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Abstract
In this work, the Chebyshev spectral-collocation method is applied to obtain approximate solution
for some types of linear parabolic partial integro–differential equations (PPIDEs).
In the first approach, we convert our equation into two coupled Volterra integral equations of the
second kind by using a proper transformation.
In the second approach, the integration in the resulting equations are approximated by replacing
the integrand by its interpolating polynomials in terms of the Chebyshev polynomials instead of
using the approximation by Gauss quadrature rules.
After approximation a linear algebraic system were raised, then it tested by the conditional number.
Finally, some numerical examples are included to illustrate the validity and applicability of the
proposed technique.
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1 Introduction
In recent years, the scientists have paid much attention to spectral method due to its high accuracy;
they also have exponential rates of convergence (see for instance, [1], [2], [3], [4], [5], [6] and the
references therein). Spectral methods were employed for numerical solution many types of integral
and differential equations, due to their ease of using them for finite and infinite domains [7], [8], [9],
[10]. Many problems in science and engineering arise in the mixed system of a partial differential
equation and the integral terms involving the unknown function.

We are concerned with an efficient numerical approximation scheme of the mathematical model
of a physical phenomenon involving contaminant transport process with memory term. Mathematically,
the simplest example of such a problem would be represented by the one dimensional parabolic
partial integro–differential equation of the form:

∂tu(x, t)− uxx(x, t) + p(x)ux(x, t) =

∫ t

0

k(x, t− s)uxx(x, s)ds+ f(x, t), (1.1)

associated with the initial condition and Dirichlet boundary conditions:

u(x, 0) = u0(x), x ∈ Ω = [−1, 1], (1.2)

u(0, t) = 0, u(1, t) = 0, t ∈ I = [0, T ]. (1.3)

Here (x, t) ∈ Q ≡ Ω× I, where I ≡ [0, T ], T > 0 is a time interval and Ω ⊆ R ≡ [−1, 1] is a bounded
domain with boundary ∂Ω ≡ {−1, 1}. For implementation of high-order methods such as spectral
methods, we assume that the functions p(x), f(x, t), k(t− s) and u0(x) are smooth enough on Q.

Problems of type (1.1)–(1.3) represent the mathematical model of several physical phenomena
involving process with memory term. For example, they describe poro-viscoelastic media [11], [12],
heat conduction through materials with memory term [12], [13], the flows in porous media with
nonlocal reactive [14], [15], and non-Fickian flow of fluid in porous media [16]. Many authors have
considered the numerical solution of parabolic partial integro–differential equations by various methods.
The method of lines was used in [17] and the discontinuous Galerkin method was reported in [18].
In [19], Galerkin mixed finite element methods and ADI orthogonal spline collocation have been
investigated [20], [21] and the references therein. Also in [22], [23] some solutions to a class
of (PPIDEs) have been introduced. In [24], [25], the method of radial basis functions was used
to nonlinear and linear equations respectively. Finally, F. Fakhar-Izadi and M. Dehghan proposed
spectral method for parabolic-type Volterra integro-differential equations based on Legendre collocation
scheme [26].

As mentioned in [27], Spectral method with many types were devoted to Volterra integral and
ordinary Volterra. In [28], H. Brunner has used Collocation methods for second-order Volterra integro-
differential equations. Multistep collocation method is also used for Volterra integral equations [29].
Chebyshev spectral collocation method for the solution of Volterra integral and ordinary Volterra
integro-differential equations are discussed in [30]. In [31], Tang introduces Legendre-spectral method
with its error analysis for ordinary Volterra integro-differential equation of the second kind. Another
spectral method using Legendre spectral Galerkin method was introduced for second-kind Volterra
integral equations [32]. Also some authors [33], [34], [35] have introduced Chebyshev spectral–
collocation method for Volterra integral equations. Most of the reported papers were specified to
VIEs and ordinary VIDEs. However, in this article the solution of parabolic partial integro–differential
ones (PPIDEs) were considered. In this article, the new Chebyshev spectral–collocation method was
applied for both space and time that are an extension of the method presented in [34] and [35].

The organization of this work is as follows. In Section 2, some preliminaries, notations and
the new Chebyshev spectral–collocation method introduce for numerically solving the described
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problem. In this section, the resulting set of algebraic linear equations are formed. In Section 3,
presents the study the convergence behavior of the presented method and some numerical examples
to demonstrate the effectiveness of the proposed method. Finally, in Section 4 we review some
concluding remarks.

2 Chebyshev Spectral–Collocation Method

In this section, the Chebyshev spectral-collocation method is applied to problem (1.1)–(1.3). First
some basic properties of the most commonly used set of orthogonal polynomials [36], [37]; Chebyshev
polynomials will be introduced.

2.1 Chebyshev polynomials

The Chebyshev polynomials Tn(x), n = 0, 1, ..., are the Eigen-functions of the singular Sturm-Liouville
problem [7], [6]

d

dx

(√
1− x2 dTn(x)

dx

)
+

n2

√
1− x2

Tn(x) = 0.

They are mutually orthogonal with respect to L2-inner product on the interval (−1, 1) with the weight
function ω(x) = 1/

√
1− x2. This imply∫ 1

−1

Tn(x)Tm(x)ω(x)dx =
cnπ

2
δnm,

where δnm is the Kronecker delta, c0 = 2 and cn = 1∀n ≥ 1. The Chebyshev polynomials satisfy the
following three-terms recurrence relation

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1, (2.1)

and

T0(x) = T ′1(x), 2T1(x) = 0.5T ′2(x),

Tn(x) =
1

2(n+ 1)
T ′n+1(x)− 1

2(n− 1)
T ′n−1(x), n ≥ 1. (2.2)

A unique feature of the Chebyshev polynomials is their explicit relationship with a trigonometric
function:

Tn(x) = cos(n arccos(x)). (2.3)

In this work, the Chebyshev–Gauss (CG) points and the corresponding quadrature weights are taken
as

xn = − cos
(2n+ 1)π

2N + 2
, ωn =

π

N + 1
, 0 ≤ n ≤ N, (2.4)

in addition, the Chebyshev–Gauss–Lobatto (CGL) points and the corresponding quadrature weights
are defined as

xn = − cos
(nπ
N

)
, ωn =

π

cnN
, cn =

{
2, n = 0, N,
1, 1 ≤ n ≤ N − 1.

(2.5)
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2.2 Chebyshev Spectral–Collocation Scheme
Now, consider problem (1.1)–(1.3) on bounded domain Q. Because of the orthogonally property
of the Chebyshev polynomials on the interval [−1, 1], we transfer equation (1.1) from [0, T ] to an
equivalent problem defined in the interval [−1, 1], by using the next substitution [31], [38]

t =
T

2
(τ + 1), τ ∈ [−1, 1],

then equation (1.1) becomes, for all x, τ ∈ [−1, 1]

2

T

∂U

∂τ
− ∂2U

∂x2
+ p(x)Ux =

∫ T
2
(τ+1)

0

k

(
x,
T

2
(τ + 1)− s

)
uxx(x, s)ds+ g(x, τ), (2.6)

in which

U(x, τ) := u

(
x,
T

2
(τ + 1)

)
, g(x, τ) := f

(
x,
T

2
(τ + 1)

)
.

By using the following linear transformation in equation (2.6)

s =
T

2
(ρ+ 1), ρ ∈ [−1, 1],

by converting the integration interval from [0, T (τ + 1)/2] to the interval [−1, τ ], so that equation (2.6)
becomes

2

T

∂U

∂τ
− ∂2U

∂x2
+ p(x)Ux =

T

2

∫ τ

−1

K(x, τ − ρ)Uxx(x, ρ)dρ+ g(x, τ), (2.7)

where K(x, τ − ρ) = k(x, T (τ − ρ)/2). Define an auxiliary function [27], [38]

Φ(x, τ) = g(x, τ) +
T

2

∫ τ

−1

K(x, τ − ρ)Uxx(x, ρ)dρ, (2.8)

which will be used it in the next approximation. In order to approximate problem (1.1)–(1.3) by spectral
methods, we rewrite equation (2.7) as two equivalent Volterra integro-differential equations by using
equation (2.8) as follows

Φ(x, τ) = g(x, τ) +
T

2

∫ τ

−1

K(x, τ − ρ)Uxx(x, ρ)dρ,

Φ(x, τ) =
2

T

∂U

∂τ
− ∂2U

∂x2
+ p(x)Ux,

(2.9)

by integrating both sides in the second line of equation (2.9) over the interval [−1, τ ] with respect to
τ , we can get the required two linear equations of (VDEs) as the following

Φ(x, τ) = g(x, τ) +
T

2

∫ τ

−1

K(x, τ − ρ)Uxx(x, ρ)dρ,

U(x, τ) = u0(x) +
T

2

∫ τ

−1

[
Φ(x, ξ) + Uxx(x, ξ)− p(x)Ux(x, ξ)

]
dξ.

(2.10)

Let the collocation points{(xi, τj)}i,j be the set of (N + 1)(M + 1) points, in which {xi}Ni=0 are the
Chebyshev–Gauss–Lobatto points (CGL nodes), and {τj}Mj=0 are the Chebyshev–Gauss points (CG
nodes). Equation (2.10) holds at the collocation points such that, for all 0 ≤ j ≤M yields

Φ(xi, τj) = g(xi, τj) +
T

2

∫ τj

−1

K(xi, τj − ρ)Uxx(xi, ρ)dρ, 0 ≤ i ≤ N,

U(xi, τj) = u0(xi) +
T

2

∫ τj

−1

[
Φ(xi, ξ) + Uxx(xi, ξ)− p(xi)Ux(xi, ξ)

]
dξ,

1 ≤ i ≤ N − 1.

(2.11)
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For approximating the integral terms in equation (2.11), first the integral interval will be transfered
from [−1, τ ] to a fixed one [−1, 1] by using the following change of variables

ξ(τj , θ) = ρ(τj , θ) =
τj + 1

2
θ +

τj − 1

2
, θ ∈ [−1, 1],

where {θ}pk=0are roots of the (p+1)–th Chebyshev polynomials. Then (2.11) becomes:

Φ(xi, τj) = g(xi, τj) +
T (τj + 1)

4

.

∫ 1

−1

K
(
xi, τj − ρ(τj , θ)

)
Uxx

(
xi, τj − ρ(τj , θ)

)
dθ,

U(xi, τj) = u0(xi) +
T (τj + 1)

4

∫ 1

−1

Φ
(
xi, ξ(τj , θ)

)
dθ +

T (τj + 1)

4

.

∫ 1

−1

[
Uxx

(
xi, ξ(τj , θ)

)
− p(xi)Ux

(
xi, ξ(τj , θ)

)]
dθ.

(2.12)

Now, we use 
ΦMN (x, σ) ≈

N∑
n=0

M∑
m=0

ln(x)Fm(σ)Φ(xn, τm),

UMN (x, σ) ≈
N∑
n=0

M∑
m=0

ln(x)Fm(σ)U(xn, τm),

(2.13)

to approximate the functions Φ and U , where ln(x) and Fm(σ)are the n–th and m–th Lagrange
basis functions corresponding to non–uniform meshes of {xi} and {τj} respectively. After enforcing
the homogeneous boundary conditions at x0 = −1 and xN = 1 the first and the last terms in the
interpolation polynomial of U are omitted. Therefore, we have

UMN (x, σ) ≈
N−1∑
n=1

M∑
m=0

ln(x)Fm(σ)U(xn, τm).

Now we can approximate Ux and Uxx in equation (2.12) by using the interpolation polynomial of U
from the previous equation as the following

(UMN )x(x, σ) ≈
N−1∑
n=1

M∑
m=0

l′n(x)Fm(σ)U(xn, τm),

(UMN )xx(x, σ) ≈
N−1∑
n=1

M∑
m=0

l′′n(x)Fm(σ)U(xn, τm),

(2.14)

where l′n(x) and l′′n(x) are the first and the second derivative of Lagrange interpolation basis polynomials
ln(x) respectively, such that l′n(x) ∈ PN−1 and l′′n(x) ∈ PN−2.

Now, the differentiation matrices can be defined as an essential building block for collocation
methods used in spectral schemes [6], [7], [8]. Denoting d2i,n := l′′n(xi), we introduce the second
order differentiation matrix as the following D2 = (d2i,k)0≤i,k≤N . By writing the entries of D2 = D2

i,k

for {xi} as [39]:

D2
i,k =


2Di,k

(
Di,i −

1

xi − xk

)
, i 6= k

−
N∑

l=0,i 6=l
D2
i,l, i = k,

where Di,k are the entries of the so–called differentiation matrix of dimension (N + 1). The entries of
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the differentiation matrix can be defined in [6] for (CGL) points as the following

Di,k =



−2N2 + 1

6
, i = k = 0,

ci
ck

(−1)i+k

xi − xk
, i 6= k,

− xi
2(1− x2i )

, 1 ≤ i = k ≤ N − 1,

2N2 + 1

6
, i = k = N,

with ci = 2 for i = 0, N , where ci = 1 otherwise.
In this paper, the integration in equation (2.12) can be approximated by replacing the integrad

function by its interpolation polynomial approximation of Φ, U . In addition, by using the approximation
to Ux and Uxx from equations (2.13) and (2.14), respectively in equation (2.12) and write

Φ(xi, τj) = Φi,j , U(xi, τj) = Ui,j , g(xi, τj) = gi,j ,

ρ(τj , θk) = ρi,k, ξ(τj , θk) = ξi,k.

Our main goal is to find the approximation Ui,j so after replacing in equation (2.12) we get

Φi,j ≈ gi,j +
T (τj + 1)

4

.

∫ 1

−1

IMN

[
K
(
xi, τj − ρ(τj , θ)

)
(UMN )xx

(
xi, τj − ρ(τj , θ)

)]
dθ,

Ui,j ≈ u0(xi) +
T (τj + 1)

4

∫ 1

−1

IMN

[
ΦMN

(
xi, ξ(τj , θ)

)]
dθ +

T (τj + 1)

4

.

∫ 1

−1

IMN

[
(UMN )xx

(
xi, ξ(τj , θ)

)
− p(xi)(UMN )x

(
xi, ξ(τj , θ)

)]
dθ,

(2.15)

where IMN is the interpolation operator associated with the Chebyshev mesh points {xi, τj}i,j defined
as the following

IMN Q(x, τ) ≈
N∑
n=0

M∑
m=0

ln(x)Fm(σ)Q(xn, τm).

Now each equation in (2.15) can be reformulated respectively as

Φi,j ≈ gi,j +
T (τj + 1)

4

N−1∑
n=1

M∑
m=0

l′′n(xi)U(xn, τm)

.

p−1∑
z=1

lz(xi)

p∑
k=0

K(xi, τj − ρj,k)Fm(ρj,k)

∫ 1

−1

Fk(θ)dθ, (2.16)

Ui,j ≈ u0(xi) +
T (τj + 1)

4

{ N∑
n=0

M∑
m=0

ln(xi)Φ(xn, τm) +

N−1∑
n=1

M∑
m=0

l′′n(xi)U(xn, τm)

−p(xi)
N−1∑
n=1

M∑
m=0

l′n(xi)U(xn, τm)
} p−1∑
z=1

lz(xi)

p∑
k=0

Fm(ξj,k)

∫ 1

−1

Fk(θ)dθ. (2.17)

Now we discuss an efficient way to find dk =

∫ 1

−1

Fk(θ)dθ and express it in an explicit form. First we

express Fj(s) in terms of Chebyshev functions as in [27], [35]:

Fj(s) = ωCj

M∑
p=0

(Tp(xj)/γp)Tp(s), (2.18)
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where ωCj is the Chebyshev weight corresponding to Chebyshev points {xj}Mj=0. Let

γp =

M∑
i=0

T 2
p (xi)ω

C
i =

{
π, p = 0,
π/2, 1 ≤ p ≤M,

(2.19)

where γM = π/2 if {xi} are the Chebyshev–Gauss or the Chebyshev–Gauss–Radau points. However,
if we use {xi} as the Chebyshev–Gauss–Lobatto then γM = π. Now from equations (2.18) and
(2.19), we can calculate dk as follows

dk = ωCk

M∑
p=0

(Tp(xk)/γp)

∫ 1

−1

Tp(θ)dθ. (2.20)

To compute
∫ 1

−1

Tp(θ)dθ we use the recurrence relation in equation (2.2) which yields∫ 1

−1

Tp(θ)dθ =

{
2/(1− p2), p is +ve even number,
0, p is +ve odd number. (2.21)

Now rewrite equations (2.16) and (2.17) in the matrix form as
Φ(N+1)(M+1) = G(N+1)(M+1) + LU(N−1)(M+1),

U(N−1)(M+1) = U−1 + AΦ(N+1)(M+1) + (B + C)U(N−1)(M+1),
(2.22)

where Φ,G,U and U−1 represent vectors defined as in the following:

Φ(N+1)(M+1) = vec [Φi,j ] , G(N+1)(M+1) = vec[gi,j ], 0 ≤ i ≤ N,
U(N−1)(M+1) = vec[Ui,j ], 1 ≤ i ≤ N, 0 ≤ j ≤M,

U−1 = vec

 u0(x2) u0(x3) · · · u0(xN−1)
...

...
...

...
u0(x2) u0(x3) · · · u0(xN−1)

 ,
in which the (vec) operator reshapes any matrix into a vector by placing columns of the matrix below
each other from the first to the last. For the other matrices, each one can be described as block ones
as the following:
• A = (Aij), where A is a matrix with a dimension of (N + 1)(N − 1) × (N + 1)2 in which

the first and last (N + 1) columns are zeros, and each block matrix (Aij) has a dimension of
(N + 1) × (N + 1). For each 0 ≤ m ≤ M, 0 ≤ j ≤ M, 1 ≤ i ≤ N − 1, 1 ≤ n ≤ N − 1, the
other entries of (Aij) can be given by the following formula

(Aij)i,n+1 =
T (τj + 1)

4

p∑
k=0

dkFm(ξj,k).

In addition, the shape of the global matrix A will be

A =

 0 A1
j 0 · · · 0

...
. . .

. . .
. . .

...
0 · · · 0 AN−1

j 0

 .
• L = (Lij), where L is a matrix with a dimension of (N+1)2×(N+1)(N−1) in which the first and

last (N + 1) rows are zeros, and each block matrix (Lij) has a dimension of (N + 1)× (N + 1).
For each m, j, i, n, the other entries of (Lij) can be obtained by the following formula

(Lij)i+1,n =
T (τj + 1)

4

p∑
k=0

dkK(xi, τj − ρj,k)Fm(ρj,k)D2
i,n,

178



El–Baghdady & El–Azab; BJMCS, 6(3), 172-186, 2015; Article no.BJMCS.2015.071

• B = (Bij), where B is a matrix with a dimension of (N + 1)(N − 1)× (N + 1)(N − 1) in which
each block matrix (Bij) has a dimension of (N + 1)× (N + 1). For each m, j, i, n, the entries
of (Bij) can be calculated from the following relation

(Bij)i,n =
T (τj + 1)

4

p∑
k=0

dkFm(ξj,k)D2
i,n,

• Finally, C = (Cij) which is similar to the matrix B. For each m, j, i, n, the entries of (Cij) can
be found from the following relation

(Cij)i,n = −T (τj + 1)

4
p(xi)

p∑
k=0

dkFm(ξj,k)Di,n.

To solve the coupled equations system in equation (2.22), we convert them to a linear algebraic
system

AU(N−1)(M+1) = F, (2.23)

where

A = (I − (B + C)− AL)

F = U−1 + AG(N+1)(M+1).

By solving the system of equations in (2.23), we obtain an approximation to U(N−1)(M+1) and hence
the approximation to the original problem for all x ∈ (−1, 1) and t ∈ [0, T ] can be obtained by

u(x, t) ≈
N−1∑
n=1

M∑
m=0

ln(x)Fm(
2

T
t− 1)U(xn, τm).

3 Numerical Examples
In order to test the utility of the proposed new method, we apply the new scheme to the following
two examples whose exact solutions are provided in each case. For both examples, we take T = 1,
p = N = M, and consider {θk}Nk=0 as the Chebyshev-Gauss points as described in Section 2. To
show the efficiency of the presented method the comparison with the exact solution introduced in the
next tables. Also, to study the convergence behavior of the presented method [40], [41] the following
laws for different values of N are applied.

• The ‖E‖∞ error norm of the solution which is defined by

‖E‖∞ = ‖U(x, t)− u(x, t)‖∞ = max
1≤i≤N−1,
1≤j≤M

|Ui,j − u(xi, tj)| ,

• The ‖E‖2 error norm of the solution which is defined by

‖E‖2 = ‖U(x, t)− u(x, t)‖2 =

[
N−1∑
i=1

M∑
m=1

(
Ui,j − u(xi, tj)

)2]1/2
,

• The condition number Kg(A) of the coefficient matrix A is given by

Kg(A) = ‖A‖g‖A−1‖g, g = 2,∞.

The condition number Kg(A) has the following properties [42]:
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1. The condition number shows that a small perturbation in initial data may produce a large
amount of perturbation in the solution [43].

2. The condition number of an interpolation matrix gives information on the numerical stability of
the interpolation process.

3. The condition number depends more on the separation distance than on the number N of
centers [44].

4. The condition number grows with N with the number of interpolating points in order to produce
an interpolation matrix that is well-conditioned enough to be inverted in finite precision arithmetic
[45].

5. When the number of mesh points increases, the condition number of the matrix becomes very
large and the matrix tends to be ill-conditioned [43].

In this study, all the mathematical computations were executed in double precision arithmetic using
Matlab 7.9.0 (R2009b). To obtain a very accurate calculations, variable arithmetic precision (vpa) was
used with digits being assigned to be (32). The program was executed on a second generation Intel
Core i5–2410M, 2.3 Ghz Laptop. Finally, the CPU time for all operations for the solution of the entire
problem is presented in Tables.

Example 3.1. Consider the linear PPIDE (1.1)–(1.3) with the kernel k(x, t) = xt, with the variable
function p(x) = x3 sin(x)ex/(1 + x2), and the leading function

f(x, t) =
(
9x4 − 8x3 − 1− p(x)(1− 4x4)

)
sin(x+ t)− 8x4

(
t cos(x) + sin(x)

)
+
(
x5 − x4 − 12x3 + 12x2 − x+ 1− 4x3p(x)

)
cos(x+ t)

−
(
x5 − 12x3 − x

)(
t sin(x)− cos(x)

)
,

so that the exact solution will be u(x, t) = (1− x4) cos(x+ t).

Table 1: ‖E‖∞ error, ‖E‖2 error, condition number of g = ∞, g = 2 and CPU time with different
values of N for Example 3.1.

N ‖E‖∞ K∞(A) ‖E‖2 K2(A) CPU(s)
6 1.913E-03 3.128E+02 4.659E-03 6.159E+01 5.775
8 1.527E-05 1.143E+03 4.373E-05 1.820E+02 11.057

10 7.030E-08 3.057E+03 2.407E-07 4.358E+02 19.473
12 2.013E-10 6.887E+03 8.215E-10 8.970E+02 31.442
14 3.883E-13 1.346E+04 1.825E-12 1.657E+03 53.030
16 1.346E-14 2.429E+04 5.186E-14 2.825E+03 125.18

Example 3.2. Consider the linear PPIDE (1.1)-(1.3) with the kernel k(x, t) = sin(xt), with the variable
function p(x) = x3 cos(x)ex/(1 + x2) and the leading function

f(x, t) =
(
8x3 + 12x2 + p(x)(1− 4x3 − x4)

)
e(x+t)

+
(x4 + 12x2 + 8x3 − 1

1 + x2

)(
xet − sin(xt)− x cos(xt)

)
ex,

so that the exact solution will be u(x, t) = (1− x4)e(x+t).
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In Figure 1, the exact solution, numerical solution are plotted with ‖E‖∞ and the nonuniform set of
collocation points (xi, tj) at N = 16.

(a) Exact solution

(b) Approximated solution

Figure 1: Exact and Approximated solutions for p(x) with x ∈ [−1, 1] and t ∈ [0, T ] at N = 16, see
Example 3.1.

Table 2: ‖E‖∞ error, ‖E‖2 error, condition number of g = ∞, g = 2 and CPU time with different
values of N for Example 3.2.

N ‖E‖∞ K∞(A) ‖E‖2 K2(A) CPU(s)
6 7.414E-03 3.094E+02 1.677E-02 6.154E+01 8.928
8 5.673E-05 1.310E+03 1.563E-04 1.817E+02 12.828
10 2.597E-07 3.035E+03 9.047E-07 4.350E+02 23.067
12 7.218E-10 6.823E+03 2.975E-09 8.952E+02 34.251
14 1.367E-12 1.336E+04 6.598E-12 1.653E+03 53.734
16 7.105E-14 2.409E+04 1.858E-13 2.818E+03 115.770

Example 3.3. Consider the linear PPIDE (1.1)-(1.3) with the kernel k(x, t) = e−x
2t, with the variable

function p(x) = cos(x)/(1 + x2), and the function

f(x, t) =
(
12x5 + 30x4 + p(x)(1− 6x5 − x6)

)
e(x+t)

−
(1− 30x4 − 12x5 − x6

1 + x2

)(
ex+t − e(x

2+t)),
so that the exact solution will be u(x, t) = (1− x6)ex+t.

181



El–Baghdady & El–Azab; BJMCS, 6(3), 172-186, 2015; Article no.BJMCS.2015.071

In Figure 2, the exact solution, numerical solution are plotted with ‖E‖∞ and the nonuniform set of
collocation points (xi, tj) at N = 16.

(c) Exact solution

(d) Approximated solution

Figure 2: Exact and Approximated solutions for p(x) with x ∈ [−1, 1] and t ∈ [0, T ] at N = 16, see
Example 3.2.

Table 3: ‖E‖∞ error, ‖E‖2 error, condition number of g = ∞, g = 2 and CPU time with different
values of N for Example 3.3.

N ‖E‖∞ K∞(A) ‖E‖2 K2(A) CPU(s)
8 1.271E-03 1.507E+03 3.452E-03 2.436E+02 8.910

10 1.412E-05 3.999E+03 3.858E-05 5.698E+02 16.344
12 5.329E-08 8.904E+03 2.186E-07 1.156E+03 33.014
14 1.529E-10 1.726E+04 7.384E-10 2.115E+03 54.946
16 3.341E-13 3.099E+04 1.709E-12 3.581E+03 100.49
18 1.221E-13 5.155E+04 4.438E-13 5.705E+03 288.43

Tables “1 − 3”, show the absolute (Error ) between the exact and numerical solutions, ‖E‖∞-
error, K∞(A), ‖E‖2-error, K2(A) and CPU-time in some points of the interval (−1, 1) and t = [0, T ]
for 6 ≤ N ≤ 18. These tables indicates that as N increases, the Error decreases more rapidly
(exponentially). From Tables “1– 3”, it can be observed that the accuracy increases with the increase
of number of collocation points.
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4 Conclusion

In this work, a new modified numerical method based on developing the Chebyshev spectral–collocation
method. The method is based on converting the problem equation into two coupled Volterra integral
equations of the second kind. The use of the Chebyshev spectral–collocation method lead to solving a
linear algebraic system, then finding the approximate solution for parabolic partial integro–differential
equations. The major progress of using the Chebyshev polynomials basis instead of using Legendre
ones is that its quadrature points are known with explicit and simple expressions as well as the
corresponding weights. Moreover, in this work the integration was approximated by replacing the
integrand by its interpolating polynomials instead of using Gauss quadrature approximation and this
increases the accuracy of the suggested method. The examples given in this work have demonstrated
the potential of the newly presented numerical method in solving parabolic partial integro–differential
and similar equations even with using a small number of collocation points. The stability of the
resulting system was proved by helping of the condition number Kg(A).
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