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Abstract 
 

We studied equation of continuity and boundary layer thickness. The Blasius and Falkner equations are 
studied in order to investigate the guess values in various boundary layer thicknesses, and Falknar-skan 
equations shows when velocity profile has a point of inflection in case of accelerated and decelerated. 
The solutions of the above mentioned equations are shown graphically. Finally, the thermal boundary 
layer equation has been derived from Navier-Stoke equation by boundary layer technique. Boundary 
Layer equation has been non-dimensionalised by using non-dimensional variable. The non-dimensional 
boundary layer equations are non-linear partial differential equations. These equations are solved by finite 
difference method. The effect on the velocity and temperature for the various parameters entering into the 
problems are separately discussed and shown graphically. We use Fortran Program for taking Data and 
for graphical representation we use TecPlot. 
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1. Introduction 
 
It all started in 1904 at the International Mathematical Congress in Heidelberg, when Ludwig Prandtl give a 

lecture entitled “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung” (English: “On fluid flow with very 
little friction”) [1]. He explained that the viscosity of a fluid plays a role in a (very) thin layer adjacent to the 
surface, which he called “Uebergangsschicht” or “Grenzschicht”. Translated into English, the latter led to 
term boundary layer [2,3]. The boundary layer theory plays a vital role in the variety area of engineering and 
scientific applications [4]. With this lecture, the understanding of fluid flow was significantly increased. For 
instance, D’Alembert’s paradox, stating that a body placed in a potential flow does not experience a force-
clearly in conflict with everyday experience-was resolved. Subsequently, it could be explained, e.g., why 
birds and airplanes can fly. The thus far invisible boundary layer was responsible. It plays a vital role in fluid 
dynamics and has become a very powerful of analysing the complex behavior of real fluids. The boundary 
layer flow due to a shrinking sheet is emerged as an interesting problem in fluid dynamics [5]. The shrinking 
sheet flows occur in some practical situations, such as, for rising shrinking balloon and it is very useful in 
packaging of bulk products. The drag on ships and missiles, the efficiency of compressor and turbines in jet 
engines, the effectiveness of air intakes for ram and turbojets and so on depend on the concept of the 
boundary layer and its effects on the main flow. The boundary-layer flow induced by a stretching surface has 
been the focus of large area during the last few decades in view of its many applications in the polymer 
extrusion, in a melt spinning processes, aerodynamic extrusion of plastic sheets, glass fiber production, the 
cooling and drying of paper and textiles, water pipes, sewer pipes, irrigation channels, blood vessels etc. The 
boundary-layer flow of nanofluid over a stretching sheet is a current attractive topic among the researchers 
[6]. With solving any equation and depending on the arguments in physical terms, the bounary layer theory 
is capable of explaining the difficulties encountered by ideal fluid dynamics [7]. When a real fluid (viscous 
fluid) flows past a stationary solid boundary, a layer of fluid which comes in contact with the boundary 
surface adheres to it (on account of viscosity) and condition of no slip occurs(The slip no-slip condition 
implies that the velocity of fluid at a solid boundary must be same as that of boundary itself). Thus, the layer 
of fluid which can’t slip away from the boundary surface undergoes retardation for the adjacent layer of the 
fluid, thereby developing a small region in the immediate vicinity of the boundary surface in which the 
velocity of the following fluid increases rapidly from zero at the boundary surface and approaches the 
velocity of main stream [2]. The layer adjacent to the boundary is known as Boundary Layer. Boundary 
Layer is formed whenever there is relative motion between the boundary and the fluid. Since

0
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 the fluid exerts a shear stress on the boundary and boundary exerts an equal and opposite 

force on the fluid known as the shear resistance [8]. 
 
According to boundary layer theory the extensive fluid medium around bodies moving in fluid can be 
divided into following two regions: 
 

(i) A thin layer adjoining the boundary called the boundary layer where the viscous shear takes 
place. 

(ii) A flow outside the boundary layer where the flow behaviour is quite like that of an ideal 
fluid and the potential theory is applicable [9]. 

 
Recntly, many authors are working on 3-D boundary layer flow. Three-dimensional boundary layer flow 
transition over rotating disks has been a subject of many studies. These studies are served as the foremost 
model problem for the subsequent investigations of the 3-D boundary layer flows over axisymmetric bodies 
of revolution [10]. For the Both case theoretically and experimentally, the case of a flow field structure of 
the laminar boundary layer flow over rotating spheres has been greatly. The flow visualisation studies led by 
the papers are related to the transition of the laminar boundary layer flow over rotating spheres and cones 
[11]. The stability and instability of the boundary layer flows on rotating spheres, spheroids, and disks. The 
theoretical studies of [12] related to the transition phenomena of the laminar boundary layer flow over 
various rotating geometries like disk, sphere and cone were carried out in such a way that the governing 
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laminar flow equations were first derived using some appropriate coordinate systems for each geometry. 
These laminar flow equations are actually a set of simultaneous 3-D nonlinear partial differential equations 
and are solved by using advanced numerical methods. Subsequently, the perturbation equations that govern 
the transition of the laminar boundary layer are derived for each body. The solutions of the laminar flow 
equations are then used in solving the related perturbation equations for each body [10]. 
 
The Falkner-Skan equation has been considered in the last 40 years due to its significance in the boundary 
layer theory. At the first time the solution of the Falkner-Skan equation has been studied numerically and 
solved this equation by the shooting method. A researcher Maksyn solved the Falkner-Skan equation by 
analytic approximation. After that, found its solution using finite differences, homotopy analysis and Fourier 
series to solve Falkner-Skan equation. An important case is the Blasius equation [11,4]. This problem was 
solved by Rosales and Valencia [13] using Fourier series. Mathematician Boyd found the solution of 
Falkner-Skan equation by numerical method. An enormous amount of research work has been invested in 
the study of nonlinear boundary value problems [4]. 
 

2. Experimental Details 
 
The momentum thickness represents the vertical distance that the solid boundary must be displaced upward 
so that the ideal fluid has the same mass momentum as the real fluid. 
 
Expression for �∗and � using various types of velocity profiles in the boundary layer is tabulated in Table 1. 
 

Table 1. �∗and �  for various types of velocity profiles in the boundary layer 
 

Types of velocity distribution Boundary layer displacement 
thickness, �∗ 

Boundary layer momentum 
thickness, � 

Linear profile, 
�

�
=

�

�
 �

2
 

�

6
 

Parabolic profile, 
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�
= − �

�

�
�

�

+ 2 �
�

�
� 

�

3
 

2

15
� 

Cubic profile, 
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�
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3

2
�
�

�
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1

2
�
�

�
�

�
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8
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� 

Sin-Cos profile, 
�

�
= ��� �

�

2

�

�
� 

� �1 −
2

�
� � �

2

�
−

1

2
� 

Turbulent profile,  
�

�
= �

�

�
�

�/�

 

�

8
 

7

72
� 

 
Thus we can write, 
 

     ' ' ' ' '2 0f f f                                                                                                            (1) 

 
With boundary conditions, 
 

   '0, 0f f          at  0                                                                                               (2) 
 

And                         ' 1f     as                                                                                        (3) 
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The differential equation (1) with boundary conditions (2) and (3) is known as Blasius equation [14]. Its 
solution is shown in Fig. 1. 
 

 
 

Fig. 1. Velocity distribution of Blasius equation 
 

The solution (Blassius solution) is tabulated as follows: 
 

Table 2. The Blassius solution 
 

x

U
y


 0  

�′(�) = � �⁄  η �′(�) 

0 0 3.6 0.9233 
0.4 0.1328 4.0 0.9555 
0.8 0.2647 4.4 0.9759 
1.2 0.3938 4.8 0.9878 
1.6 0.5168 5.0 0.9916 
2.0 0.6298 5.2 0.9943 
2.4 0.7290 5.6 0.9975 
2.8 0.8115 6.0 0.9990 
3.2 0.8767 ∞ 1.0000 

 

2.1 Mathematical formulation 
 

For	unsteady	state
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
																																																	(4) 

 

The Navier-stokes equation in X  direction with boundary layer without body force due to gravity taken 
into account. 
 

2

2

1u u u p u
u v g

t x y x y




    
     

                                                                                        

(5) 
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With the corresponding initial and boundary conditions are 
 

At  � = 0		� = 0, � = 0	everywhere                                                                                                 (6) 
 
� > 0 
 
� = 0, � = 0, � → �∞��� = 0 
 
� = ��, � = 0, � → �∞��� = 0                                                                                                         (7) 
 
� = 0, � = 0, � → ����� → ∞ 

 

Where yx,  are Cartesian coordinate system. vu,  are yx,  component of flow velocity respectively  is the  

local acceleration due  to  gravity ;  is the  kinematic viscosity;   is  the density  of  the  fluid ; � is  the  

thermal conductivity ; pC  is  the  specific heat  at  the constant  pressure [7]. 

 
Since the solutions of the governing equations (4)-(5) under the initial (6) and boundary (7) conditions will 
be based on a finite difference method it is required to make the said equations dimensionless [14]. 
 
we attempt   to  solve  the   governing  second  order   nonlinear coupled  dimensionless  partial  differential  
equations  with  the  associated  initial  and  boundary conditions. For solving a  transient free  convection 
flow with heat and mass  transfer  past a semi infinite  plate, Callahan  and  Marner (1976) used  the  
difference  method [15].  
 
From the concept of  the  above discussion, for  simplicity  the  explicit finite  difference  method  has been 
used to solve  equations continuity and momentum equation subject to the conditions . To  obtain  the  

difference   equations  the  region  of   the  flow  is  divided into a grid of lines parallel to X and Y axes 

where X -axes is taken along the   plate  and  Y - axes  is   normal  to  the  plate. Here   we   consider  that  

the  plate  of  height ���� = 100 i.e. X  varies from 0 to  100 and regard ���� = 25 as corresponding to 

Y  i.e. Y  varies 0 to 20. There  are 400m   and  400n  grid  spacing  in  the X  and Y  
directions  respectively as  shown  in the Fig. 2 
 

 
 

Fig. 2. The finite difference space grid 



 
 
 

Mamtaz et al.; ARJOM, 11(4): 1-15, 2018; Article no.ARJOM.45267 
 
 
 

6 
 
 

It is assumed that YX  ,  are constant mesh sizes along X  and Y  directions respectively and taken as 

follows, 
 

0.5(0 200)

0.05(0 20)

X x

Y y

   

   
 

 

With the smaller time step, 0.001  . 
 

2.2 Falkner equation 
 
Let us consider the boundary layer equation of the type of potential flow for which similar solution exists. 
The boundary layer equation for two dimensional flow is [5]      
                                                            

2

2
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v
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u
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







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                                                                                                     (8) 
 

y

v
v

x

u
u









=0                                                                                                                                (9) 

 
with boundary conditions 
 

0 vu  at 0y                                                                                                                      (10) 

 
and ( )U xu   at y                                                                                                               (11) 

 
by solving we get, 
 

0)1( 2  ffff                                                                                                           (12) 

 
and the  boundary conditions  may be re-written  as 
 









   as    0

0at     0     ,0

f

ff
                 

                                                                                    (13) 

 

Equation (12) with boundary conditions (13) was first deduced V.M. Falkner and S. W. Skan. So this 
equation is known as Falknar-Skan Equation 
 

and solution of Falknar equation is 
21 1 1 1

2 2 2 2
u U e e e            

           
        

. 

 

2.3 Thermal boundary layer equation 
 

Continuity equation 0









y

v

x

u
                                                                                                                (14) 
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Momentum	equation
��

��
+ �

��

��
+ �

��

��
= �

���

���
+ ��(� − �∞)																																																						(15) 

 

Energy	equation	
��

��
+ �

��

��
+ �

��

��
=

�

���

���

���
+

�

��

�
��

��
�

�

																																																													(16) 

 
With the corresponding initial and boundary conditions are 
 

At  � = 0		� = 0, � = 0	everywhere                                                                                               (17) 
 

� > 0 
� = 0, � = 0, � → �∞				��	� = 0 
 

� = ��, � = 0, � → �∞		��	� = 0                                                                                                    (18) 
 

� = 0, � = 0, � → ��			��	� → ∞ 
 

Where yx,  are Cartesian coordinate system. vu,  are yx,  component of flow velocity respectively  is the  

local acceleration due  to  gravity ;   is the  kinematic viscosity;   is  the density  of  the  fluid ; � is  the  

thermal conductivity ; pC  is  the  specific heat  at  the constant  pressure [11,16]. 

 
Since the solutions of the governing equations (14)-(16) under the initial (17) and boundary (18) conditions 
will be based on a finite difference method it is required to make the said equations dimensionless. 
 
For this purpose we now introduce the following dimensionless variables; 
 

2
0 0 0

0 0

, , , , ,
w

xU yU tU T Tu v
X Y U V T

U U T T


  



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
 

 
Using these relations we have the following derivatives are 
 

3
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Uu U
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Uu U

x X
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2
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=

��
�

��
(�� − �∞)

����

���
 

 
Now we  substitute  the values of  the above derivatives into the equations (14)-(16) and by simplifying we 
obtain the following  nonlinear coupled  partial differential equations  in terms of  dimensionless  variables 
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0









Y

V

X

U
                                                                                                                               (19) 

 

��

��
+ �

��

��
+ �

��

��
=

���

���
+ ����																																																																																																														(20) 

 

���

��
+ �

���

��
+ �

���

��
=

1

��

����

���
+ �� �

��

��
�

�

																																																																																															(21)	 

 

Where, 
 

Grashof number 
 

3
0

w
r

T T
G g

U
  

   

Prandlt number Pr pC

K


 

 
 

Eckert	number	�� =
��

�

��

(�� − �∞) 

 

  Also  the  associated  initial  and  boundary  conditions  become 
 

� = 0		� = 0, � = 0, �� = 0	everywhere                                                                                         (22) 
� > 0					 
� = 0, � = 0, �� = 0	��	� = 0 
 

� = 0, � = 0, �� = 1	��	� = 0                                                                                                        (23) 
 

� = 0, � = 0, �� = 0	��	� → ∞   
 

3. Results and Discussion 
 
3.1 Boundary layer equation and its solution 
 
Our main purpose is to analysis the variation of stressing factor �and velocity f  . That means if we change 

the values of � and suction parameter �� how the nature of velocity in terms of stressing factor will alter, 
that is it will increase or decrease, or it will remain constant. 
 
In Figs. 3 to 4, we show that the velocity profile for different values of  � at various suction parameter�� =
3,6,9 respectively. From these figures we conclude that the velocity profile decrease with the increase of 
suction parameter.    
 
In Figs. 5 and 7 it is found that the velocity profile is increase with the increase of suction parameter for 
values of   � = 60,80.  
 

In Figs. 6 and 8 the velocity profile is decrease with the increase of suction parameter for values of � =
−60, −80 
 

In Figs. 9 to 10, it is said that the velocity profile are same for different values of  �(±) at the suction 
parameter �� = 3,6 
 

In Fig. 11 the velocity profile decreases with the increase of  �(+) and increases with the increase of �(−)  
at �� = 9 
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Fig. 3. For β=20 and �� = �, �, �                                     Fig. 4. For β=-20 and �� = �, �, � 
 

 
 

Fig. 5. For β=60 and �� = �, �, �		                             Fig. 6. For β=-60 and �� = �, �, � 
 

 
 

Fig. 7. For β=80 and �� = �, �, �                           Fig. 8. For β=-80 and �� = �, �, � 
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Fig. 9. For different values of β (±) at �� = �                  Fig. 10. For different values of β (±) at �� = � 
 

 
 

Fig. 11. For different values of β (±) at �� = � 
 

3.2 Thermal boundary layer equation and its solution 
 

The main goal of the computation is to obtain the steady state solutions for the non-dimensional velocity U  

and temperature T for different values of Prandtl rP  , Eckert cE , and Grashof number Gr. For this purpose, 

computations have been carried out up to time  =80. The results of the computations, however, show little 
changes in the above mentioned quantities after  =50 have been reached. Thus the solution for  =80 are 
essentially steady state solutions. Along with the steady state solutions the solutions for the transient values 
of  U  andT are shown in Fig. 12-22 for time  =10, 50, respectively. The most important fluids are 

atmospheric air, water and saltwater. So the results are limited to 
rP =0.71 (Prandtl number for air at C020 , rP

=7.0 (Prandtl number for air at C020 ), and rP =1.0 (Prandtl number for  saltwater). The values of another 

parameter Eckert number is chosen arbitrarily. Fig. 11 to Fig. 14 shows the velocity profile for different 
values of Grashof number (Gr)  at time  =10,50. From these figure the velocity profile increase with the 
increase of Grashof number. Fig. 15 to 18 shows the velocity and temperature profile for different values of 
Prandtl number (Pr) at time   =10,50. From these figure the velocity and temperature profile decrease with 
the increase of Prandtl number. Fig. 19 to Fig. 22 shows the velocity and temperature profile for different 
values of Eckert number (Ec)at time  =10,50. From these figure the velocity and temperature profile 
increase with the increase of Eckert number(Ec). 
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In Fig. 11 to Fig 12, we show velocity profiles for different values of Gr at time 10 and 50
respectively. From these figures it is concluded that the velocity profile increases with the increase of 
Grashof number. 
 

In Fig. 13 to Fig. 14 show the temperature profiles for different values of Gr at time 10 and 

50 respectively. From these figures the temperature profiles decrease with the increase of Grashof 
number. 
 

In Fig. 15 to Fig. 16 show the velocity profiles for different values of Pr at time 10 and 50
respectively. From these figures, we show that the velocity profile decrease with the increase of Prandtl 
number. 
 

 
 

Fig. 11. Velocity profiles for different                     Fig. 12. Velocity profiles for different 
values of Grashof number when Pr=0.71           values of Grashof number when Pr=0.71 

Ec=0.03 at time � = ��                                                               Ec=0.03 at time � = �� 
 

 
 

Fig. 13. Temperature profile for different              Fig. 14. Temperature profile for different 
values of Grashof  number when Pr=0.71,           values of Grashof  number when Pr=0.71, 

Ec=0.03 at time � = ��                                               Ec=0.03 at time � = �� 
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Fig. 15. Velocity profiles for different      Fig. 16. Velocity profiles for different 
values of Prandtl number when Gr=4                     values of Prandtl number when Gr=4 

Ec=0.01 at time � = ��		                                            Ec=0.01 at time � = �� 
 

 
 

Fig.17. Temperature profile for different              Fig. 18. Temperature profile for different 
values of Prandtl number when Gr=4,                  values of Prandtl number when Gr=4, 

Ec=0.01 at time � = ��                                            Ec=0.01 at time � = �� 
 

In Fig. 17 to Fig. 18 show the temperature profiles for different values of Pr at time 10 and 

50 respectively. From these figures the temperature profile decreases with the increase of Prandtl 
number. 
 

In Fig. 19 to Fig 20 show the velocity profiles for different values of Ec at time 10 and 50
respectively. From these figures it is found that the velocity profile increase with the increase of Eckert 
number. 
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In Fig. 21 to Fig 22 show the temperature profiles for different values of Ec at time 10 and 

50 respectively. From these figures the temperature profiles increase with the increase of Eckert 
number. 

 

 
 

Fig. 19. Velocity profiles for different                   Fig. 20. Velocity profiles for different 
Values of Eckert  number when Gr=4                     values of Eckert  number when Gr=4 

Pr=0.71 at time � = ��                                                Pr=0.71 at time � = �� 
 

 
 

Fig. 21. Temperature profile for different              Fig. 22. Temperature profile for different 
values of Eckert number when Gr=4,                  values of Eckert number when Gr=4, 

Pr=0.71 at time � = ��                                           Pr=0.71 at time � = �� 
 

4 Conclusion 
 
The Thermal Boundary Layer Equation had been derived from Navier-stoke and concentration equation by 
boundary layer technique. Boundary Layer equation has been non-dimensionalised by using non-
dimensional variable. The non-dimensional boundary layer equations are non-linear partial differential 
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equations. These equations are solved by finite difference method. Finite difference solution of heat and 
mass transfer flow is studied to examine the velocity and temperature. The effect on the velocity and 
temperature for the various important parameters entering into the problems are separately discussed into the 
problem with the help of graphs. Then the results in the form of velocity and temperature distribution are 
shown graphically. 
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