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Abstract 
 

The paper presents two methods for solving the fractional Fornberg-Whitham (FFW) equation. 
Based on the peaked solutions of FW equation, suppose the solution’s variable-separated form, 
and the FFW equation is transformed into a constant fractional differential equation (FDE). To 
solve the transformed equation, first, the fractional variational iteration method (FVIM) is used. 
Secondly, the undetermined coefficient method is used to expand the solution of the constant 
FDE. The expansion is based on the Generalized Taylor formula. Also the solutions are yielded 
for FFW. It should be pointed out that two cases of the order of fractional derivative between 1 
and 2 and that between 0 and 1 are discussed respectively for the transformed FDE. Last, we 
give two numerical examples by using the two presented methods. The results show that the 
results agree well by both two proposed methods, and the two methods are high efficient in 
solving FFW. 

 

Keywords: Differential transform method; Generalized Taylor formula; Caputo fractional derivative; 
Fractional differential equations; fractional Fornberg-Whitham equation. 
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1 Introduction 
 
During the past three decades, great interest has been attracted in many phenomena and 
problems which can be dealt with by using the fractional derivative in engineering, physics, biology, 
fluid mechanics and other sciences. From the aspect of physical and engineering problems, there 
are many applications such as control theory of dynamical systems, creeping and relaxation for 
viscoelastic materials, diffusion and reaction processes, electrical networks, optics and signal 
processing [1-3]. 
 
Considerable effort has been devoted to find robust and stable numerical and analytical methods 
for solving fractional differential equations. Some numerical methods [4–8] and analytical methods 
[9–10] have been developed for fractional differential equations (FDEs).  
 
Other newly developed methods in dealing with the partial order differential equations of fractional 
order such as modified simple equation method, the first integral method, (G/G)-expansion method 
and et al can be found in [11-14].  
 
The variational iteration method (VIM) is a generally used approach for finding the approximate 
solution of linear and nonlinear problems. VIM was proposed by He [15-16] who was the first to 
apply the VIM to fractional differential equations in [16]. 
 
Many scholars have applied VIM or modified version to solve linear or nonlinear differential 
equations [17-20]. For a relatively comprehensive survey on the concepts, theory and applications 
of the method, readers are referred to review articles [21-22].  
 
The late development of the VIM in the fractional calculus is q-difference equation and fractional 
one [23-24]. 
 
In this paper, we consider the following time-fractional Fornberg–Whitham equation (FFW equation) 
 

0 3C
t xxt x xxx x x xxD u u u uu uu u u      ,  0,  0t                                  (1) 

 
with initial condition as 

 
1

2( ,0)
x

u x Ae                                                                                                  (2) 

 
where   is the parameter describing the order of the fractional Fornberg–Whitham equation, and 
A is an arbitrary constant. The fractional derivatives are understood in the Caputo sense. 
 
It is obvious that the response expression should contain the order parameter of the fractional 

derivatives  . In the case of 1  the fractional Fornberg–Whitham equation reduces to the 
classical nonlinear Fornberg–Whitham equation. It’s known that Fornberg and Whitham obtained a 
peaked solution for Eqs. (1) and (2) with the form: 
 

 

1 4

2 3( , ) e
x t

u x t A


                                                                                             (3) 

 
The nonlinear Fornberg–Whitham equations have been studied by many authors such as Saker et 
al. [25] and Lu [26]. 
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Recently, Laplace transform is adopted in some famous analytical methods to simplify the solution 
process and improve solution’s accuracy. HPTM is used by Merdan etc. in [27] and Jagdev Singh 
etc. in [28] to solve the FFW equation. Besides, the Laplace Adomian decomposition method 
(LAPM) is also used in [29,30] (Tsai and Chen, 2010; Zeng and Qin, 2012). Especially, it should be 
pointed that Wu and Dumitru firstly suggest a universal way to identify the multiplier by 
implementing Laplace transform. The way is proved to be a simple but effective approach and 
used in many problems [31-34]. 
 
In the paper, aiming at solving the FFW equation, we use the fractional iteration method (FVIM) 
with the Lagrange multiplier determined by the way in [32-35]. Besides, we use undetermined 
coefficient method for solving the nonlinear FFW equation based on Generalized Taylor formula. 
The results agree surprising well by using the two proposed methods. 
 
Though many authors have studied the fractional F-W equation and obtained many useful and 
valuable conclusions [25,35]. However, they didn’t discuss the case of the fractional order larger 
than 1. Further, we also point out an error in the existed literatures and we give a full conclusion 
with two cases of the fractional order’s range.  
 
For the convergence of the Fractional variational iteration method, the convergence criterion can 
be obtained as shown in the article [36,37], and an accelerated convergence will be obtained by 
the optimal variational iteration method [38]. 
 
The paper is organized as follows. In Section 3, we introduce the main idea of the variational 
iteration method. Approximate results for FW equation are presented. In Section 4, we apply the 
undetermined coefficient method for solving the nonlinear FW equation. In the last section, 
Discussions of cases about different parameter  (order of the FW equation) are given in order to 
assess the two methods: FVIM and the undetermined coefficient method. The number of items in 
the series solution truncated to keep the convergence is also analyzed. 
 

2 Preliminaries 
 
Definition 1.1. The Caputo derivative is given as 

 
 

1 ( )1
( ) ( ) ( )d , , 1

( )
C n n
a t

a

t

D f t t f t a n n Z
n

    


        
               (4) 

 
Definition 1.2. The Riemann–Liouville (R–L) integration of ( )f t  is defined as  

 

1
 1

( ) ( ) ( )d , 0
( )

a t

t

a
J f t t f    


  

                                                       (5) 

Definition 1.3. Laplace transform of the term 0
C

tD u
 is given as 

 

( ) 1
0[ ] ( ) (0 ) , 1C k k

tL D u s u s u s n n                                                  (6) 

 
where L  is Laplace transform and ( ) [ ( )]u s L u t . 

 

Assuming ( ) [ ( )]h s L h t  and ( ) [ ( )]g s L g t , the convolution theorem is 
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*

 0
( ) ( ) ( ) ( )d

t

h t g t h t g                                                                            (7) 

 
and 
 

*( ) ( ) [ ( ) ( )]h s g s L h t g t                                                                                  (8) 

 

2 Solutions by FVIM Using the New Lagrange Multiplier 
 
First we briefly introduce the Lagrange multiplier identified by Laplace Transform and the 
corresponding integration formula. These can also be found in [32] and other works of Wu and 
Dumitru. 
 
We consider a general FDE 
 

0 [ ] [ ] ( )C
tD u R u N u g t                                                                                (9) 

 
where [ ]R u  is a linear term and [ ]N u  is a nonlinear one. 

 
Take Laplace transform on the correction functional Eq. established via the R-L integration, Wu 
and his cooperators [32] give a new way to identify the Lagrange multiplier and improves the 
variational iteration formula (2) as 
 

1 0 0( , ) [ ] [ ] ( ) ,      0, 0C
n n t t n n nu u J t D u R u N u g t    

                  (10) 

 

where [ ], [ ]n nR u N u  are restricted variation, i.e. [ ] 0, [ ] 0n nR u N u   . The Lagrange multiplier is 

determined as ( , ) 1t    . 

 
The above iteration formula (10) is also valid for differential equations when   is an arbitrary 
positive integer.  
 
Eq. (10) is expressed through Riemann–Liouville (R–L) integration. In fact it can be applied in the 
classical Riemann integration 
 

 

1 00
( ) ( , ) [ ] [ ] ( ) d ,     0, 0

t
C

n n t n n nu u s t D u R u N u g t    
             (11) 

 

where [ ], [ ]n nR u N u  are restricted variation. Then the Lagrange multiplier can be identified as 

 

  11 ( )
( , )

( )

 




t
t

 
 


                                                                              (12) 

 
It should be pointed out that the FVIM is introduced for fractional differential equation in this 
section. However, The form of Eq.(11) can be further extended to the case for partial fractional 
differential equation as 
 

1 0 0( , ) ( , ) ( , ) ( , ) [ ( , )] [ ( , )] ( , )C
n n t t n n nu x t u x t J t D u x R u x N u x g x      

         (13) 
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To simplify the FFW equation, according to the initial condition Eq.(2),we suppose  

2( , ) ( )
x

u x t Ae v t                                                                                           (14) 

 
 
Substituting Eq. (14) into Eq. (1), the obtained equation can be simplified as  
 

0

1 1
0

4 2
t

C
t v vD v                                                                                    (15) 

 
According to Eq. (2) and (13), the initial condition of Eq. (14) is obtained as 
 

(0) 1v                                                                                                          (16) 

 
Next we use the FVIM to solve the differential equation (15). To determine the higher order of the 

derivative, the value of   should be compared with 1. Two cases of 0 1   and 1   are 
discussed as follows. 
 

2.1 Solution for 0 1   by VIM 
 
Eq.(15) can be written as 
 

04 2 0C
ttv vD v                                                                                    (17) 

 
Eq. (17) is a classical one-order differential equation with fractional derivative. In the classical 
iteration method, the Lagrange multiplier, therefore, can be identified as λ = −1. The following 
variational iteration formula can be obtained 
 

 

1 00
( ) ( ) ( ) 4 ( ) 2 ( ) d

t
C

n n n nv t v t v D v v
    

                                          (18) 

 
After several iteration based on formula (18) and initial value (16), we can obtain the following 
approximate expressions as 
 

0

1

2 2
2

( ) 1

( ) 1 2

1
( ) 1 2 8 2 ;

(3 )

v t

v t t

v t t t t






 

   
 

                                                           (19) 

 

2 2 3 2 3 3
3

1 1 1 4
( ) 1 2 8 2 32 32

(3 ) (4 2 ) (4 ) 3
v t t t t t t t  

  
        

     

  
 

With the help of Mathematica software, one can obtain the rest of the approximations. 
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From Eq. (19), it’s found that the items have the form as ,( , 0,1, , 1)i jt i Z j i     in the i-th 

iteration solution ( )iv t . The solutions of the FFW equation can be approximated as 

2( , ) ( )
x

i iu x t Ae v t , ( 0,1,2, , 1) i n . 

 

2.2 Solution for 1 2   by FVIM  
 
When 1  , Eq. (15) is a FDE with its fractional derivative order not less than 1. By using Eq. (11) 

and (12)，the following variational iteration formula can be obtained 
 

1
 

1 0
0

( ) 1 1
( ) ( ) ( ) ( ) ( ) d

( ) 4 2

t
C

n n n n n

t
v t v t D v v v



 


   







  
      

                   (20) 

 

We start with an initial approximation 0 0( ) (0) 1v t v   given in Eq. (16), by the above iteration 

formula (20), we can obtain the other components as 
 

0

1

2 1 2
2

( ) 1

1
( ) 1

2 (1 )

1 1 1
( ) 1

2 (1 ) 8 (2 ) 4 (1 2 )

v t

v t t

v t t t t



  



  




 
 

   
    

                              (21) 

2 1 2 3 2 3 1 3
3

1 1 1 1 1 1
( ) 1

2 (1 ) 8 (2 ) 4 (1 2 ) 32 (3 1) 8 (3 ) 8 (3 )
v t t t t t t t     

     
        

        
     

  
 

From Eq.(21), it’s found that items have the form as ,( , 0,1, , 1)i jt i Z j i     in the i-th iteration 

solution ( )iv t .The solutions of the FFW equation can also be approximated as 2( , ) ( )
x

i iu x t Ae v t . 

 

Particularly, when 1  ，
4

3
A  , the obtained 2 ( , )u x t  and 3( , )u x t  based on Eq.(21) are 

22
2

2 32
3

4 5 1
( , ) 1

3 8 8

4 21 3 1
( , ) 1

3 32 16 48

x

x

u x t e t t

u x t e t t t

 
   

 

 
    

 

 

 
which are the same with those in [26]。 
 

3 Solutions by Undetermined Coefficient Method Based on 
Generalized Taylor formula 

 
To further discuss the FFW equation, the undetermined coefficient method is used to find the 
solution. 
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For the both two cases of 1 2   and 0 1  , Eq. (15) can be treated as the fractional 
constant differential equation of v  about t . Using the general Taylor formula, we suppose 
 

      
0

( )
(1 )

i

i
i

t
v t a

i










 

                                                                                    (22) 

where   is the maximum mutual of alpha and 1, and , 1m n    ,
Znm, 。Here suppose 

m n , then Eq.(15) can be written as  
 

 0 0

1 1
0

4 2
C Cm n

t tD v D v v                                                                       (23) 

 
Substituting Eq. (22) into Eq. (23), it leads to 
 

1 1

1

0

1 1

4 (1 ) 4 (1 )

1 1
0

4 2 (1 )

i im n

m i n i n i
i i m

i

m i n i i
i

t t
a a a

i i

t
a a a

i

 



 



  

  
 



 


   
     

      

 
    

  

 


                             (24) 

 
Let the coefficients of the power of t  with negative exponent be zeros 
 

1
0    ( 1, 2, , 1)

4
i n m ia a i n m n m n                                        (25) 

 

0    ( 1, 2, , )ia i n m                                                                          (26) 

 
From Eq. (25) and (26), we can obtain  
 

0,     ( 1,2, , 1)  ia i n                                                                         (27) 

 
If n m , the corresponding results will be 
 

0    ( 1,2, , 1)  ia i m                                                                          (28) 

 

The uniform results for the two cases of 1 2   and 0 1  will be 
 

0,     ( 1,2, ,max( , ) 1)  ia i m n                                                           (29) 

 
Let the coefficients of the power of t with non-negative exponent be zeros 
 




























0
2

1

4

1

0
2

1

4

1

0
2

1

4

1

222

111

0

aaa

aaa

aaa

nm

nm

nm

                                                                                  (30) 



 
 
 

Siyuan and Zi-chen; BJMCS, 6(3): 187-203, 2015; Article no.BJMCS.2015.072 
 
 
 

194 
 
 

The general coefficient equations can be written as 
 

4 2 0    ( 0,1, 2, )m i n i ia a a i                                                            (31) 

 

If 4.0 , then 2, 5m n   and 0.2  . The first 1p   equations in Eq. (30) 

),,2,1,0( pi   can be written in matrix form as follows 
 

1 0

2

3

4

5

6

5

0 4 0 0 1 0 0 2

2 0 4 1 0 0

2 0 4 1 0 0

2 0 4 0 0

2 0 4 0 0

2 0 0 0

2 0

1 0p

a a

a

a

a

a

a

a 

    
         
    
    
         
    
    
    
    
        











 



                                    (32) 

 

The coefficient 0a is equal to 1 given by the initial condition, and according Eq.(29) 

0    ( 1, 2, , 1)ia i n   , then all the coefficient of ia ( 1,2, , 5)i p   can be determined 

theoretically by Eq.(32), so the expansion expression of ( )v t  can be obtained. 

 

4 Numerical examples when 4.0  and 2.1  
 
4.1 Solution for 4.0  and 2.1  by FVIM 
 
When 4.0 , using the results in Eq. (19) by iteration Eq. (18), Fig. 1 shows the approximations 

of ( )nv t ’s curve with time (0,0.6)t  for different iteration times 10,20,25,28n  . Then Fig. 2 

shows the approximations of ( )nv t changing with (0,1)t  for different iteration times 

20,25,28,30n  . Fig. 3 gives u(x,t)’s curve surface varying with t and x after 30 iteration times 

when 4.0 . 

 
 

Fig. 1. v(t)’s curve by FVIM when 4.0 , [0,0.6]t  
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When 2.1 , using the results in Eq. (21) by iteration Eq. (20), Fig. 4 shows the approximations 

of ( )nv t ’s curve with time [0,2]t  for different iteration times 1,2, ,10n   . Then Fig. 5 shows 

10 ( , )u x t ’s curve surface when [0,2]t and [ 2,2] x . 
 

 
Fig. 2. v(t)’s curve by FVIM when 4.0 , [0,1]t  

 
Fig. 3. u30(x,t)’s curve surface varying with t and x when 4.0  

 

 
 

Fig. 4. v(t)’s curve by FVIM when 2.1 , [0,2]t
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Fig. 5. u(x,t)’s curve surface varying with t and x when 2.1  

 
4.2 Solution for 4.0  by the undetermined coefficient method 
 
When 4.0 , then , ,m n   in Eq.(20) are 2, 5m n   and 0.2   respectively. The initial 

values of ia are obtained in section 4 as 0 1, 0( 1,2,3,4)ia a i   . From Eq.(31), the iteration 

relationship is established for the coefficients of ia as 

 

5 24 2     ( 0,1, 2, )i i ia a a i                                                                (33) 

 

By using an iteration program, the values of ( 5,6, , 22)ia i   are shown as Table 1. 

 
The expression of ( )v t  in Eq.(20) with 10 items shown is as follows 

 

1.6 2 2.2 2.6 2.8 38 32 32 128 4
( ) 1 2 2

(2.6) (3.2) (3.6) (3.8) 3
v t t t t t t t t        

   
   (34) 

 
The approximate expression of ( )v t  in Eq.(34) is 

 
1.6 2 2.2 2.6

2.8 3 3.2 3.4

( ) 1 2 5.59587 2 13.2015 8.60904

       27.2678 1.33333 24.7528 50.5125

v t t t t t t

t t t t

     

    
                        (35) 

 

When 4.0 , Figs. 6-8 show that ( )v t ’s curves by the undetermined coefficient method for three 

time intervals: [0,0.3] , [0,0.6] and [0.6,1] with different items number truncated in Eq.(20). To 

keep the results’ convergence, it can be seen that the truncated item number is 40, 70 and 100 at 
least respectively in Figs. 6, 7 and 8. 
 
 
 
 
 

-2

-1

0

1

2 0

0.5

1

1.5

2

0

1

2

-2

-1

0

1

2

t
x

10( , )u x t



 
 
 

Siyuan and Zi-chen; BJMCS, 6(3): 187-203, 2015; Article no.BJMCS.2015.072 
 
 
 

197 
 
 

Table 1. The values of ( 5,6, , 22)ia i    for FFW equation when 4.0  
 

5        2a  

6        0a  

7       0a  

8        8a  

9        0a  

10      4a  

11       32       a  

12      0a  

13      32a  

14       128a  

15        8a  

16      192  a  

17      512a  

18        96a  

19

20

21

22

     1024

     2064

     768

     5120

a

a

a

a

 

 

 
 

Fig. 6. v(t)’s curve by the undetermined coefficient method when 4.0 , [0,0.3]t  
 

                                                           
 

Fig. 7. v(t)’s curve by the undetermined coefficient method when 4.0 , [0,0.6]t
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Fig. 8. v(t)’s curve by the undetermined coefficient method when 4.0 , [0.6,1]t  
 

4.3 Solution for 2.1  by the undetermined coefficient method 
 
When 2.1 , then , ,m n   in Eq.(20) are respectively 6, 5m n   and 0.2  . As m n , the 

initial values of ia are obtained in section 4. as 0 1, 0,( 1,2, ,5)  ia a i  . From Eq.(31), the 

iteration relationship is established for the coefficients of ia as 

 

 6 5

1
2     ( 0,1,2, )

4
i i ia a a i                                                              (36) 

 

The values of ( 6,7, ,18)ia i   are displayed in Tab. 2 after computation by an iteration program.  

 

Table 2. The values of ( 6,7, ,18)ia i   for FFW equation when 2.1  
 

6

1
       

2
a   

7

1
      

8
a   

8

1
       

32
a   

9

1
        

128
a   

10

1
     

512
a   

11

1
           

2048
a   

12

2047
      

8192
a  

13

4095
     

32768
a  

14

6143
     

131072
a  

15

8191
      

524288
a  

16

17

10239
             

2097152

12287
        

8388608

a

a

 

18

4179969
     

33554432
a   

19

20

12566529
           

134217728

25147393
      

536870912





a

a

 

 
The expression of ( )v t  in Eq. (20) is as follows 
 

1.2 1.4 1.6 1.8

2 2.2 2.4

1 1 1 1
( ) 1

2 (2.2) 8 (2.4) 32 (2.6) 128 (2.8)

1 1 2047
          

512 (3) 2048 (3.2) 8192 (3.4)

v t t t t t

t t t

    
   

   
  



                             (37) 
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The approximate expression of Eq. (37) is 
 

1.2 1.4 1.6 1.8

2 2.2 2.4

( ) 1 0.453802 0.10063 0.0218589 0.00466003

       0.000976563 0.000201439 0.0838177

v t t t t t

t t t

    

   
          (38) 

 

When 2.1 , Figs. 9-11 show v(t)’s curve by the undetermined coefficient method for three time 

intervals: [0,2] ,[4,6] and [0,6] . To keep the results’ convergence, it is seen that the truncated 

item number is at least 20 and 70 respectively in Figs. 9 and 10. 
 

 
 

Fig. 9. v(t)’s curve by the undetermined coefficient method when 2.1 , [0,2]t  

 

 
 

Fig. 10. v(t)’s curve by the undetermined coefficient method when 2.1 , [4,6]t  

 

 
 

Fig. 11. v(t)’s curve by the undetermined coefficient method when 2.1 , [0,6]t  
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4.4 Comparison of the solutions by the two methods  
 
When 4.0 , comparing the expression of 3v in Eq.(18) by FVIM with first several parts of 

Eq.(34) by using the undetermined coefficient method, the results are almost the same by the two 
methods. Figs. 2 and 8 are also almost the same. 
 

For 2.1 , using the undetermined coefficient method, we have 0.2   and the result of ( )v t  

in Eq.(37) can be written as 
 

6 7 86 7 8

12 13 1813 1812

( ) 1
(1 6 ) (1 7 ) (1 8 )

(1 12 ) (1 13 ) (1 18 )

b b b
v t t t t

b bb
t t t

  

  

  

  

   
     

   
     



                                     (39) 

 

where 6 1 / 2b   , 7 1 / 8b   , 8 13 181/ 32, 1/ 8, 1/ 8b b b     . These coefficients are equal or 

near to the values of the coefficients ,( 6,7,8,13,18)ia i  in Eq.（20） by FVIM from Table 2. 

According to Figs. 4 and 9, the curve of u(x,t)’s convergent numerical results are also almost the 
same . Thus the two proposed methods are both highly efficient for solving the FFW. The 

analytical solutions for the two cases are obtained respectively for the fractional order 0 1   

and 1 2  . 
 

5 Conclusion 
 
In this study, the improved FVIM is presented where the Lagrange multiplier is determined by Wu. 
Comparing with the classical VIM, the modified version method is powerful to solve differential 
equations with more than two derivatives. The higher order approximate solutions of the FFW 
equation illustrate the method’s efficiency and high accuracy compared with the solutions by the 
undetermined coefficient method. 
 
The solutions of the FFW equation are totally different for the cases of the order of fractional 

derivative   between 1 and 2 and that between 0 and 1. When 1 2  , by using FVIM, the 

solution after several iterations is near to the accurate solutions, for example 2v ,i.e. twice-iterated 

solution is converged for 1.2   with time interval [0,2]  in Fig. 4. While 0 1  , the solution 

after at least 20 iterations is near to the accurate solutions when 0.4   with time interval 

[0,0.6]  in Fig. 1. The reason is that the value of ( )v t  increases rapidly with time.  

 
We point out an error in the existed literatures and we give a full conclusion with two cases of the 
fractional order’s range. The existed results in some literatures in fact corresponds to the fractional 

order 1 2  , while the authors thought it as the result of the case of the fractional order less 
than 1. 
 
With the exponential initial condition Eq. (13), no physical application gives such an exponential 
increase of the unknown with time in space at infinity as Figs. 2 or 8. So in practice, the parameter 
of the fractional order should be not less than 1. 
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