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Abstract
In this work we consider the general stochastic SIR (Susceptible - Infected - Removed) epidemic
model with the transition intensity q(S,I),(S−1,I+1) = βg(S)I, where g(x) is a function density
dependent. An approximation of the final size by a diffusion process is given. Finally, I introduce
some numerical simulation graphics to illustrate the main result.
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1 Introduction
A significant class of simple epidemic models relates to the infectious diseases is the SIR (Susceptible
- Infected - Removed) epidemic model (see, Kermack and McKendrick [1]). Their principal characteris-
tics are as follows: a closed population is subdivided in three classes, the susceptible individuals
(healthy individuals but exposed to the infection), the infected individuals (individuals carrying the
pathogenic matter: virus, parasitic, etc...) and the removed individuals (infected individuals which
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leave their state of infection by immunization, death or quarantine). Each infected individual remains
infectious for a random period of time called infection period. During this period, the infected individuals
transmit the infectious germs to susceptible individuals which, in this case, become infected and
infectious. When the infection period of an individual is finished, he is eliminated from the infection
process in a permanent way: according to the type of the disease, the individual cured and immunized,
deceased or in a critical state quarantined.
Suppose that initially say at time t = 0; there are n susceptible individuals, m infected individuals and
0 removed individuals in the population respectively.
For each t ∈ R+, let S(t) and I(t) be the numbers of susceptible individuals and infected individuals
at time t and let R(t) the total number of removed individuals in the time interval [0, t].
The population is supposed to be closed. Then for each t ≥ 0,

S(t) + I(t) +R(t) = n+m.

Consequently the epidemic is completely described by the dynamic of the process
((S(t), I(t)), t ≥ 0).
Suppose that ((S(t), I(t)), t ≥ 0) is a Markov process with the following transition intensities:

q(S,I),(S−1,I+1) = βg(S)I,

q(S,I),(S,I−1) = µI,

where g(x) is density dependent, i.e. g(x) = ng(x/n).
This epidemic process continues until the time

T̃ = inf{t ≥ 0, I(t) = 0}

which is the time of extinction of the epidemic (an epidemic dies out if there does not remain any
more infected in the population). ST̃ is thus the number of individuals who have escaped from any
infectious contact with the infected. The quantity Z = n− ST̃ indicates the final size of the epidemic.
It is the total number of new cases of infection which take place throughout the propagation of the
epidemic.
A considerable number of authors interested in the study of the distribution of the final size Z: Bailey
[2], Williams [3], Ball [4], Ball and clancy [5], Lindholm [6], Ma and Earn [7], Demiris and O’Neill
[8], Gordillo et al. [9] and Artalejo et al [10]. In the following section, we aim to approximate the
epidemic final size distribution, using an approximation diffusion of stochastic SIR epidemic model
after a suitable time scale transformation when the number of susceptible n is sufficiently large. In
the section 3, a brief discussion and numerical simulations are presented. Finally, we close with a
brief conclusion.

2 Diffusion Approximation
In this section, instead of natural numbers S(t) and I(t) of susceptible and infectious individuals,
we consider the respective fractions x(t) = S(t)

n
and y(t) = I(t)

n
, and define ω(t) =

∫ t
0
y(u)du and

transform the time scale to ω(t) by defining x̃(ω(t)) = x(t) and ỹ(ω(t)) = y(t). Then we can verify
that

x(τ) = x̃(ω(τ)) = x̃(τ̃)

where, τ = inf{t : y(t) = 0} and τ̃ = inf{t : ỹ(t) = 0}.
The Markov process ((x̃(t), ỹ(t)), t ≥ 0) has the initial conditions x̃(0) = 1 and ỹ(0) = m/n, and has
the following transition probabilities:

P{(x̃(t+ dt), ỹ(t+ dt)) = (x′ − ε, y′ + ε)/(x̃(t), ỹ(t)) = (x′, y′)}
= βng(x′)dt+ o(dt),

P{(x̃(t+ dt), ỹ(t+ dt)) = (x′, y′ − ε)/(x̃(t), ỹ(t)) = (x′, y′)}
= µdt+ o(dt).

(2.1)
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with ε = 1/n.
One way to characterize the process with the above transition probabilities is by means of Poisson
process, see for example Ethier and Kurtz [11].
Let Yl = {Yl(t), t ≥ 0} be independent standard Poisson process defined for each transition l =
(−1, 1) and l = (0,−1). Then (x̃, ỹ) can be written as x̃(t) = x̃(0)− 1

n
Y(−1,1)

(
nβ
∫ t
0
g(x̃(s))ds

)
ỹ(t) = ỹ(0) + 1

n
Y(−1,1)

(
nβ
∫ t
0
g(x̃(s))ds

)
− 1

n
Y(0,−1)(nµt)

(2.2)

The form of the generator of (x̃, ỹ) is

Aεh(x, y) = ε−1βg(x)(h(x− ε, y + ε)− h(x, y)) + ε−1µ(h(x, y − ε)− h(x, y))

For sufficiently small ε the generator Aε is approached by the operator of the following form

L = −βg(x)
∂

∂x
+ (βg(x)− µ)

∂

∂y

+
ε

2

[
βg(x)

∂2

∂x2
+ βg(x)

∂2

∂y2
+ µ

∂2

∂y2
− 2βg(x)

∂2

∂x∂y

]

= AO +
1

2
O′ΣO

where

∇ =

( ∂
∂x
∂
∂y

)
, A =

(
−βg(x) βg(x)− µ

)
and

Σ = ε

(
βg(x) −βg(x)
−βg(x) βg(x) + µ

)
which corresponds, according to Øksendal [12], to the generator of the Markov process which is the
solution of the bivariate SDEs, dx̂ = −βg(x̂)dt+

√
βg(x̂)
n

dW1(t)

dŷ = βg(x̂)dt−
√

βg(x̂)
n

dW1(t) +
√

µ
n
dW2(t)

(2.3)

where W1 and W2 are independent Brownian motions. Then, we can consider now the stopping time
τ̂ = inf{t ≥ 0 : ŷ(t) = 0} and approximate the final size Z by Ẑ = n− nx̂(τ̂). In the following section
we will plot the distribution of Z and Ẑ on the same figure for some values of β and µ.

3 Numerical Simulations
In this section we made a comparison between the exact distribution of the final size given in [9]
and the distribution obtained using the system 2.3 for p(x) = x. The exact final size distributions
have been determined numerically by programming the algorithm given in [9] in MATLAB. To simulate
the diffusion process governed by the system 2.3, we employ the Milstein Scheme (see Kloeden
and Platen [13]). The distribution of the final size using diffusion approximation is based on 1000
simulation of system 2.3 until the time of extinction.
Figures 1-6 show the exact distribution of the final size against the approximate distribution for various
values of parameters and population size n = 50, n = 100 and n = 1000.
The figures 3-6 show that the final size by the diffusion approximation is well for n ≥ 100. So the
diffusion approximation allows to calculate the final size for n rather large (see figures 7 and 8).
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Figure 1: Distribution of the final size and its diffusion approximation, for n = 50,
m = 10, β = 0.2, µ = 0.3.

Figure 2: Distribution of the final size and its diffusion approximation, for n = 50,
m = 10, β = 0.2, µ = 0.1.

Figure 3: Distribution of the final size and its diffusion approximation, for n = 100,
m = 10, β = 0.2, µ = 0.3.
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Figure 4: Distribution of the final size and its diffusion approximation, for n = 100,
m = 10, β = 0.2, µ = 0.1.

Figure 5: Distribution of the final size and its diffusion approximation, for n = 1000,
m = 10, β = 0.2, µ = 0.3.

Figure 6: Distribution of the final size and its diffusion approximation, for n = 1000,
m = 10, β = 0.2, µ = 0.1.
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Figure 7: Distribution of the final size by diffusion approximation, for n = 105, m =
10, β = 1.05, µ = 1.

Figure 8: Distribution of the final size by diffusion approximation, for n = 106, m =
10, β = 1.02, µ = 1.

4 Conclusion

In this paper, a stochastic SIR epidemic model through a diffusion process is approached. An
approximation of the final size when the number of individuals initially susceptibles n is large is
deduced. When n is more than 100 the diffusion approximation is well.
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