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Abstract

This paper is dealt with some properties of an n-inner product space with n ≥ 2.The motivation
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space. Some inter related results among n-normed linear space and n-inner product space are
also shown here.
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1 Introduction

In 1928, Menger [1] published the proof of a beautiful characterization of those metric spaces that
are isometrically embeddable in n-dimensional Euclidean space En. In 1963,Gähler [2] published
first one of his several research article entitled “2-metric spaces and their topological structure”,
dealing with spaces on which is defined what we call a 2-metric. The second article written by
Gähler [3] over 2-normed linear spaces is limited to study the special class of 2-metric spaces which
are linear on which 2-norm is defined. In continuation of investigation on the topological property
of such spaces, Gähler [4] had been succeeded to prove that 2-normed linear space are normable
and uniformable provided the dimension of the space greater than one. Moreover, Gähler had also
been able to show that if the space is 2-inner product space then it is possible to define a 2-norm
on it,however the reverse implication is not true in general. Since 1963 many reserchers [5, 6] had
studied extensively the geometric structure of a 2-metric space and a 2- normed linear space.Also
in search of further scrutiny in these direction we see that the concept of a 2-inner product and
2-inner product spaces coincide with of the concept of natural inner product and inner product
space. White et al. [7] and Diminnie et al. [8, 9] introduced the concept of a 2-inner product
space and showed some characterization on it. In resent past the concept of 2-norm and concept
of 2-inner product was further extended to an n-norm and an n-inner product and obtained some
analogue properties of a normed linear space and an inner product space on it.

Motivated by the background of these literatures we have been able to prove some properties of an
n-inner product space together with the characterization of its completeness property via n-norm.

2 Preliminaries

Definition 2.1. [10] Let n be a positive integer and X be a linear space of dimension greater than
or equal to n. A real valued function ⟨., .|..., .⟩ is defined on X ×X × .......×X︸ ︷︷ ︸ = Xn+1 satisfying

the following conditions

(IP1) ⟨x1, x1|x2, ..., xn⟩ ≥ 0 for any x1, x2, ..., xn ∈ X and ⟨x1, x1|x2, ..., xn⟩ = 0 if and only if
x1, x2, ..., xn are linearly dependent vectors,

(IP2) ⟨x1, x1|x2, ..., xn⟩ = ⟨xi1 , xi1 |xi2 , ..., xin⟩ for every permutation (i1, i2.....in) of (1, 2, ....n),

(IP3) ⟨x, y|x2, ..., xn⟩ = ⟨y, x|x2, ..., xn⟩, ∀ x, y, x2, ..., xn ∈ X,

(IP4) ⟨αx, y|x2, ..., xn⟩ = α⟨x, y|x2, ..., xn⟩ ,∀ x2, ..., xn ∈ X, ∀ α ∈ R,
(IP5) ⟨x+ y, z|x2, ..., xn⟩ = ⟨x, z|x2, ..., xn⟩+ ⟨y, z|x2, ..., xn⟩,

∀ x, y, z, x2, ..., xn ∈ X.

is called an n-inner product on X and the corresponding pair (X, ⟨., .|..., .⟩) is called the n-inner
product space.

Example 2.2. [10] If X = Rn then the following function

⟨x, y|x2, ..., xn⟩ = | det


⟨x, y⟩ ⟨x, x2⟩.......................⟨x, xn⟩
⟨x2, y⟩ ⟨x2, x2⟩....................⟨x2, xn⟩
.................................................
................................................

⟨xn, y⟩ ⟨xn, x2⟩....................⟨xn, xn⟩

 |

where x, y, x2, ...xn ∈ X, defines an n-inner product, called the standard or (simple) n-inner product
on X

Some basic properties of n-inner product(X, ⟨., .|..., .⟩) are as follows [11],[10],[12],[13].
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(NIP1) ∀ x, y, x2, ..., xn ∈ X,we have
| ⟨x, y | x2, ..., xn⟩ |≤

√
⟨x, x | x2, ..., xn⟩

√
⟨y, y | x2, ..., xn⟩,

(NIP2) ∀ x, y, x2, ..., xn ∈ X, ⟨x, y | y, x2, ..., xn⟩ = 0

(NIP3) ∀ x, y, x2, ..., xn ∈ X and ∀ α ∈ R, ⟨x, y|αx2, ..., xn⟩ = α2⟨x, y|x2, ..., xn⟩
The first inequality (NP1) is known as extension of Cauchy-Buniakowski’s inequality.

(NIP4) ∀ x, y, z, w, x2, ..., xn ∈ X,we have

⟨x, y|z + w, x2, ..., xn⟩ = ⟨x, y|z, x2, ..., xn⟩+ ⟨x, y|w, x2, ..., xn⟩

+
1

2
[⟨z, w|x+ y, x2, ..., xn⟩ − ⟨z, w|x− y, x2, ..., xn⟩]

.

Definition 2.3. [14] Under the same assumption on X, let (∥., ..., .∥) be non negative real valued
function from X ×X × .......×X︸ ︷︷ ︸ = Xn :→ R satisfying the following conditions:

(N1) ∥x1, x2, ..., xn∥ = 0 if and only if x1, x2, ..., xn ∈ X are linearly dependent.

(N2) ∥x1, x2, ..., xn∥ is invariant under any permutation of x1, x2, ....xn ∈ X.

(N3) ∥x1, x2, ..., αxn∥ = |α|∥x1, x2, ...xn∥, for every α ∈ R, x1, x2, ....xn ∈ X.

(N4) ∥x1, x2, ..., xn−1, y + z∥ ≤ ∥x1, x2, ..., xn−1, y∥+ ∥x1, x2, ..., xn−1, z∥,
for all y, z, x1, x2, ..., xn−1 ∈ X.

Then ∥., ..., .∥ is called an n-norm on X and the corresponding pair (X, ∥., ..., .∥) is called n-normed
linear space.

Example 2.4. [14] The space X = Rn equipped with the following n-norm;

∥x1, x2, ..., xn∥E = | det


x11 x12.........x1n

x21 x22.........x2n

..........................
........................

xn1 xn2...........xnn

 |

where xi = (xi1, xi2, ..., xin) for each i = 1, 2, ..., n.

Some basic properties of an n-normed linear space (X, ∥., ..., .∥) are as follows [15]

(NN1) ∥x1, x2, ..., xn∥ ≥ 0 ∀ x1, x2, ..., xn ∈ X,

(NN2) ∥x1, x2, ..., xn + α1x1 + α2x2 + ...+ αn−1xn−1∥ = ∥x1, x2, ..., xn∥
∀ x1, x2, ..., xn ∈ X, ∀ α1, ...αn−1 ∈ R.

In any linear n-inner product space (X, ⟨., .|..., .⟩),we define an n-norm by [14],[16]

∥x1, x2, ..., xn∥ =
√

⟨x1, x1|x2, ..., xn⟩ ∀x, y, x2, ..., xn ∈ X.

One can also observe the following [15],[14],[16]:

(NN3) ∥x+ y, x2, ..., xn∥2 + ∥x− y, x2, ..., xn∥2 = 2(∥x, x2, ..., xn∥2 + ∥y, x2, ..., xn∥2).
(NIN1) 4⟨x, y|x2, ..., xn⟩ = ∥x+ y, x2, ..., xn∥2 − ∥x− y, x2, ..., xn∥2.
Equality is known as extension of parallelogram law.
On the other hand if (X, ∥., ..., .∥) is an n-normed linear space in which the condition ∥x+y, x2, ...xn∥2+
∥x−y, x2, ..., xn∥2 = 2(∥x, x2, ..., xn∥2+∥y, x2, ..., xn∥2) is satisfied for all x, y, z, x2, ..., xn ∈ X then
n-inner product (⟨., .|..., .⟩) on X is defined by

(IIN2) ⟨x, y|x2, ..., xn⟩ = 1
4
(∥x+ y, x2, ..., xn∥2 − ∥x− y, x2, ..., xn∥2).

For further detail refer to [10, 17].
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3 Some Basic Lemmas

Lemma 3.1. In n-inner product space, we have the following

(i) ∥x+ y, y + z, x3, ..., xn∥ = ∥x− z, y + z, x3, ..., xn∥ = ∥x+ y, x− z, x3, ..., xn∥

(ii) ∥x+ y, y − z, x3, ..., xn∥ = ∥x+ z, y − z, x3, ..., xn∥ = ∥x+ y, x+ z, x3, ..., xn∥

(iii) ∥x− y, y + z, x3, ..., xn∥ = ∥x+ z, y + z, x3, ..., xn∥ = ∥x− y, x+ z, x3, ..., xn∥

(iv) ∥x− y, y − z, x3, ..., xn∥ = ∥x− z, y − z, x3, ..., xn∥ = ∥x− y, x− z, x3, ..., xn∥

Proof.

(i) ∥x+ y, y + z, x3, ..., xn∥ = ∥(x+ y)− (y + z), y + z, x3, ..., xn∥ (By(NN2))

= ∥x− z, y + z, x3, ......., xn∥

Again,

∥x+ y, y + z, x3, ..., xn∥ = ∥x+ y, (x+ y)− (y + z), x3, ..., xn∥ (By(NN2))

= ∥x+ y, x− z, x3, ......., xn∥

The proofs of (ii)-(iv) are similar.

Lemma 3.2. In any n-inner product space X,the followings hold:

(i) ∥x+y, y+z, x3, ..., xn∥2 =
∑

+2⟨x, y|z, x3, ..., xn⟩−2⟨x, z|y, x3, ..., xn⟩+ 2⟨y, z|x, x3, ..., xn⟩,

(ii) ∥x+y, y−z, x3, ..., xn∥2 =
∑

+2⟨x, y|z, x3, ..., xn⟩+2⟨x, z|y, x3, ..., xn⟩− 2⟨y, z|x, x3, ..., xn⟩,

(iii) ∥x− y, y+ z, x3, ..., xn∥ =
∑

−2⟨x, y|z, x3, ..., xn⟩ − 2⟨x, z|y, x3, ..., xn⟩+ 2⟨y, z|x, x3, ..., xn⟩,

(iv) ∥x− y, y− z, x3, ..., xn∥ =
∑

−2⟨x, y|z, x3, ..., xn⟩+2⟨x, z|y, x3, ..., xn⟩ − 2⟨y, z|x, x3, ..., xn⟩,

where Σ = ∥x, y, x3, ..., xn∥2 + ∥x, z, x3, ..., xn∥2 + ∥y, z, x3, ..., xn∥2.
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Proof.

(i)∥x+ y, y + z, x3, ..., xn∥2 = ⟨x+ y, x+ y|y + z, x3, ..., xn⟩
= ⟨x, x+ y|y + z, x3, ..., xn⟩+ ⟨y, x+ y|y + z, x3, ..., xn⟩
= ⟨x, x|y + z, x3, ..., xn⟩+ ⟨x, y|y + z, x3, ..., xn⟩

+⟨y, x|y + z, x3, ..., xn⟩+ ⟨y, y|y + z, x3, ..., xn⟩
= ⟨y + z, y + z|x, x3, ..., xn⟩+ ⟨y + z, y + z|y, x3, ..., xn⟩

+2⟨x, y|y + z, x3, ..., xn⟩
= ⟨y, y + z|x, x3, ..., xn⟩+ ⟨z, y + z|x, x3, ..., xn⟩

+⟨y, y + z|y, x3, ..., xn⟩+ ⟨z, y + z|y, x3, ..., xn⟩
+2⟨x, y|y + z, x3, ..., xn⟩

= ⟨y, y|x, x3, ..., xn⟩+ ⟨y, z|x, x3, ..., xn⟩+ ⟨z, y|x, x3, ..., xn⟩
+⟨z, z|x, x3, ..., xn⟩+ ⟨y, y|y, x3, ..., xn⟩+ ⟨y, z|y, x3, ..., xn⟩
+⟨z, y|y, x3, ..., xn⟩+ ⟨z, z|y, x3, ..., xn⟩+ 2⟨x, y|y + z, x3, ..., xn⟩

= ∥y, x, x3, ..., xn∥2 + ∥y, z, x3, ..., xn∥2 + ∥z, x, x3, ..., xn∥2

+2⟨y, z|x, x3, ..., xn⟩+ 2⟨x, y|y + z, x3, ..., xn⟩.

Now, ⟨x, y|y + z, x3, ..., xn⟩ = ⟨x, y|y, x3, ..., xn⟩+ ⟨x, y|z, x3, ..., xn⟩

+
1

2
[⟨y, z|x+ y, x3, ..., xn⟩ − ⟨y, z|x− y, x3, ..., xn⟩]

= ⟨x, y|z, x3, ..., xn⟩+
1

2
[⟨y, z|x+ y, x3, ..., xn⟩ − ⟨y, z|x− y, x3, ..., xn⟩].

Also, ⟨y, z|x+ y, x3, ..., xn⟩ = ⟨x+ y − x, z|x+ y, x3, ..., xn⟩
= ⟨x+ y, z|x+ y, x3, ..., xn⟩ − ⟨x, z|x+ y, x3, ..., xn⟩
= −⟨x, z|x+ y, x3, ..., xn⟩.

⟨y, z|x− y, x3, ..., xn⟩ = −⟨x− y − x, z|x− y, x3, ..., xn⟩
= −⟨x− y, z|x− y, x3, ..., xn⟩+ ⟨x, z|x− y, x3, ..., xn⟩
= ⟨x, z|x− y, x3, ..., xn⟩.

⟨x, y|y + z, x3, ..., xn⟩ = ⟨x, y|z, x3, ..., xn⟩ −
1

2
[⟨x, z|x+ y, x3, ..., xn⟩ − ⟨x, z|x− y, x3, ..., xn⟩]

= ⟨x, y|z, x3, ..., xn⟩ −
1

2
[⟨x, z|x, x3, ..., xn⟩+ ⟨x, z|y, x3, ..., xn⟩

+
1

2
(⟨x, y|x+ z, x3, ..., xn⟩ − ⟨x, y|x− z, x3, ..., xn⟩)]

+
1

2
[⟨x, z|x, x3, ..., xn⟩+ ⟨x, z| − y, x3, ..., xn⟩

+
1

2
(⟨x,−y|x+ z, x3, ..., xn⟩ − ⟨x,−y|x− z, x3, ..., xn⟩)]

= ⟨x, y|z, x3, ..., xn⟩ − ⟨x, z|y, x3, ..., xn⟩.

Therefore, we have,
∥x+ y, y + z, x3, ..., xn∥2 =

∑
+2⟨x, y|z, x3, ..., xn⟩ − 2⟨x, z|y, x3, ..., xn⟩+ 2⟨y, z|x, x3, ..., xn⟩. Now
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from Lemma 3.2 we have

(I) 4
∑

= ∥x+ y, y + z, x3, ..., xn∥2 + ∥x+ y, y − z, x3, ..., xn∥2

+∥x− y, y + z, x3, ...xn∥2 + ∥x− y, y − z, x3, ..., xn∥2.

(II) 8⟨x, y|z, x3, ..., xn⟩ = [∥x+ y, y + z, x3, ..., xn∥2 + ∥x+ y, y − z, x3, ..., xn∥2]
− [∥x− y, y + z, x2, ..., xn∥2 + ∥x− y, y − z, x3, ..., xn∥2].

4 Main Results

Theorem 4.1. An n-normed linear space X is an n-inner product space if and only if (I) is true
and n-inner product is given by (II).

Proof. Suppose X is an n-inner product space. Then by lemma 3.2 (I) follows .
Assume (I) is true in an n-normed linear space X.Using (I) we have

(A) : 4[∥z + y, x, x3, ..., xn∥2 + ∥x, z − y, x3, ..., xn∥2 + ∥z + y, z − y, x3, ..., xn∥2]
= ∥x+ y + z, 2z, x3, ..., xn∥2 + ∥x+ y + z, 2y, x3, ..., xn∥2

+∥x− y − z, 2z, x3, ..., xn∥2 + ∥x− y − z, 2y, x3, ..., xn∥2

= 4[∥x+ y + z, z, x3, ..., xn∥2 + ∥x+ y + z, y, x3, ..., xn∥2

+∥x− y − z, z, x3, ..., xn∥2 + ∥x− y − z, y, x3, ..., xn∥2]
= 4[∥z, x+ y, x3, ..., xn∥2 + ∥y, x+ z, x3, ..., xn∥2 + ∥z, x− y, x3, ..., xn∥2

+∥y, x− z, x3, ..., xn∥2].

(B) : 4[∥z + x, y, x3, ..., xn∥2 + ∥z − x, y, x3, ..., xn∥2 + ∥z + x, z − x, x3, ..., xn∥2]
= ∥x+ y + z, 2z, x3, ..., xn∥2 + ∥x+ y + z, 2x, x3, ..., xn∥2

+∥z + x− y, 2z, x3, ..., xn∥2 + ∥z + x− y, 2x, x3, ..., xn∥2

= 4[∥x+ y + z, z, x3, ..., xn∥2 + ∥x+ y + z, x, x3, ..., xn∥2

+∥z + x− y, z, x3, ..., xn∥2 + ∥z + x− y, x, x3, ..., xn∥2]
= 4[∥z, y + x, x3, ..., xn∥2 + ∥x, y + z, x3, ..., xn∥2 + ∥z, y − x, x3, ..., xn∥2

+∥x, y − z, x3, ..., xn∥2].

Adding (A)and(B), we have

∥x+ y, z, x3, ..., xn∥2 + ∥x− y, z, x3, ..., xn∥2 = 2[∥x, z, x3, ..., xn∥2 + ∥y, z, x3, ..., xn∥2].

Therefore we have an n-inner product space with

4⟨x, y|z, x3, ..., xn⟩ =
1

4
[∥x+ y, z, x3, ..., xn∥2 − ∥x− y, z, x3, ..., xn∥2].

Once again using (I) we have,

(C) : 4[∥x+ y, y + z, x3, ..., xn∥2 + ∥x+ y, y − z, x3, ..., xn∥2 + ∥y + z, y − z, x3, ..., xn∥2∥]
= ∥x+ 2y + z, 2y, x3, ..., xn∥2 + ∥x+ 2y + z, 2z, x3, ..., xn∥2 + ∥x− z, 2y, x3, ..., xn∥2

+∥x− z, 2z, x3, ..., xn∥2.
= 4[∥x+ 2y + z, y, x3, ..., xn∥2 + ∥x+ 2y + z, z, x3, ..., xn∥2 + ∥x− z, y, x3, ..., xn∥2

+∥x− z, z, x3, ..., xn∥2].
= 4[∥x+ z, y, x3, ..., xn∥2 + ∥x+ 2y, z, x3, ..., xn∥2 + ∥x− z, y, x3, ..., xn∥2

+∥x, z, x3, ..., xn∥2].
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(D) : 4[∥x− y, y + z, x3, ..., xn∥2 + ∥x− y, y − z, x3, ..., xn∥2 + ∥y + z, y − z, x3, ..., xn∥2∥]
= ∥x+ z, 2y, x3, ..., xn∥2 + ∥x+ z, 2z, x3, ..., xn∥2 + ∥x− 2y − z, 2y, x3, ..., xn∥
+∥x− 2y − z, 2z, x3, ..., xn∥2].
= 4[∥x+ z, y, x3, ..., xn∥2 + ∥x+ z, z, x3, ..., xn∥2 + ∥x− 2y − z, y, x3, ..., xn∥
+∥x− 2y − z, z, x3, ..., xn∥2].
= 4[∥x+ z, y, x3, ..., xn∥2 + ∥x, z, x3, ..., xn∥2 + ∥x− z, y, x3, ..., xn∥2

+∥x− 2y, z, x3, ..., xn∥2.

Subtracting (D) from (C) and using (II) we get,

⟨x, y|z, x3, ..., xn⟩ =
1

8
[∥x+ 2y, z, x3, ..., xn∥2 − ∥x− 2y, z, x3, ..., xn∥2]

=
1

2
⟨x, 2y|z, x3, ..., xn⟩

= ⟨x, y|z, x3, ..., xn⟩.

This completes the proof.

Theorem 4.2. An n-normed linear space (X, ∥., ..., .∥) is an n-inner product space if and only if
∀x, y, x3, ..., xn ∈ X. N(s, t) = ∥sx + y, y + tz, x3, ..., xn∥2 is a function of s2t2, s2t, st2, s2, t2, st
where s, t ∈ R.

Proof. Assume that the n-normed linear space (X, ∥., ..., .∥) be an n-inner product space. Now
∀x, y, z, x3, ..., xn ∈ X and s, t ∈ R,

N(s, t) = ∥sx+ y, y + tz, x3, ..., xn∥2

= ⟨sx+ y, sx+ y|y + zt, x3, ..., xn⟩
= ⟨sx, sx+ y|y + zt, x3, ..., xn⟩+ ⟨y, sx+ y|y + zt, x3, ..., xn⟩
= ⟨sx, sx|y + zt, x3, ..., xn⟩+ ⟨y, sx|y + zt, x3, ..., xn⟩+ ⟨sx, y|y + zt, x3, ..., xn⟩

+⟨y, y|y + zt, x3, ..., xn⟩
= ⟨y + tz, y + tz|sx, x3, ..., xn⟩+ 2s⟨x, y|y + zt, x3, ..., xn⟩+ ⟨y + zt, y + zt|y, x3, ..., xn⟩
= ⟨y, y + tz|sx, x3, ..., xn⟩+ ⟨tz, y + zt|sx, x3, ..., xn⟩+ 2s⟨x, y|y + zt, x3, ..., xn⟩

+⟨y, y + tz|y, x3, ..., xn⟩+ ⟨tz, y + tz|y, x3, ..., xn⟩
= ⟨y, y|sx, x3, ..., xn⟩++⟨tz, y|sx, x3, ..., xn⟩+ ⟨y, tz|sx, x3, ..., xn⟩

+⟨tz, tz|sx, x3, ..., xn⟩+ 2s⟨x, y|y + tz, x3, ..., xn⟩+ ⟨y, y|y, x3, ..., xn⟩
+⟨tz, y|y, x3, ..., xn⟩+ ⟨y, tz|y, x3, ..., xn⟩+ ⟨tz, tz|y, x3, ..., xn⟩

= s2⟨y, y|x, x3, ..., xn⟩+ s2t⟨z, y|x, x3, ..., xn⟩+ s2t⟨y, z|x, x3, ..., xn⟩
+s2t2⟨z, z|x, x3, ..., xn⟩+ 2s⟨x, y|y + tz, x3, ..., xn⟩+ t2⟨z, z|y, x3, ..., xn⟩

= s2∥x, y, x3, ..., xn∥2 + 2s2t⟨z, y|x, x3, ..., xn⟩+ s2t2∥x, z, x3, ..., xn∥2

+2s⟨x, y|y + tz, x3, ..., xn⟩+ t2∥y, z, x3, ..., xn∥2.

From (II),it follows that

⟨x, y|y + tz, x3, ..., xn⟩ =
1

8
[(∥x+ y, 2y + tz, x3, ..., xn∥2 + ∥x+ y, tz, x3, ..., xn∥2)

−(∥x− y, 2y + tz, x3, ..., xn∥2 + ∥x− y, tz, x3, ..., xn∥2)].
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From lemma 3.2, we have

∥x+ y, 2y + tz, x3, ..., xn∥2 = 4∥x+ y, y +
t

2
z, x3, ..., xn∥2

= 4[∥x, y, x3, ..., xn∥2 + ∥y +
t

2
z, x3, ..., xn∥2

+∥x+
t

2
z, x3, ..., xn∥2 + 2⟨x, y| t

2
z, x3, ..., xn⟩

−2⟨x, t
2
z|y, z, x3, ..., xn⟩+ 2⟨y, t

2
z|x, x3, ..., xn⟩]

= 4∥x, y, x3, ..., xn∥2 + t2∥y, z, x3, ..., xn∥2 + t2∥x, z, x3, ..., xn∥2

+2t2⟨x, y|z, x3, ..., xn⟩ − 4t⟨x, z, |y, x3, ..., xn⟩+ 4t⟨y, z|x, x3, ..., xn⟩.

∥x+ y, tz, x3, ..., xn∥2 = ⟨x+ y, x+ y|tz, x3, ..., xn⟩
= ⟨x, x+ y|tz, x3, ..., xn⟩+ ⟨y, x+ y|tz, x3, ..., xn⟩
= ⟨x, x|tz, x3, ..., xn⟩+ ⟨x, y|tz, x3, ..., xn⟩

+⟨y, x|tz, x3, ..., xn⟩+ ⟨y, y|tz, x3, ...xn⟩
= t2∥x, z, x3, ..., xn∥2 + 2t2⟨x, y|z, x3, ..., xn⟩

+t2∥y, z, x3, ..., xn∥2.

∥x− y, 2y + tz, x3, ..., xn∥2 = 4∥x− y, y +
t

2
z, x3, ..., xn∥

= 4[∥x, y, x3, ..., xn∥2 + ∥y, t
2
z, x3, ..., xn∥2

+∥x, t
2
z, x3, ..., xn∥2 − 2⟨x, y| t

2
z, x3, ..., xn⟩

−2⟨x, t
2
z|y, x3, ..., xn⟩+ 2⟨y, t

2
z|x, x3, ..., xn⟩]

= 4∥x, y, x3, ..., xn∥2 + t2∥y, z, x3, ..., xn∥2 + t2∥x, z, x3, ..., xn∥2

−2t2⟨x, y|z, x3, ..., xn⟩+ 4t⟨x, z|y, x3, ..., xn⟩+ 4t⟨y, z|x, x3, ..., xn⟩

and ∥x− y, tz, x3, ..., xn∥2 = t2∥x, z, x3, ...xn∥2 − 2t2⟨x, y|z, x3, ...xn⟩+ t2∥y, z, x3, ...xn∥2. Thus,
⟨x, y|y + tz, x3, ..., xn⟩ = t2⟨x, y|z, x3, ..., xn⟩ − t⟨x, z|y, x3, ..., xn⟩.

So,N(s, t) = s2t2∥x, z, x3, ..., xn∥2 + 2s2t⟨y, z|x, x3, ..., xn⟩+ 2st2⟨x, y|z, x3, ..., xn⟩
+s2∥x, y, x3, ..., xn∥+ t2∥y, z, x3, ..., xn∥2 − 2st⟨x, z|y, x3, ..., xn⟩.

Therefore, N(s, t) = ∥sx+y, y+tz, x3, ..., xn∥2 is a function of s2t2, s2t, st2, s2, t2, st, where s, t ∈ R.
Conversely,Let N(s, t) = ∥sx + y, y + tz, x3, ..., xn∥2 = as2t2 + bs2t + cs2 + dst2 + et2 + fst be a
function of s2t2, s2t, st2, s2, t2, st where s, t ∈ R.
We have, the following
N(1, 1) = ∥x+ y, y + z, x3, ..., xn∥2.
N(1,−1) = ∥x+ y, y − z, x3, ..., xn∥2.
N(−1, 1) = ∥x− y, y + z, x3, ..., xn∥2.
N(−1,−1) = ∥x− y, y − z, x3, ..., xn∥2.
Therefore,

N(1, 1) + N(1,−1) +N(−1, 1) +N(−1,−1)

= ∥x+ y, y + z, x3, ..., xn∥2 + ∥x+ y, y − z, x3, ..., xn∥2

+ ∥x− y, y + z, x3, ..., xn∥2 + ∥x− y, y − z, x3, ..., xn∥2

= 4(a+ c+ e).
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Now we have the following,
N(1, 0) = ∥x+ y, y, x3, ..., xn∥2 = ∥x, y, x3, ..., xn∥2 = c.
N(0, 1) = ∥y, y + z, x3, ..., xn∥2 = ∥y, z, x3, ..., xn∥2 = e.
Therefore we have,

∥sx+ y, y + tz, x3, ..., xn∥2

s2t2
= ∥x+

y

s
,
y

t
+ z, x3, ..., xn∥2

= a+
b

t
+

c

t2
+

d

s
+

e

s2
+

f

st
.

So, ∥x, z, x3, ..., xn∥2 = lim
s,t→∞

∥x+
y

s
,
y

t
+ z, x3, ....xn∥

= lim
s,t→∞

∥sx+ y, y + tz, x3, ..., xn∥2

s2t2

= lim
s,t→∞

(a+
b

t
+

c

t2
+

d

s
+

e

s2
+

f

st
)

= a.

Hence we have,

4Σ = 4(∥x, y, x3, ..., xn∥2 + ∥x, z, x3, ..., xn∥2 + ∥y, z, x3, ..., xn∥2)
= ∥x+ y, y + z, x3, ..., xn∥2 + ∥x+ y, y − z, x3, ..., xn∥2

+∥x− y, y + z, x2, ...xn∥2 + ∥x− y, y − z, x3, ..., xn∥2.

So by Theorem 4.1, (X, ∥., ..., .∥) is an n-inner product space.

5 Some Consequences

Corollary 5.1. An n-normed linear space (X, ∥., ..., .∥) is an n-inner product space if and only
if ∀x, y, x3, ....., xn ∈ X.N(s, t) = ∥sx+ y, y − tz, x3, ..., xn∥2 is a function of s2t2, s2t, st2, s2, t2, st
where s, t ∈ R.

Corollary 5.2. An n-normed linear space (X, ∥., ..., .∥) is an n-inner product space if and only
if ∀x, y, x3, ....., xn ∈ X.N(s, t) = ∥sx− y, y + tz, x3, ..., xn∥2 is a function of s2t2, s2t, st2, s2, t2, st
where s, t ∈ R.

Corollary 5.3. An n-normed linear space (X, ∥., ..., .∥) is an n-inner product space if and only
if ∀x, y, x3, ....., xn ∈ X.N(s, t) = ∥sx− y, y − tz, x3, ..., xn∥2 is a function of s2t2, s2t, st2, s2, t2, st
where s, t ∈ R.

6 Conclusion

The notion of n-norm introduce by Gähler in the generalization of concept of length,area and volume
in a real vector space [2],[3]. The objects under consideration on such space are n-dimensional
parallelopipeds. The idea of n-inner product could be taken into consideration when angle is
measured between two n-dimensional parallelopipeds each having the same (n− 1) dimension.
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