhancement

Top-hat and bottom-hat transforms, Contrast enhancement,  PT 10
morphological and curvelet sharpen and wrapping
transforms

Thresholding and, Weiner filter and  Artifacts, pectoral muscle, PT 10
CLAHE filters and noise removal

(Continued)
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Table 4. (Continued).

Ref. Technique Scope Evaluation results (%)
(Dabass et al.., CLAHE and entropy based Contrast enhancement Entropy = 4.8868

2019) Intuitionistic Fuzzy Method PSNR = 22.4759
(E-Sokkary et al.,  Threshold and method of (Memon  Artifact and pectoral PT 10

2019) et al,, 2021) muscle removal
(Rahmatika, Median filter Noise reduction PT 8

Handayani, and
Setiawan 2019)

(Zebari et al. 2019) Wavelet transform Image enhancement for ~ Segmentation: Ac = 90.5
segmentation and Feature extraction:
feature extraction PSNR = 69.95
(Rampun et al. Active counter, restricted contour Breast region PT 10
2020) growing incorporating edge segmentation and
information, and median filter Noise reduction
(Al-Antari, Han, multi-threshold peripheral enhance the peripheral ~ PT 10
and Kim 2020) equalization regions of breast
images
(Shen et al. 2020) Wang-Mendel breast image noise PT 10
removal
(Christopher et al., NLUMLOGMIN Mammogram EME = 3.89, AME = 23.92,
2020) enhancement SDME = 49.36
(Arora, Rai, and Histogram equalization improve upon the PT 10
Raman 2020) contrast and dynamic
range of an image
(Patil and Biradar  Median filter Noise elimination PT 10
2020)
(Zeiser et al., 2020) CLAHE removal of irrelevant PT 8
information
(Indra et al., 2020) Adaptive median filter Remove speckle, salt, and PT 10
pepper noises
(Ahmed et al. Binarization, Median filter, HE, Artifact, noise, and PT 8
2020) morphological operations, pectoral muscle
savitzky golay filter, masking, removal
(Agnes et al. 2020) Median filter, global thresholding, Noise reduction, PT 10
morphological operations, and background, and
single seeded region growing pectoral muscle
removal
(Tavakoli et al. Otsu’s thresholding CLAHE eliminates irrelevant PT 10
2019) areas from the image
and enhances the
contrast

(Cheng et al. 2020) Gamma transformation and OTSU Enhance details of image PT 10
and extract breast

region
(Loizidou et al. Border removal function, Otsu’s Background and pectoral PT 10
2020) thresholding, Demons muscle removal, image
registration
(Zebari et al. 2020) Wavelet transform Highlight breast region  PT 8
(Ali et al., 2020) Gaussian, median filters, and CLAHE Noise reduction and PT 8
image sharpening
(Farhan et al., CLAHE Image enhancement PT 10
2020)
(Albalawi et al., Wiener filter Noise reduction PT 10
2020)
(Li, Mukundan, and LBP ROI PT10
Boyd 2021)
(Boumaraf et al. Histogram equalization Image enhancement PT10
2020)

PT 8 means the results are presented in Table 5, and PT 10 means results are presented in Table 7. CLAHE — contrast
limited adaptive histogram equalization.
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Table 5. Summary of Surveyed Studies based Segmentation Phase in the Literature.

Ref. Technique

Scope

Evaluation results (%)

(Singh, Singh, and  Threshold based seeded
Bhatia 2018) region growing
(Salama, Eltrass, Watershed
and
Elkamchouchi
2018)
(Charan, Khan, and
Khurshid 2018)
(Dallali et al. 2018)

Morphological closing
operation and masking
Histogram thresholding

(Samant et al.,
2018)
(Sapate et al. 2018)

Otsu’s thresholding

Automatic seed selection,
adaptive fuzzy region
growing, region merging

(Al-Masni et al., Deep learning-based YOLO
2018)

(Al-Antari et al. Deep learning-based YOLO
2018) and FrCN

(Sadad et al. 2018) Fuzzy C-Means (FCM) and
region-growing (RG)

algorithm called FCMRG

(Uthoff et al.., Otsu’s thresholding and
2018) region growing
(Yousefi et al., Level set
2018Youse)
(Nedra et al., 2018) K-means

(Hazarika et al.,
2018)
(Shen et al. 2018)

Region growing

Polynomial fitting/Curve
Estimation, genetic
algorithm, and
morphological selection

(Mughal et al., Convex hull
2018)

(Toz et al., 2018) Geometrical properties

(Esener et al.,
2019)

(Zhu et al. 2018)

Region growing
FCN+ CRF

(Singh, Singh, and
Bhatia 2018)

CcGAN-Unet

(Mughal,
Muhammad,
and Sharif 2019)

Curve stitching and adaptive
hysteresis thresholding
(CSAHT)

(Wang et al., 2019) MNPNet

ROI extraction

ROI extraction

ROI extraction

Mass detection

Remove unwanted labels

Identifying the suspicious

region

ROI extraction

To segment the mass

Tumor segmentation

Lesion segmentation
ROI selection

Breast tissues
segmentation
Pectoral muscle removal

Pectoral muscle removal

Pectoral muscle removal

Pectoral muscle
segmentation

Pectoral muscle
segmentation

Lesion segmentation

Lesion segmentation

Separation of breast
region and internal
details of breast
parenchyma from
background

Breast mass
segmentation

PT 10

PT 10

PT 10

Contrast = 0.0018,
Correlation = 0.9665,
Energy = 0.9998,
Homogeneity = 1.0000

PT 10

TMC: Ac = 75, Sens = 91.67,
Sp = 58.33, PPV = 68.75,
NPV = 87.50, FPsl = 1.12

DDSM: Ac = 74.13, Sn = 90.87,
Sp = 57.39, PPV = 68.08,
NPV = 86.27, FPsl = 1.13

Ac =99.71

Ac =92.97, Sens = 92.72,
Sp = 93.21, Dice = 92.69,
Jac = 86.37, AUC = 92.97,

MCC = 85.93
PT 10

PT 10
PT 10
PT 10
Ac =92

MIAS: FP = 2.03, FN = 6.9,
Jac = 91.25, Dice = 94.96
DDSM: FP = 1.6, FN = 4.03,
Jac = 94.48, Dice = 97.15
INbreast: FP = 2.42, FN = 13.61,
Jac = 84.61, Dice = 89.1

MIAS: FP = 0.99, FN = 5.67
FFDM: FP = 0.98, FN = 5.66
Sn =956

Ac =944, Sn = 89.62, Sp = 99.99

INbreast: Dice = 90.97 DDSM:
Dice =91.3
DDSM: Ac = 0.97, dice = 0.94,
Jac=0.89, Sn =0.92, Sp = 0.98
Private: Ac = 0.95, dice = 0.86,
Jac=10.76,Sn = 0.85, Sp = 0.97
PT 10

INbreast: Dice = 91.1
DDSM: Dice = 91.69

(Continued)
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Table 5. (Continued).

Ref.

Technique

Scope

Evaluation results (%)

(Shen et al., 2019)

(Das and Das 2019)

(Mabrouk, Afify,
and Marzouk
2019)

(Yin et al., 2019)

(Pavan et al. 2019)

(Rahimeto et al.
2019)

(Gong et al. 2019)

(Gu et al. 2019)

Shayma’a, 2019)

(Pezeshki et al.,
2019)

(Melekoodappattu
et al., 2018)

(Soulami et al.
2019)
(Junior et al. 2019)

(Gherghout, TIili,
and Souici 2019)
(Wang et al., 2019)

(Li et al., 2019)

(AlSalman et al..,
2019)

(EI-Sokkary et al.,
2019)

(Rahmatika,
Handayani, and
Setiawan 2019)

(Rampunm et al.,
2019)

(Shi et al., 2018)

(Shinde et al.,
2019)

Improved U-net by
combining conditional
generative adversarial
network (cGAN) and
original dataset

Kernel based fuzzy c-means
(FCM)

Local threshold and Otsu
method

Active counter

Active counter

Otsu’s multi-thresholding
technique and CCL

New threshold method

Superpixel generation based
SLIC and DBSCAN, and
curve evolution method

MSER detector-based SURF
and features matching

FCM

Gray level and global
thresholding

EML

Combination of MeanShift
and Fast Scanning

non-parametric method and
level-set function

Adaptive mass region
detection

combines densely connected
U-Net with attention gates
(AGs)

k-means

PSO and GMM

Histogram operation and k-
means clustering

CNN with modified HED

Pixel-wise clustering

Machine learning

Breast mass
segmentation

Detection of masses

MCC extraction

Pectoral muscle removal
Pectoral muscle removal
Automatic pectoral
muscle removal
segment the breast
glandular tissue
Breast mass
segmentation

Breast cancer mass
detection
Tumor segmentation

Background and pectoral
muscle region
segmentation

To segment breast area

Lesion detection

Tumor detection

Extract breast mass
region

Breast mass
segmentation

Segment ROI

ROI segmentation

Breast tissue
segmentation

Pectoral muscle
segmentation

Pectoral muscle

segmentation

Pectoral muscle
segmentation

INbreast: Ac = 92, Sn = 90.57,
Sp =93.09, Jac = 78.47,
Dice = 87.58, MCC = 82.14
Private: Ac = 88.82, Sn = 95.61,
Sp = 83.41, Jac = 79.35,
Dice = 88.2, MCC = 78.8

PT 10

Ac = 94.6, Dice = 0.986
Jac =0.92
Ac = 98.62, loU = 0.8362,
RMSE = 0.1033
PT 10

TP =86.76, FP = 13.24, SI = 86.33,

DSC =90.12

DDSM: Ac = 96
MIAS: Ac = 96.47
PT 10

PT 10

PT 10

MIAS: Dr = 97.3, FP = 0.89
DDSM: Dr = 91.63, FP = 0.86
Ac = 94.937

PT 10

Ac = 7838, Sn = 77.89,
Sp = 87.62, F1-score = 82.24

PT 10

PT 10

MIAS: Ac = 99.3, Sn = 98.2,
SP =99.5, Jac = 94.6,
Dice = 97.5; BCDR: Ac = 99.6,
Sn =952, Sp = 99.8,

Jac = 92.6, Dice = 95.6;
INbreast: Ac = 99.9, Sn = 99.6,
Sp = 99.6, Jac = 96.9,
Dice = 98.8

MIAS: Ac = 97.08, Jac = 94.89,
Dice = 96.4; BCDR: Ac = 97.38,
Jac = 95.96, Dice = 97.6;
INbreast: Ac = 97.91,

Jac = 96.22, Dice = 97.66
Ac =93.71

(Continued)
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Ref.

Technique

Scope

Evaluation results (%)

(Al-Antari, Han,
and Kim 2020)

(Li et al. 2020)

(Shen et al. 2020)
(Peng et al. 2020)

(Patil and Biradar
2020)

(Zeiser et al., 2020)

(Indra et al., 2020)

(Ahmed et al.
2020)
(Cheng et al. 2020)

(Chen, Wang, and
Chen 2020)

(Shen et al., 2019)

(Zebari et al. 2020)

(Suganthi et al.
2020)

(Ali et al., 2020)

(Albalawi et al.,
2020)

(Soleimani and
Michailovich,
2020)

(Saffari et al. 2020)

(Boumaraf et al.
2020)

Deep learning YOLO

Combining self-supervised
learning network and
Siamese-Faster-RCNN

Otsu thresholding and

mathematical morphology
Faster R-CNN (DCN C3-C5

NAS-FPN OHEM)

Optimized region growing

based on FC-CSO

Data augmentation and U-

Net model

Multi scale invariant
threshold
DeeplLab
RCNN

Spatial Enhanced Rotation
Aware Network (SERAN)

Improved U-Net

MS-ResCU-Net

New threshold technique
based on texture features
Machine learning based on

HOG and NN

Contrast enhancement and

intensity-based
thresholding

Fully convolutional network

K-means clustering

CNN

conditional Generative

Adversarial Networks

(cGAN) network
Region growing

detection of suspicious
breast lesions

bilateral mass detection

Separate useful part of
image
Mass detection

Tumor segmentation

Mass diagnosis

detecting cancer
Mass segmentation

Breast mass
segmentation

Breast mass
segmentation

Simultaneous
segmentation and
classification

BS segmentation
PM segmentation

Breast region
segmentation

Pectoral muscle
segmentation
Mass segmentation
PM segmentation

Breast tissue

segmentation

ROI segmentation

DDSM: Ac = 99.17, MCC = 98.36,
Dice = 99.28; INbreast:
Ac =97.27, MCC = 93.93,
Dice = 98.02

INbreast: TP = 0.88, FP = 1.12
BCPKUPH:TP = 0.85, FP = 1.86

TXMD: TP = 0.85, FP = 2.70

PT 10

DDSM: TPR = 0.9345
INbreast: TPR = 0.9554
Ac =0.98, Sn = 0.59, Sp = 0.99,
Pre = 0.99, F1-score = 0.74,
MCC =0.76
Ac = 85.95, Sn = 92.32,
Sp = 80.47, Dice = 79.39,
AUC = 86.40
PT 10

Ac =0.98, pre = 0.8

Ac =99.84, Sn = 87.7, Sp = 99.9,
10U = 73.95, Dice = 84.3
DDSM: Ac = 0.9981, Sn = 0.8523,
Sp = 0.9986, Dice = 0.8216
INbreast: Ac = 0.9943,
Sn = 0.8272, Sp = 0.9956,
Dice = 0.8164
Ac = 94.16, Sn = 93.11,
Sp = 95.02, Dice = 91.78,
Jac = 85.13, MCC = 87.22,
AUC = 94.57
BS: Ac = 99.31, Sn = 99.54,
Sp = 99.41, Jac = 98.67,
Dice = 99.14; PM: Ac = 98.64,
Sn = 98.25, Sp = 99.63,
Jac = 96, Dice = 98.5
Ac = 9255

MIAS: Ac = 96, Dice = 94.5
INbreast: Ac = 95, Dice = 94
PT 10
Dice = 97.22, Ac = 99.64
Ac = 98, Dice = 88, Jaccard
index = 78

PT10
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Table 6. Summary of surveyed studies for feature extraction and feature selection methods.

Ref. Feature Feature extraction Feature selection
(Singh, Singh, and Texture LBP, CS-LBP, WLBP, and WCS-  N/A
Bhatia 2018) LBP
(Berbar., 2018) Texture and statistical ST-GLCM, wavelet-CT1, and N/A
wavelet-CT2,
(Salama, Eltrass, and Texture, Statistical, and shape ~ GLCM and improved WBCT GA+SVM+MI and
Elkamchouchi 2018) PSO+SVM+MI
(Tatikonda, Bhuma, and  Texture Combination of HOG and GLCM  N/A
Samayamantula
2018)
(Routray et al., 2018) Texture Laws Texture Energy Measure N/A
(LTEM)
(Samant et al., 2018) 22 Texture GLCM N/A
(Shastri, Tamrakar, and  Texture Combination of HOG with Gabor DP
Ahuja 2018) filter (HOT) and PB-DCT
(Goudarzi et al., 2018)  Geometric and texture Compactness, entropy, mean,  N/A
and smoothness
(Sapate et al. 2018) Geometric and texture N/A N/A
(Al-Masni et al., 2018) Deep feature CNN N/A
(Sadad et al. 2018) Texture Hybrid LB-GLCM+LPQ mRMR
(Uthoff et al.., 2018) 13 Histogram, texture, 18 shape GLRL, GLSZ, NGTD, LTEM k-melodies
clustering, 10
(Hussain et al., 2018) Texture Morphological, SIFT, and EFDs ~ N/A
(Mohamed et al. 2018) 50 texture, shape GLCM, GLRLM, wavelet Two sample T-test
with PVE
(Mohanty et al., 2019)  Texture Contourlet transform Forest
optimization
(Yousefi et al., 20189) Statistical, texture, gray level, Hand-crafted N/A
morphological
(Nedra et al.,, 2018) Texture SURF and BoW N/A
(Mohanty et al., 2019) 480 Texture 2D-BDWT and GLCM PCA + FOA
(Chen et al. 2019) 59 Shape and density FFT features, DCT features and ~ PSO
WT features
(Mabrouk, Afify, and Shape, texture, and invariant Morphological and GLCM Fisher score
Marzouk 2019) moment
(Gong et al. 2019) Texture and statistical GLCM N/A
(Pezeshki et al., 2019) 34 intensity histograms, texture, FD, GLCM, LBP GA
margin and shape
(Melekoodappattu et al.,, Texture SURF, Gabor filter, GLCM GWO
2018)
(Soulami et al. 2019) Shape N/A N/A
(Matos et al., 2019) Texture SIFT, SURF, ORB, LBP, SIFT+LBP  BOF
(Mohanty et al., 2019) Texture Discrete Tchebichef transform PCA and LDA
(DTT)
(Liu et al., 2018) Texture and geometric GLCM TWSVML21
(Gherghout, Tlili, and Texture GLCM, GLRLM RELIEF and MRMR
Souici 2019)
(Wang et al., 2019) Deep learning, morphological, CNN, GLCM N/A
texture, and density
(Karthiga, Narasimhan, 14 textural GLCM N/A
and Usha 2019)
(AlSalman et al.., 2019) 22 statistical DWT and GLCM N/A
(El-Sokkary et al.,, 2019)  Texture and shape GLCM N/A
(Tariq et al. 2019) 20 textural GLCM N/A
(Rampun et al. 2020) Texture Local septenary patterns (LSP) Dominant
patterns
(Mohanty et al., 2020) Shannon entropy, Tsallis Block-based discrete wavelet Principal
entropy, Renyi entropy, and packet transforms (BDWPT) component
energy analysis (PCA)
(Muduli et al., 2020) Lifting wavelet transform (LWT) PCA + LDA
(Zhang et al., 2020) Texture, shape, and deep SIFT, GIST, HOG, LBP, ResNet, N/A
learning DenseNet, and VGG
(Shen et al. 2020) Statistical textural DWT + GLCM N/A

(Continued)
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Table 6. (Continued).

Ref. Feature Feature extraction Feature selection
(Arora, Rai, and Raman  Deep learning AlexNet, VGG16, GooglLeNet, N/A

2020) ResNet18, and Inception

ResNet
(Rabidas et al., 2020) Texture Local Photometric Attributes Stepwise logistic
(LPA) regression
(Patil and Biradar 2020) Texture GLCM and GLRM N/A
(Fanizzi et al., 2020) Texture Haar wavelet decompositions Embedded and
filter

(Indra et al., 2020) Texture MTF based matrix vectors MTF based feature
(Boudraa, Melouah, and  Statistical texture GLCM, GLRLM N/A

Merouani 2020)
(Tavakoli et al. 2019) Deep learning CNN N/A
(Song, Li, and Wang Deep learning and texture DCNN, GLCM, GOG N/A

2020)
(Loizidou et al. 2020) Shape, intensity, texture FOS, GLCM t-test, MANOVA
(Farhan et al., 2020) Texture LBP, HOG, and GLCM N/A
(Albalawi et al., 2020) Deep CNN N/A
(Li, Mukundan, and Boyd texture M-FD + MLBP PCA

2021)
(Boumaraf et al. 2020) handcrafted Shape, density, margin GA

N/A - not available.

Mammography (DDSM) was cited in 45 papers (40%), whereas 12 studies
used only DDSM, and 33 studies used DDSM with another dataset. These
databases are most popular not only because they included a large set of
images but also because they permitted free usage of such images provided
the licenses are respected. For INbreast dataset, 23 studies (20%) used to
evaluate their study, where only 5 studies used only INbreast, while 18 studies
used INbreast with another dataset. Only eight studies (7%) used Braset
Cancer Digital Repository (BCDR) dataset. Some research used private data-
sets and databases, such as those supplied by the Alberta Program for Early
Detection of Breast Cancer and the database given by the University of
Chicago. Private datasets seem to surface less often in the studies relative to
public ones, so it is more challenging to get access to them. Only seven
publications (6%) utilized 100 or less images in the training phase to perform
the testing phase. Moreover, 12 publications (11%) utilized between 101 and
200 images, 44 publications (38.26%) used between 200 and 500 images and 42
papers (36.52%) used 500 or more images in their performance evaluation.
Furthermore, 11 publications (10%) did not determine the utilized image
number. 68.69% of the publications utilize 200 or more than 200 images.
Generally, the CAD method includes segmented systems, the identification
of anomalies, and the extraction of their characteristics for the corresponding
classification. CAD systems typically reach four main phases. The first phase of
pre-processing involves improving the contrast and tuning out the noise to
prepare the dataset images for the following phases through a set of image pre-
processing operations as illustrated in Table 4. The second phase is the
segmentation allows the system to extract features more easily from ROI as
illustrated in Table 5. The third phase is the feature extraction and selection
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Figure 3. Segmentation Techniques.

teach the system to detect the same suspicious features that are assessed by
radiologists. Features that have been selected can distinguish between benign
and malignant regions to reduce errors of classification. Despite considerable
effort, no consensus has been reached as of yet about those functions, which
are needed, as illustrated in Table 6. The last phase of the CAD system which is
considered as the CAD heart is classification. It is a data mining operation that
is an effective means of finding and extracting trends from broad datasets
using various methods of ML and DL.

Pre-processing (Enhancement)

In the data processing procedure for image processing, pre-processing is
regarded as critical. The ultimate goal is to enhance the quality of the images
produced. A pre-processing step is used in image processing techniques to
either improve image quality by suppressing unwanted distortions or to
improve image features before any further processing is performed (Zebari
et al. 2019). The success of subsequent image processing steps, such as
segmentation, feature extraction, feature selection, and classification is highly
dependent on the accuracy of pre-processing. Inhomogeneity, low contrast,
and unidentified noise are all common characteristics of clinical images that
necessitate pre-processing. Pre-processing can help suppress these problems
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in medical images where they affect analysis. Many techniques are used in pre-
processing, such as manual correction and mathematical operations, noise
removal and enhancement (George et al., 2017).

In this systematic review, 45 of the 107 studies using DMs in the first phase
were pre-processed to improve the following phases of the 107 studies on
breast cancer that were surveyed. DM's pre-processing stage is compared
among recent publications in Table 4. The pre-processing phase was used by
some publications, but evaluation was done in a later phase, as shown by the
segmentation results in this paper. The pre-processing techniques used by
most DMs consist of three stages. Remove radiopaque artifacts and labels by
denoising the mammogram, enhancing the contrast, and applying these tech-
niques. Median, Gaussian, Morphological and Wiener filters are commonly
used for denoising DMs. Many publications use contrast enhancing algo-
rithms such as contrast stretching, histogram equalization, contrast limited
adaptive histogram equalization, logarithmic contrast enhancement, and
exponential contrast enhancement, among others Exponential Contrast
Enhancement (ECE). These algorithms are used to enhance the DMs so that
specific ROIs or microcalcifications or masses visible in the image can be
displayed more clearly. Whopping 46 papers (40%) of the papers in this
sample had some form of pre-processing done. This filter has the highest
rate of use for denoising DMs in the literature with 14 papers (30.04%), while
the Contrast Limited Adaptive Histogram Equalization (CLAHE) filter has the
highest rate of use for improving contrast with nine papers (19.56%).
Additionally, the pre-processing phase is used to narrow down the ROI by
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Figure 4. CAD pipelines based on ML and DL models.
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eliminating regions with artifacts, noise, or pectoral muscle. The detection of
ROI is made possible by the thresholding technique, which removes artifacts,
background, and noise from images of the pectoral muscle (11% - 23.91%).

Segmentation

The process of segmentation involves splitting an image into several areas that
share common characteristics including contrast, brightness, texture, color,
and grey level. Segmentation aims to perform manipulation of an image’s
representation towards easier analysis and improved meaningful content
(Sharma and Preet 2016). Each segmented area is allocated with pixels from
an image. During the enhancing process of an image, segmentation typically
comes after pre-processing. The primary purpose of executing image segmen-
tation is not to produce an image with higher quality, rather the step is carried
out to delineate and discover observable structures and regions of focus
(Zebari et al. 2020).

Segmentation can be broadly categorized into two image intensity charac-
teristics, namely discontinuity and similarity. Similarity divides an image into
several areas based on similarity, dependent on pre-set criteria. Meanwhile,
discontinuity refers to dividing an image according to rapid intensity fluctua-
tions (Patil and Deore 2013). Figure 3 illustrates primary segmentation types
that have been widely utilized in the segmentation of medical images.

Convolutional techniques

o |
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Figure 5. Medical Image processing using CAD Based on ML techniques.
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Threshold Based Segmentation

Pixel-based segmentation technique falls under the sub-category of segmenta-
tion techniques (Patil and Deore 2013). The pixel-based technique is consid-
ered the most rudimentary image segmentation technique attributed to the
simplicity of its implementation concept. Despite this, the technique is effec-
tive in segmenting images containing bright objects that are surrounded by a
dark background. In the pixel-based technique, thresholding is used to calcu-
late the value where an object should be separated from the background.
Thresholding may be subdivided into two, namely, local thresholding and
global thresholding (Zebari et al. 2020). Thresholding via global thresholding
exploits global information. As abnormalities appear lighter than tissues
around them, thresholding is thus a viable solution to perform separation of
objects from background in segmentation. Local thresholding is also labeled as
adaptive thresholding. In operations, adaptive thresholding dynamically alters
the values of thresholding, conditional on local properties of an image’s sub-
regions. Specifically, the division of an image into regions is followed by a
determination of a threshold value that is contingent on the properties of local
pixels in a specific region of interest (Triyani et al. 2016). Heuristic optimisa-
tion methods can be used to perform thresholding (Kadry et al. 2021).

Region-Based Segmentation

Similarity-based segmentation divides an image into several regions depend-
ing on criteria of similarity that have been pre-set. The technique begins either
with an individual pixel or a cluster of pixels, which are also known as seeds.
Through this technique, neighboring seeds are examined, and subsequently,
only seeds that meet the criteria of similarity for a structure would be con-
sidered for inclusion (Zeebaree et al., 2019a). Similarity can be described based
on an image’s edges and/or intensities. Reiteration of examination of seeds
that meet a set of pre-set criteria is ended when no new pixels are included in a
structure of interest. A primary distinctive feature of this technique is its ability
to perform segmentation of similar regions and generating relevant regions
(Sadad et al. 2018).

Machine Learning-Based Segmentation

One of the most potent techniques in automating analysis and segmenting
medical images is machine learning. The technique can perform learning on
complex relationships from empirical data to derive decisions accurately (Liu
et al., 2014). Machine learning-based techniques for segmentation may be
further classified into supervised and non-supervised techniques. Supervised
machine learning primarily thrives in performing a different set of tasks via
only altering the training set. Segmentation training data are labelled auto-
matically by grouping identical pixels under unsupervised learning (Gordillo
et al., 2013).
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Edge Based Segmentation

Segmentation based on edges is the most widely utilized technique for detect-
ing edges, such as boundaries that are responsible for delineating different
regions. Edge-based segmentation operates based on discovering dissimilari-
ties of pixels towards determining nearby boundaries that correspond to
objects within an image (Gupta and Anand 2017). The technique achieves a
fast computation and is operable without needing historical information about
an image’s content (Thanh et al. 2020). Furthermore, the technique is
designed, such that it is highly perceptive to substantial fluctuations in grey
level values and in a way that allows it to independently evaluate whether an
edge falls within an edge or otherwise (Liu et al. 2020). This technique is
effective in overcoming the consequence of size changes in the segmented
object that is caused by the incompatible thresholding strategy utilized in
segmenting an image.

Deep Learning Based Segmentation

DL-based image segmentation techniques have achieved good results in the
field of image segmentation with artificial intelligence’s rapidly developing.
Deep learning has some benefits in segmentation accuracy and speed over
traditional machine learning and computer vision methods. This can help
doctors verify the size of tumors and quantify the treatment effect before and
after using deep learning to segment medical images. This reduces the amount
of work that doctors have to do by a great deal (Liu et al. 2021).

Despite the fact that traditional image segmentation methods no longer
hold a candle to the cutting-edge deep learning-based segmentation methods
currently in use, the concepts still hold value. For example, the presented
threshold-based image segmentation algorithm, the region-based image seg-
mentation technique, and the edge detection-based segmentation method (He
etal. 2017). To segment an image, these techniques draw on expertise in digital
image processing and mathematics. It is easy to calculate and quick to seg-
ment, but there is no way to insure the segmentation is accurate down to the
last detail. Deep learning models for image segmentation have made signifi-
cant progress recently. The accuracy of their segmentation has outperformed
that of conventional techniques. Image semantic segmentation was first effec-
tively implemented with a fully convolutional network. This was the first time
convolutional neural networks were used for image segmentation, and it was a
breakthrough (Lin et al. 2017). Researchers proposed the use of full convolu-
tional networks, which were developed by the authors. In addition to these,
there are a number of segmentation networks that excel at processing fine
edges, including U-Net, Mask R-CNN, RefineNet, and DeconvNet.

Based on the literature review of segmentation techniques for DMs of breast
cancer, several segmentation methods typically utilized by various researchers
such as neural networks, level set, watershed algorithm, clustering,
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thresholding, hybrid techniques, etc. as shown in Table 5. It is shown that the
surveyed papers introduced efficient automated CAD systems for the identi-
fication of breast cancer. From this systematic review it is observed that (59
papers — 51.3%) performed segmentation methods in CAD systems. The
researchers used an adaptive thresholding method to segment the DMs of
breast cancer. This method will also aid in distinguishing between the various
forms of the tumors, e.g., benign and malignant. Based on the surveyed papers
(8 papers — 13.55%) used thresholding technique to segment ROI from DMs.
Clustering is a mathematical study from unsupervised learning, this technique
deals with discovering a hidden structure from an unlabeled data set. Since
clusters are divided from each other by regions of the comparatively low
density of point, clusters define as “continuum-like regions of this space,” or
areas surrounded by space that have a high density of points, which are
separated from other high-density functions by low-density regions of the
point. Accurate and efficient techniques to detect ROI in DMs based clustering
were presented, 5 papers — 8% from the surveyed studies used clustering
methods. Similarly, the surveyed papers used edge detection-based segmenta-
tion methods to segment ROI from DMs. Moreover, Table 5 showed that (8
papers — 13.55%) of researchers were introduced different automatic comput-
ing system based on region-based segmentation as well as hybrid techniques to
extract ROI from DMs to improve a classification method which could predict
breast cancer. Furthermore, recently DLTs were used widely in image proces-
sing fields, from our surveyed papers it has been investigated that DLTs were
used widely in the segmentation of DMs (15 papers — 25.42%). Eventually, (10
papers — 16.94%) used other segmentation techniques to segment DMs for
turther processing.

Feature Extraction

Image processing tasks regularly involve a large corpus, which consumes a
significant amount of time and is less practical for the task of efficiently
classifying objects from background in segmentation. One strategy to reduce
computation time is to perform the transformation of input data by reducing
the number of feature vectors. The process of transforming the input data is
known as feature extraction. Feature vectors typically hold related information
and are exploited as input vectors in classification tasks. Classification of
features could be performed based on shape, texture, and color (Tatikonda,
Bhuma, and Samayamantula 2018). As seen on mammogram DMs of the
individual body, various organs and tissues have very various texture detail.
Texture has traditionally been a significant diagnostic function since texture
analysis is a good method for lesion identification and disease diagnosis.
Computerized feature extraction from mammography images is the most
promising strategy to be used in performing breast cancer diagnosis. This is
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attributed to faster analysis and higher accuracy in diagnosing possible signs of
breast cancer. The features hold vital information about digital images that are
useful in analyzing images. Primary criteria which have been utilized to
discriminate malignant and benign masses include shape and texture
(Goudarzi et al., 2018) (Chaieb and Kalti 2019).

Texture Features

Among the most essential characteristics considered for distinguishing ROI or
artifacts in the image is the texture feature. The estimation of most of the
textural features is performed utilizing values of gray level from the entire
image or the ROIs only. During this accelerated phase within cancerous
tumors, there is the development of a growing number of nuclei in cancerous
tissue. Therefore, it is possible to distinguish various stages of cancer with the
aid of texture characteristics (Sajeev, Bajger, and Lee 2018) (Saleck,
ElMoutaouakkil, and Mougouf 2017). An explanation of such characteristics
involves resemblance, variance, curvature, comparison, etc. Features of texture
may be categorized into two including frequent and statistical features.
Statistical features utilized in this study comprised five classes, namely, First-
Order Statistics (FOS), Gray-Level Run-Length Matrices (GLRLM), Gray-
Level Difference Matrices (GLDM), Gray-Level Co-occurrence Matrices
(GLCM), and Tamura features (Chaieb and Kalti 2019). Frequency features
are a texture that is transformed into the frequency domain, which does not
involve an image’s spatial domain. Two structural transformation techniques
are studied including 2D wavelet transform and Gabor transform (Bagchi et al.
2020).

Feature selection is a technique used to reduce the dimension of data, which
is widely utilized in the areas of data mining, statistics, pattern recognition,
and machine learning. In operations, the technique reduces a set of features
into a subset of important features that are dependent on certain criteria.
Typically, a set of features consumes a large dimensionality space attributed to
large variations of abnormalities and normal tissues (Mohanty et al., 2019)
(Tubishat et al., 2020). Thus, it becomes necessary to remove features deemed
insignificant and perform selection on features that are deemed most promis-
ing to be used to discriminate tumors from a set of all features. This comes
with its inherent challenge to select features that are capable of uplifting
accuracy while at the same time can improve searching time (Shastri,
Tamrakar, and Ahuja 2018) (Kou et al. 2020).

Morphological Features

Geometric features have also been termed as shape or morphological features.
The features take after the shapes of regions of interest (Vikhe and Thool
2018). Analyzing geometric features of suspected lesions that are identified
from views in mammograms meticulously is useful, as this may be able to
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positively envisage the probability of abnormality and substantiate subsequent
necessity to conduct a biopsy. Along with density, lesion’s margin, size, and
shape are critical in defining the probability of a lesion falling either under a
malignant tumor or a benign mass category (Sapate et al. 2018).

Intensity Features

Intensity characteristics exclude from the voxel depiction of ROI. Although
several visualizations are built upon the local features (median, mode, and
variance), typically ROI visualizations are built upon the intensity-based
features (Mohamed et al. 2018). Regardless of the data or the likelihood
class, the values of gray-scale values inside an ROI are represented by a
statistical model. The histogram of the intensities helps describes the structure
of the area, the details of each pixel, and other suspicious characteristics
(Berbar., 2018). These features and properties help detect and define the
ROL In two dimensions, an image is a function that maps the spatial coordi-
nates x and y into a value f(x, y) that represents the image’s gray level intensity
at that point. An image is a function in two dimensions. A digital image is one
in which x, y, and f(x, y) are all discrete and finite quantities. Each pixel in a
digital image has a specific position and gray intensity value, and together they
make up a digital image. The spatial domain refers to the area covered by an
image’s coordinates (Massafra et al. 2021). In general, statistical features may
be produced from the histogram of an image, such as, mean, variance, skew-
ness, kurtosis, entropy, and capacity (Kaushal et al., 2019) (Pashoutan,
Shokouhi, and Pashoutan 2017).

Deep Features

Machine learning has a connection to the problem of learning from input data
samples because of the unified rule base that are used in it. This method
includes analytical, statistical, and mathematical methods instead of explicitly
programming the machines to learn from the training data. In the improve-
ment of computer-aided breast cancer identification methods, machine learn-
ing techniques such as SVM, nave Bayes, artificial neural networks (ANNs),
and set classifiers were becoming popular (Oza et al., 2021). Machine learning
algorithms begin with the extraction of image features. Image features are
frequently defined using arrays or descriptors, which training processes can
then make use of. Choosing the right features is critical for training accuracy.
Due to a variety of issues, the traditional machine learning paradigm has
evolved into deep learning. Deep learning is more general than conventional
machine learning because it focuses on mechanisms for drawing inferences
from data and achieves higher generalization levels. One of the most influen-
tial deep learning networks is the so-called CNN, which has convolutional
layers (Pillai et al., 2019) (Oza et al., 2021). To the contrary of traditional
machine learning approaches, deep learning techniques do not require feature
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extraction steps because of the large number of inner layers that extract
features as they pass through layer-embedded operators. By studying thou-
sands of images during the training process (Sechopoulos, Teuwen, and Mann
2020), DL-based algorithms learn what an abnormal mass looks like instead of
inserting data on its shape, size, pattern as well as other features.

Table 6 observed that various researchers utilized various methods for
feature extraction purposes. Many researchers used texture features (26 papers
- 53.06%) as classifier input and obtained good results. GLCM is a method that
is mostly utilized to extract texture features based on the surveyed papers (20
papers — 40.81%). Shape features are terminology used to characterize the
shape of masses such as circularity, convexity or concavity indexes, spiculation
index, perimeter, and more. Cancerous masses are more irregular and spicu-
lated whereas healthy ones are rounder and more oval. Due to this reality,
shape features are commonly utilized as identifiers in mass classification. This
consistency includes the use of an appropriate segmentation method that can
extract the ROI from unwanted regions. The most widely utilized methods for
feature extraction in DMs are texture and morphological methods. Therefore,
the combination between both features texture and morphological is regarded
as the best method. Seven papers — 14.28% have used the integration of texture
and morphological features. Moreover, DL is also used to extract features (7
papers — 14.28%) as an input to the classifier.

Breast Cancer Diagnosis

The most advanced sense of a human being is vision, but sometimes, the
human vision is limited in it is capacity to process images. Therefore, through
the concept of image processing and ML, computerized systems can acquire
information about a problem that the human vision cannot acquire (Yadav
and Jadhav 2020). This means that sometimes computerized systems are
required in cases whereby the human vision is limited and cannot distinguish
a problem. Analysis of medical images for instance X-rays, ultrasound (Irfan et
al. 2021), thermal (Rajinikanth et al. 2021) images and scanners can help in
radiologic diagnosis (Saxena et al., 2020). Figure 4 presents steps involved in a
CAD system using the ML and DL techniques. The pre-processing and
segmentation stages can be used for both ML and DL.

Machine learning techniques and image processing have made great con-
tributions to the area of medicine through the digitalization of medical images,
which allows the analysis and investigation of phenomena using a computer.
The basic capability of ML is that it can discover new models without learning
much about the underlying structures (Gardezi et al. 2019). This sort of
research can extract complicated knowledge from noise or other details with
a great deal of success. As the usage of statistical models for expert systems
eliminates subjective assessments, these models provide excellent insight into
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the clinical analysis of provided diseases (Singh, Singh, and Bhatia 2018) (Asri
et al. 2016). The ML techniques may be used to find the breast lesion trends
since these algorithms are used in the processing and forecasting of medical
images. Therefore, much research has also utilized various machine learning
methods in the prediction and diagnosis of breast cancer. Figure 5 shows a step
of CAD system-based machine learning in medical image processing.

Deep learning strategies are representation-learning methods that consist of
complex yet basic components and are utilized to change the representation at
one stage into a more complex presentation at marginally more intellectual
stages. The incredibly Deep Neural Network (DNN) framework made it
capable of high-level inference and advanced artificial intelligence functions
(Murtaza et al., 2019). DL paradigms provide new opportunities in the area of
biomedical informatics due of its features for instance excellent results, end-
to-end learning model with integrated learning feature, capacity to manage
complex and multi-modal data and so on. DL methods have been utilized in
the productive classification and interpretation of DMs of breast cancer
(Zheng et al., 2020).

DL differs from ML because it addresses data in the method in a certain
way, it is described a bit differently. Whilst Artificial Neural Networks (ANN)
are employed to replicate the convolutions of the nociceptor neuron, ML
approaches are based on certain standardized knowledge regarding the data
that they operate upon. Unlike supervised learning, which is the process of
learning a mapping function input to an output based on previously seen
input-output pairs, unsupervised learning is not characterized by minimal
human control and may be characterized as a kind of ML that occurs when
a machine looks for unknown trends in data without prior labeling
(Dembrower et al., 2020) (Sharma and Mehra 2020) (Hussein, 2012) (Kim-
Soon, Abdulmaged, and Mostafa 2021).

When performing classification on suspected lesions, the goal is to identify
those with a high likelihood of being correctly identified and the lowest risk of
leading to diagnostic errors. Textural and geometric features’ values are
utilized to proceed with classification, as elaborated earlier (Sapate et al.
2018). In this section, general classification techniques that are utilized to
differentiate between the types or subtypes of cancers are briefly described.
In essence, two learning algorithms are commonly widely used in the task of
classifying tumors namely supervised and unsupervised algorithms. Most of
the CAD systems for breast cancer detection from mammogram images used
ML techniques to classify cancer subtypes. Several supervised and unsuper-
vised techniques were used: Support Vector Machine (SVM), K-nearest
Neighbor (KNN), Neural Network (NN), Naive-Bayes (NB), C4.5, Decision
Tree (DT), Linear Discriminant Analysis (LDA), Ensemble, Logistic regres-
sion, ANN, Bayesian, Multilayer Perceptron (MLP), Self-Organizing Map
(SOM), Neuro-Fuzzy System (ANFIS), Probabilistic Neural Network (PNN),
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Fully Connected Neural Networks (FC-NNs), Multiple-Instance Random
Forest (MI-RF), and Convolutional Neural Network (CNN) on breast cancer
databases to compare the performance of those algorithms. The surveyed
papers have used different techniques as classifiers from two main groups
including MLTs and DLTs. From Table 7 it is shown that (44 papers - 57.14%)
used MLTs whereas (33 papers — 42.85%) used DLTs. We categorized the
analyzed studies based on the technique used to discriminate breast masses.
We extracted the techniques they used in each paper, the classes used in the
classification, the scope of the study, and the results they achieved. From the
118 papers analyzed in this study, 80 papers presented in Table 7, 35% (27
papers), 11.68% (9 papers), 14.28% (11 papers), 24.67% (19 papers) used SVM,
KNN, ANN, and CNN as a single classifier to distinguish mammographic
masses, respectively. We analyzed 34 papers (44.15%) that used more than one
method to classify mammographic masses. Some of these studies proposed a
hybrid classifier that combined different methods, while other studies exam-
ined different classifiers for classification. The studies (Melekoodappattu et al.,
2018) (Mohanty et al., 2019) (Mohanty et al., 2020) (Muduli et al., 2020) (Patil
and Biradar 2020) (Indra et al., 2020) (Kaur, Singh, and Kaur 2019) (Zhang
and Wang 2019) created a hybrid classifier based on using different classifiers,
an overview of papers that used one or more than one technique is given in
Table 7. SVM has a higher rate of use whereas KNN and ANN have a lower
rate.

Typically, the classification process is binary, i.e., benign and malignant
(46.75% - 36 papers). However, (12 papers — 15%) papers used the class
normal and abnormal, and (12 papers - 15%) used three classes (benign,
malignant, and normal). Moreover, we showed that (10 papers - 12.5%)
used multi-classes in the classification while at the first step, the classification
has been done into normal and abnormal then the abnormal has classified into
benign and malignant. Also, some studies (8 papers — 10%) also used BI-RADS
classes (2, 3, 4, and 5) for classification. In terms of results, accuracy was
reported in 69 papers (94%). Most of the surveyed papers (38 papers — 52%)
presented their performance evaluation based on accuracy, sensitivity, and
specificity, while (36 papers — 49%) used AUC in their evaluation.

Discussion

In this paper, various techniques employed in different stages of the CAD
system to diagnose breast cancer using DMs images have been discussed. Pre-
processing is the initial step in digital image analysis which is performed after
the image acquisition. It plays an important role in diagnosing the biological
tissues captured in an image by refining the quality of the image without
destroying the important features. The current study shows that most of the
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researchers use a median filter to reduce noise as well as CLAHE as a contrast
enhancement technique. Several surveyed papers used pre-processing meth-
ods to segment pectoral muscle, artifacts, and image background in DMs.

To classify breast cancer into different classes, feature extraction is essential.
Textural and morphological features were used for early diagnostics of DMs of
the breast. The textural features can aid in the grading of the cancerous tissue.
GLCM technique has a superior rate in using feature extraction technique
based on the surveyed papers. In classification, both MLTs and DLT's are used
to classify extracted features into different classes. As per the surveyed papers,
SVM has the maximum rate in using as a classifier from MLTs whereas CNN
has a higher rate from DLTs. SVM can recognize non-linear boundaries
between classes in feature space and have many kernels to be used. They
also can deal well with overfitting, particularly in the high-dimensional feature
space.

We epitomize the recommendations as well as review the guidelines on how
to boost the efficiency of breast cancer diagnosis and classification utilizing
DMs. During the survey of this SR, it is noticed that most of the publications
utilized datasets from one database only. Moreover, the pre-processing stage is
a crucial stage to improve the performance of further stages, wherein most
publications do not utilize any method of this stage; e.g., CLAHE to ameliorate
the contrast of DMs, to smooth the DMs based on unsharp masking method,
and to reduce noise from the image using noise reduction filters. Furthermore,
to increase the generalization and reduce the overfitting of the system, both
augmentation and drop-out are recommended to utilize. For mathematically
practical it is preferred to utilize better image quality or full resolution whereas
many researchers reduced image resolution. Another problem according to
the dataset is that utilizing only one database or format during the evaluation.
The classifier would have an easier time dealing with this, whereas DMs from
different databases and the use of both formats Screen-Film Mammography
(SFM) and Full-Field Digital Mammography (FFDM) together would be
problematic.

Further, some recurring issues have been noticed in some of the surveyed
publications. The issue outlined here is the challenge in contrasting the
sensibility and specificity of a report that presents only the Area Under the
Curve (AUC) with another that presents only the sensibility and specificity.
This challenge in the study fields renders it challenging to figure out the
literature in this research domain. Another supposed issue with this analysis
is that the researchers do not equate the findings by the classifier with the
results that are collected by the clinician for the reasons of whether the
classifier is more reliable. The next issue we noticed was the fact that in several
publications the approach utilized during the experiments is not explicit or
was not present e.g., k-fold cross-validation, a left one out technique, a holdout
technique, and so on. Over the above, one standard repository which is
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generated along with the ground truth of the images is needed to test and
verify the segmentation results; thus, it helps in successful diagnosis. Despite
this, it is suggested to provide uniform open-access image datasets that include
images from various image modalities for the same case to endorse the
dependence on more than one image modality in the classification role and
merge the details from several views. CAD systems enable to provide results
relying on various perspectives related to various image modalities.

Conclusion

The results of this systematic review can help to support inventive research
efforts for improving automated CAD systems to help the medical research
community in the identification of breast cancer at an early stage. Current
MLTs have utilized various image modalities in CAD systems for breast cancer
detection. The basic components of the CAD system for breast cancer diag-
nosis are based on DMs including the pre-processing, segmentation, feature
extraction, feature selection, and classification stages. Recent trends have been
analyzed for pre-processing techniques that show that it needs more quality of
the image before segmentation or feature extraction phases. To explore new
developments regarding segmentation and classification methods, this analysis
examined the influences of CAD schemes. The research reveals that the
potential CAD method can be independent of the magnification factor and
dataset. ML classifiers based on DL that were built by adding several layers in
the framework become more computationally challenging as the number of
layers increase. For the conventional methods, it is rather complicated to
compare to DL. It also needs a massive number of datasets for training.
However, the data augmentations that come from the assistance of numerous
deep learning algorithms have contributed to delivering more consistent and
accurate performance. While there are some effective approaches in the
literature, there is also a potential to explore more efficient strategies in future
work to aid with breast cancer detection at an early level. We hope that this
study will guide the breast tissue research community to continue to improve
their methods of diagnosing breast cancer.
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