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Abstract

The offset microlensing degeneracy, recently proposed by Zhang et al., has been shown to generalize the close–
wide and inner–outer caustic degeneracies into a unified regime of magnification degeneracy in the interpretation
of two-body planetary microlensing observations. While the inner–outer degeneracy expects the source trajectory
to pass equidistant to the planetary caustics of the degenerate lens configurations, the offset degeneracy states that
the same mathematical expression applies to any combination of the close, wide, and resonant caustic topologies,
where the projected star–planet separations differ by an offset (sA≠ sB) that depends on where the source trajectory
crosses the lens axis. An important implication is that the sA= 1/sB solution of the close–wide degeneracy never
strictly manifests in observations except when the source crosses a singular point near the primary. Nevertheless,
the offset degeneracy was proposed upon numerical calculations, and no theoretical justification was given. Here,
we provide a theoretical treatment of the offset degeneracy, which demonstrates its nature as a mathematical
degeneracy. From first principles, we show that the offset degeneracy formalism is exact to zeroth order in the mass
ratio (q) for two cases: when the source crosses the lens axis inside of caustics, and for ( )s s 1A B

6 - when
crossing outside of caustics. The extent to which the offset degeneracy persists in oblique source trajectories is
explored numerically. Finally, it is shown that the superposition principle allows for a straightforward
generalization to N-body microlenses with N− 1 planetary lens components (q= 1), which results in a 2N−1-fold
degeneracy.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Binary lens microlensing (2136)

1. Introduction

Photometric observations of planetary microlensing events are
commonly subject to a twofold-degenerate interpretation where
the projected planet location differs (sA≠ sB) but the planet-to-
star mass ratio remains the same (qA = qB). The close–wide
degeneracy (e.g., Griest & Safizadeh 1998; Dominik 1999;
An 2005) is commonly invoked for such events with source stars
passing close to the central caustic, while the inner–outer
degeneracy (Gaudi & Gould 1997; Han et al. 2018) is cited for
events that have source stars passing close to the planetary
caustic. The close–wide degeneracy arises from the invariance of
the shape and size of the central caustic under the s↔ 1/s
transformation for |1− s|? q1/3, a condition that is equivalent
to the lens system being far from the resonant regime (An 2021).
The inner–outer degeneracy arises from the Chang–Refsdal
(Chang & Refsdal 1979) approximation to the planetary caustics
(Gaudi & Gould 1997; Dominik 1999), which describes a point-
mass lens with uniform shear. Chang–Refsdal caustics are
symmetric both along the star–planet axis (referred to as the lens
axis hereafter), and along the line perpendicular to the star–
planet axis that runs through the center of the caustic.

Recently, Yee et al. (2021) and Zhang et al. (2022) noted
various inconsistencies of the two aforementioned degeneracies
with those seen in real and simulated events. Yee et al. (2021)
noted the large number of semiresonant topology events that
cite the close–wide degeneracy, for which the degenerate
solutions do not exactly follow s↔ 1/s nor satisfy
|1− s|? q1/3. They went on to suggest that there may be a

continuum between the close–wide and inner–outer degen-
eracies in the resonant regime. Subsequently, Zhang et al.
(2022) pointed out that the s↔ 1/s relationship is also not
exactly followed even within the |1− s|? q1/3 regime in
which the close–wide degeneracy is expected to hold. They
pointed out that the close–wide and inner–outer degeneracies
are fundamentally caustic degeneracies that do not necessarily
translate to magnification degeneracies that manifest in light
curves.
The offset degeneracy (Zhang et al. 2022) is then proposed

independently of caustics as a magnification degeneracy, which
both relaxes the nonresonant condition (|1− s|? q1/3) and
resolves the aforementioned inconsistencies. A key observation
in the offset degeneracy is that for two planetary (q= 1) lenses
that differ only by an offset to the projected star–planet
separation (sA≠ sB) on the same lens axis, their locus of equal
magnification—referred to as the null—intersects with the lens
axis at

( )s s s s1 1

2
, 1A A B B

null,0x =
- + -

where the subscript “0” indicates to zeroth order in q, which we
prove to be the correct form in Section 2. The intersection
between the null and the lens axis is referred to as the lens-axis
null hereafter as a shorthand. Given that planetary anomalies
primarily occur on and near the lens axis, source trajectories
crossing the lens-axis null

( )
( )u

sin
20

null,0a
x=

are then expected to result in similar light curves under the
null-forming lens configurations. In the above equation,
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( )u usin0 anoma º is where the source crosses the lens axis,
which is usually also the source-star separation around the
midpoint of the planetary anomaly, u0 is the impact parameter to
the coordinate origin (see Section 2.1 for detailed considerations),
and α is the angle between the source trajectory and the lens axis.

Crucially, the above formalism is continuous over caustic
topology transitions for q= 1, and thus generalizes the close–wide
and inner–outer degeneracies to the resonant regime. One major
implication is that the close–wide degeneracy only strictly
manifests for the singular case of u0= 0, and elsewhere the offset
degeneracy predicts a deviation from s↔ 1/s. We thus refer to the
close–wide degeneracy as the central caustic degeneracy, in line
with An (2021). While Zhang et al. (2022) verified that the above
formalism accurately describes the degenerate solutions in 23
observed events in the referred literature, it was found numerically
and no theoretical justification was given. Subsequently, an
alternative formalism for the unification of degeneracies was
proposed in Gould et al. (2022), whose the relationship to the
offset degeneracy will be discussed in Section 5.

In this work, we provide a mathematical treatment of the
offset degeneracy. In Section 2, the location of the lens-axis
null is derived from the lens equation, which proves the
formalism proposed in Zhang et al. (2022). In Section 3,
conditions on the source trajectory orientation are discussed.
Finally, a generalized N-body offset degeneracy based on the
superposition principle is discussed in Section 4, whereas
Section 5 concludes our work.

2. Derivations

The goal of this section is to answer the question: given two
planetary lenses with the same mass-ratio (qA= qB= 1) but
different projected star–planet separations (sA≠ sB), where on
the lens axis are their magnifications equal?

Let us begin by defining the lens equation. With the primary
star on the origin and the planet on the real axis at a distance s
from the primary, the two-body complex lens equation
(Witt 1990) states

¯ ¯
( )z

m

z

m

z s

1
, 3z = -

-
-

-

where ζ= ξ+ iη and z= z1+ iz2 are the complex source and
image locations, m is the planetary mass normalized to the
total lens mass (Mtot), and s is the projected star–planet
separation normalized to the angular Einstein radius Eq =

( )GM D c4 tot rel
2 where Drel is the source-lens relative distance

defined as D D Drel
1

lens
1

source
1= -- - - .

Witt & Mao (1995) showed that the lens equation can be
transformed into a fifth-order polynomial in z by substituting
the conjugate of Equation (3),

¯ ¯ ( )z
m

z

m

z s

1
, 4z= +

-
+

-

back into itself, whereby conjugates in z̄ are cleared. The
resulting polynomial is

( ) ( ) · ( )p z m s a m s z; , , , , 0, 5
i

i
i

5
0

5

åz z= =
=

where

( )
( ) [ ( ) ¯ )]
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= - - + +
= + - +
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The magnification of each individual image j located at zj is
given by the absolute value of the inverse of the Jacobian
determinant of the lens equation:

∣
( )

p

Jdet
6j

j

z zj

m =
=

⎜ ⎟
⎛
⎝

⎞
⎠¯ ¯

( )p
z z

1 , 7j

z z

1

j

z z
= -

¶
¶

¶
¶

-

=

where pj=± 1 denotes the parity of the image.
Witt & Mao (1995) further demonstrated how one may

acquire the individual image magnifications μj without solving
for the image locations zj. Evaluating z̄z¶ ¶ with Equation (3),
clearing conjugates in z with Equation (4), and clearing
fractions, one obtains an eighth-order polynomial in z whose
coefficients are parameterized by μj. From here on, let us
restrict our discussion to the lens axis, i.e., the real axis (ζ= ξ).
The common variable z in this eighth-order polynomial and
fifth-order polynomial associated with the lens equation
(Equation (5)) can be eliminated by calculating their resultant,
which results in a lengthy fifth-order polynomial in μ:

( ) ( ) · ( )p m s b m s; , , , , 0, 8
i

i
i

5
0

5

åm x x m= =
=

whose coefficients are parameterized by ξ, m, and s. The above
polynomial can be further factored into linear and cubic
polynomials:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) · · · ( )p m s c d; , , 0. 9
i

i
i

i
i

i
5

0

1 2

0

3

å åm x m m= =
= =

Of the five solutions μj, the equal-magnification solutions
(μ1= μ2=− c0/c1) for the linear equation correspond to the
two off-axis images that only exist when the source is inside of
a caustic and are positive in parity. The cubic polynomial has
three real roots that correspond to three negative parity images
(μ3,4,5< 0) when the source is inside of caustics, but one
positive and two negative parity images when the source is
outside of caustics (Witt & Mao 1995). Let us now consider
these two cases separately.

2.1. Inside Caustics

When the lens-axis null—the intercept of the locus of equal
magnification on the lens axis—is located inside of caustics
(Figure 1), images for each of the two polynomials in
Equation (9) are respectively equal in parity and the total
magnification can be derived directly from the polynomial
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coefficients:

( ) ( ) ( )

( )

m s

c c d d

m s A msB

m s A ms C

, ,

2

3 2

2
, 10

tot,in 1 2 3 4 5

0 1 2 3
2 2 2 2

2 2 2 2

m x m m m m m

x
x x

= + - + +

=- +

=
- +

+ -

where

( )
A s s

B s s s

C s s

1

2 1 3 2

1 3 2 .

2

2 2 3

2 2

x
x x x

x x

= - +
=- + + - +
= + - +

The location of the lens-axis null can be derived by solving
μtot,in(sA)= μtot,in(sB). Since for planetary microlenses m= 1, the
m2s2 term can be dropped in both the numerator and the
denominator, and we can substitute the planet-to-star mass ratio
q=m/(1−m) for m. Clearing fractions in μtot,in(sA)−
μtot,in(sB)= 0, we obtain a quadratic polynomial in ξ. Taking
the zeroth-order Taylor expansion in q, one of the roots
simplifies to

( ) ( )
s s s s

q
1 1

2
, 11A A B B

null,inx =
- + -

+

where the other root is reduced to 0. We have thus shown that
the empirically derived ξnull,0 (Equation (1)) is exact for null in
caustic to zeroth order in q.
To see how ξnull,in may deviate from the zeroth-order term

(ξnull,0) for finite values of q, let us now consider the first-order
term in q and its dependence on sA,B. In particular, for
sA= 1/sB, we should expect the first-order term to not diverge
to infinity in the sA,B→ {0, ∞} limit, in order to be consistent
with the central caustic degeneracy. Here, it is important to
adapt a coordinate origin that is consistent with caustic
degeneracies. An (2021) noted that while the central caustic
degeneracy breaks down near the resonant regime, a pair of
resonant caustics with sA= 1/sB still resembles each other
locally toward the back end of the caustic (near the primary
star). This suggests that one should choose a coordinate origin
that consistently aligns the back end of the central/resonant
caustic for a pair of lenses with an arbitrary difference in
separation (sA,B).
We therefore opt to use the effective primary star location

(Di Stefano & Mao 1996; An & Han 2002; Chung et al. 2005)
as the coordinate origin, which is given by

( ) · ( )
( )q

q s s1
, 12

1
x x +

+ + -

and indeed achieves the aforementioned alignment. Note that
the effective primary location reduces to

⎧
⎨⎩

( )
( )

sq q s

s q q s

1 1

1 1,1




x
x
x


+ +
+ +-

which are the central caustic locations (Han 2008) that were
used in Zhang et al. (2022) as the coordinate origin for their
numerical calculations. We point out that the∼2% error at
sA= 1 and sB= 0.4 in Figure 2 of Zhang et al. (2022) is a
direct result of their coordinate choice, which is inaccurate in
describing resonant caustic locations and causes a misalign-
ment between the resonant and central caustics. Figure 2
reproduces that same figure, but with the effective primary
(Equation (12)) as the origin, and shows that the error of ξnull,0
at sA= 1 and sB= 0.4 is reduced to 0.1% and remains<0.1%
for ∣ ( )∣slog 0.25A,B < , or 1/1.8< sA,B< 1.8.
Applying the above coordinate transformation to the

previous derivation, we find that while the zeroth-order term
remains ξnull,0 as expected, the first-order term ( f · q) is rather
involved. There are only two special cases that are
relevant here.
If the null is located within the central caustic, we should

expect sA∼ 1/sB, which simplifies the first-order term f · q to

( )
( )

( )f
s s s

s

3 2 3

1
. 13

2 4

2 3
~ -

+ +
+

Note that the above expression is symmetrical under s↔ s−1.
Since f→ 0 for s→ {0, ∞}, f does not diverge and is typically
of order unity. However, if we had defined the lens equation
(Equation (3)) in units of the Einstein radius of the primary
mass, then f diverges to infinity for both s→ {0, ∞}, justifying
our choice of parameterization with the Einstein radius of the
total mass.
On the other hand, if the null is within the resonant or the

wide-planetary caustic, we should expect sA; sB 1, which

Figure 1. Top: fractional magnification difference between (sA = 1, q = 10−4)
and (sB = 1.04, q = 10−4), with the color scale shown to the right in log10.
Black contours illustrate the locus of equal magnification. The x- and y-axes are
in units of θE. Middle: a zoom-in of the dashed-line boxed region in the top
panel. The location of the lens-axis null expected from ξnull,0 is marked with the
gold star in the center. Source trajectories with α = 30°, 60° are shown in green
and blue dashed lines. Bottom: differences to single-lens light curves for null-
crossing trajectories. Dashed lines correspond to sA = 1, whereas solid lines are
for sB = 1.04. Trajectory orientation is marked in the subpanel upper right
corners with the same color coding as the middle panel. The α = 30° case is
seen to have different caustic entry–exit times but similar caustic-crossing
durations.
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results in

( )f
s s

2
, 14

3
~ -

+

and is also order unity. One may thus expect
ξnull,in; ξnull,0− q, that is, a deviation of order q, which is in
agreement with the slight deviation seen in the middle panel of
Figure 1.

2.2. Outside Caustics

For sources outside caustics (Figures 3 and 4), there are three
images that are different in parity, and we can no longer obtain
the total magnification directly from the polynomial coeffi-
cients. The sum of the absolute value of the cubic roots is also
difficult to simplify. However, keeping coefficients up to first
order in q, the cubic part of Equation (9) is reduced to a
quadratic polynomial with two roots that are in a much simpler
form compared to the cubic roots. The total magnification is
then the absolute difference between the two roots representing
one positive and one negative parity image. Indeed, when the
source is away from the planetary caustic, the image closest to
the planet typically has negligible magnification. As for the
alternative scenario, we should already expect ξnull,0 to hold in
the immediate vicinity of planetary caustics, given that the
location of the lens-axis null transitions continuously from
inside to outside of caustics.

Equating the total magnification for sA and sB, clearing
fractions, further taking the first-order expansion in q and
simplifying, we acquire a quartic polynomial

( ) ( ) · ( )p s s e s s; , , 0, 15
i

i
i

null A B
0

4

A Båx x= =
=

whose coefficients are provided in the Appendix. This
polynomial could be solved for the lens-axis null outside of
caustics for any arbitrary pair of sA,B satisfying q= 1.

To examine the conditions for ξnull,0 to be the exact form to
zeroth order in q, let us directly plug ξnull,0 into pnull as an

ansatz, which reduces the polynomial to

( ) ( )( ) (( ) ) ( )
s s s s s s

s s
s s

1 1

4
. 16A B A B A B

A B
A B

6 2

2 2
6-

- - +
= -

Given nonzero first-order derivative p null¢ and bounded higher-
order derivatives, pnull→ 0 implies ξ→ ξnull,0, that is, the ansatz
is indeed a root. Thus ξnull,0 is exact for ( )s s 1A B

6 - to zeroth
order in q. Note that this condition is substantially more relaxed
than the |sA− sB|= 1 condition (e.g., 0.56; 0.015). Further-
more, the condition of the lens being near the resonant regime
(|1− s| q1/3) is a sufficient condition for ( )s s 1A B

6 - ,
allowing ξnull,0 to be essentially exact for semiresonant events.
Numerical calculations (Figure 2) show that the error on

ξnull,0 remains less than 1% for 1/2.5< sA,B< 2.5 and should
be sufficiently accurate for practical purposes. Larger devia-
tions of a few percent are found near sA∼ 1/sB where
|sA− sB| 3. As a theoretical exercise, an alternative expres-
sion for these high-magnification (ξnull= 1) events can be
immediately acquired by linearizing pnull in ξnull, which results
in

( )e e , 17null,hm 0 1/x = -

where the coefficients can be found in the Appendix. Figure 2
shows ξnull,hm for |ξnull|< 0.5 (dashed lines), which verifies that
ξnull,hm indeed describes the local behavior at sA∼ 1/sB.

3. Source Trajectory Orientation

Technically, the above derivation only guarantees exact
magnification matching on the lens axis. It was shown in Zhang
et al. (2022) that vertical null-crossing trajectories result in
nearly identical light curves, which was also noted in Gaudi &
Gould (1997) for the inner–outer degeneracy. Indeed,
Figures 1, 3, and 4 all demonstrate that the locus of equal
magnification is vertically extended near the lens axis. Here, we
consider the extent to which oblique trajectories could remain
degenerate.
Let us first consider the case where the lens-axis null is

located outside of caustics. Figure 3 shows three examples
where the null gradually moves away from the central caustic.
Figure 4 shows three additional cases where sB approaches sA
from sB = 1. Note how in Figure 4 |ξnull| is greater than the
examples in Figure 3. In both cases, vertical trajectories
essentially give rise to identical light curves. As the trajectory
becomes more oblique, the magnifications under the two
degenerate lenses begin to differ in the “wings” of the planetary
perturbation, and thus sufficiently precise photometry can break
the degeneracy. By comparing Figures 3 and 4, one may see
that the trajectory angle can be as oblique as α= 15° while the
light curves remain largely the same when the null is close to
the central caustic (|ξnull|= 1). Elsewhere, the differences on
the perturbation “wings” become a significant fraction of the
peak planetary perturbation for α 45°. While not shown,
close approaches to the off-axis cusps of the planetary caustic
with oblique trajectories will decisively break the degeneracy,
as the time of approach will be either before or after crossing
the lens axis.
For the lens-axis null inside of caustics, there is notably an

additional constraint on the caustic entry–exit times and
duration. Figure 1 illustrates how the vertical null directionality
implies that the caustic height is automatically matched at the
lens-axis null, allowing the caustic entry–exit times and duration

Figure 2. Deviation of ξnull,0 from the exact null location, normalized to
|(sA − 1/sA) − (sB − 1/sB)|, where the exact null location is derived numeri-
cally with q = 10−4. Three solid curves show this relative error for changing sA
against three values of fixed sB ; (1/1.3, 1/1.8, 1/2.5). The two dashed lines
with darker colors show the alternative expression ξnull,hm which is exact for
ξnull = 1 (see Section 2.2), or equivalently sA ∼ 1/sB, shown only for
|ξnull| < 0.5 and |sA − sB| > 1.
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to be the same for vertical null-crossing trajectories. Essentially,
intersections of caustics are the set of points in the source plane
where magnifications for the two lenses diverge simultaneously,
and by definition, must occur on the locus of equal
magnification.

For oblique trajectories, note how the two resonant caustics
are approximately the reflection of one another along the vertical
null (black broken line in Figure 1) and appears like large
planetary caustics. Because of this symmetry, the caustic-
crossing duration remains approximately the same, but the
caustic entry–exit times begin to differ, the extent of which
depends on how quickly the caustic height changes
( ∣d dcaus caus null,0
h x x x= ) near the lens-axis null. Fine-tuning of the

lensing parameters (e.g., the event timescale) may reduce the
difference in the caustic entry–exit times. Additionally and
similarly to non-caustic-crossing events, close approaches to the
off-axis cusps (not shown in Figure 2) will be asymmetrical for
oblique trajectories that would categorically break the degen-
eracy. Finally, for the lens-axis null inside of central caustics
(|1− s|= q1/3), the central caustics are close to identical due to
the central caustic degeneracy and thus the aforementioned
constraints on the caustic entry–exit times are less relevant.

Recent examples in the literature of caustic-crossing offset-
degenerate events include, among others, KMT-2019-BLG-
0371 (Kim et al. 2021), KMT-2019-BLG-1042 (Zang et al.
2022), and OGLE-2019-BLG-0960 (Yee et al. 2021). In the
case of OGLE-2019-BLG-0960, the trajectory was quite
oblique (α; 15), yet still resulted in very degenerate solutions
because the caustic height in this particular case changes slowly
near the null (∣ ∣d d 1caus caus null,0

h x x x= ), allowing the caustic
entry–exit times to remain approximately the same even for
very oblique trajectories.

4. Generalization to N-body Lens

The superposition principle (Bozza 1999; Han et al. 2001)
states that planetary perturbations from an N-body lens satisfying
qi= 1 is well approximated by the superposition of perturbations

from each individual planet. This allows a straightforward
generalization of the offset degeneracy to N-body lenses, which
has N− 1 number of lens axes, and thus the number of null to
match, resulting in a 2N−1 number of degenerate configurations.
Figure 5 shows an example of the offset degeneracy

generalized to triple-lens systems, where the source passes
close to the back end of the self-intersecting central caustics.
We have adapted the same configuration in Figure 2 of Song
et al. (2014) to facilitate comparison to the extension of the
central caustic degeneracy to triple lens discussed therein. The
magnification difference between the wide–wide and close–
close configurations is shown to be the sum of the residuals
from the two singly offset (close–wide and wide–close)
configurations, which confirms the superposition picture.
Additionally, as expected the three-body offset degeneracy
also serves as a correction to the three-body central caustic
degeneracy. The light-curve difference between the close–close
and wide–wide configurations is greater near the null on the
horizontal lens axis (s1) than the other because the source
crosses the horizontal axis at α= 30 but α= 90 for the s2 axis.
This is in agreement with discussions in Section 3.
Interestingly, a detailed inspection of Figure 5 reveals that

the central caustic cusps at the “tips” of the central caustics are
actually slightly off the two lens axes, which can be attributed
to the influence of one planet on the other’s caustic. This
indicates that technically one may have to apply the source-null
matching principle to an “effective lens axis.” Moreover, the
superposition principle is expected to break down when the
planets are close to being aligned on the same axis. Indeed, for
a triple lens for which the two planets are aligned on the same
axis, there is only one null that depends on the offset of both
planets. We suggest that the simplest case of the axis-aligned
triple planetary lens with equal mass-ratios may be analytically
tractable by studying the following lens equation:

¯ ¯ ¯
( )z

m

z

m

z s

m

z s

1 2
. 18

1 2
z = -

-
-

-
-

-

Figure 3. Top row: magnification difference in log-scale for three pairs of lens configurations indicated in the subpanel titles. q = 10−3 for all cases. Color bar to the
right shows the difference scale in log10. The oval-shaped contours are the loci of equal magnification (null). Three null-crossing source trajectories with α = 15°, 45°,
and 90° are shown with the two-segment solid lines, with the direction going from the upper right to the lower left. The green central caustics are for the changing sB.
Second row: magnifications (μ) for null-crossing trajectories in the same color coding as the top row. Solid lines are for sA and dashed lines for sB. The x-axis (time) is
centered on the lens-axis null and scaled to |ξnull|. Bottom three rows: planetary perturbation shown as the difference to a single-lens model in units of magnitudes. The
maximum deviation is indicated in the second-to-last row.
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Details of the generalized N-body offset degeneracy should be
explored in future work.

5. Discussion

In this work, we have provided a mathematical treatment of
the offset degeneracy by deriving the intercept of the equal-
magnification locus on the lens axis—the lens-axis null—
directly from the lens equation in the limit of q= 1. The
numerically found ξnull,0 expression (Zhang et al. 2022) is
shown to be the exact form of the lens-axis null location inside
of caustics, and outside of caustics subject to ( )s s 1A B

6 - ,
to zeroth order in q. The derivations in this work demonstrate
the nature of the offset degeneracy as a mathematical
degeneracy deeply rooted in the lens equation itself.

The relationship between the offset degeneracy and the
close–wide and inner–outer degeneracies has been discussed in
Zhang et al. (2022). To summarize, the offset degeneracy
relaxes the nonresonant (|1− s|? q1/3) condition required by
the two caustic degeneracies and generalizes them to a unified
regime of magnification degeneracy. For sources passing close
to central caustics, the offset degeneracy serves as a correction
to the s↔ 1/s relationship of the central caustic degeneracy,
which only strictly manifests when u0= 0. For this reason, we
advocate that the close–wide degeneracy should be more
appropriately referred to as the central caustic degeneracy (e.g.,
An 2021), which also serves to discourage its misuse as a
magnification degeneracy.

On the other hand, the inner–outer degeneracy expects the
source star to pass equidistant to the planetary caustics located
at ξp= sA,B− 1/sA,B, and thus results in the same mathematical
expression as the offset degeneracy. However, the Chang–
Refsdal approximation to planetary caustics fails near the
resonant regime (Dominik 1999), and thus the offset
degeneracy provides a more accurate conceptual explanation.
In a subsequent paper, Zhang (2022) offered an alternative
interpretation by showing how planetary lenses can be
decomposed into Chang–Refsdal lenses with variable shear,
which results in the offset degeneracy as a direct consequence.
While the terms inner and outer were originally coined to refer
to “the inner[/outer] region of the planetary caustic with
respect to the planet host” (Han et al. 2018), the idea of a
generalized perturbative picture (Zhang 2022) suggests that

they remain meaningful labels for the offset degeneracy if they
refer to the lens plane instead—the location of the planet being
inside or outside of the image being perturbed, with respect to
the primary star.
The applicability of the central caustic degeneracy to the

resonant regime was previously studied in An (2021), which
found that the back end of the central/resonant caustic remains
locally degenerate into the resonant regime (|1− s| q1/3) but
the front end becomes different. They further suggested that in
this case, slight adjustments to the qA = qB and sA= 1/sB pair
of solutions may result in a locally degenerate model. This
work directly responds to their suggestion: qA = qB should
remain the same while sA,B should be adjusted such that the
location of the lens-axis null coincides with the source
trajectory. Strictly speaking, the qA = qB condition is an
assumption made in this work that is known to be true for the
caustic degeneracies. The fact that vertical trajectories give rise
to identical light curves (Figures 1, 3, and 4) validates the qA =
qB assumption, but a formal proof would require examining the
magnification off the lens axis.
While examining the magnification-matching behavior on

the lens axis is a direct way of deriving the offset degeneracy
formalism, there is a potential pathway to derive the ξnull,0
formalism for the null-in-caustic case by studying caustic
resemblances, which was proposed by An (2021). In Section 3,
we found that the caustic height for the offset-degenerate pair
of lenses matches exactly at the lens-axis null, but such a claim
is based on the observation that the null is vertically directed
near the lens axis. Therefore, studying the intersection between
caustics of lenses with equal mass-ratios may be not only be an
independent pathway to deriving the offset degeneracy
formalism, but also a verification of the equal mass-ratio
condition.
Subsequent to the proposal of the offset degeneracy, Ryu

et al. (2022) and Gould et al. (2022) proposed an alternative
formalism for unifying the close–wide and inner–outer
degeneracies, referred to as the “s† heuristic.” The quantity s†

is defined by

( ) ( )†s u u4 2, 19anom
2

anom= + +

which is a solution to uanom= s†− 1/s†, and thus the solution
for planetary-caustic-crossing events. Here, we have defined

Figure 4. Same as Figure 3, but for three different configurations.
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uanom as the signed location of where the source crosses the
binary axis to avoid a sign ambiguity in the original expression.
This quantity was initially used in Hwang et al. (2022) for the
heuristic analysis of events subject to the inner–outer
degeneracy, where the solutions are approximately related by
sA,B= s†±Δs. More recently, Gould et al. (2022) proposed
that an alternative expression, ·†s s sA B= , would lead to the
unification of the two degeneracies.

The derivations in this work show that the ·†s s sA B=
expression does not correctly unify the close–wide and inner–
outer degeneracies, but nevertheless provides approximate
solutions in the s→ 1 limit. By substituting ξnull,0 for uanom in
Equation (19), we find that the first-order Taylor expansion of
( )†s 2 at sA,B= 1 is indeed sA · sB. Figure 6 shows that although
the ·†s s sA B= heuristic captures the boundary cases of
sA= 1/sB with s†= 1 (and uanom= 0), and sA= sB= s†, it is

only approximately correct in the intermediate regime. Finally,
we note that both the s† heuristic and the offset degeneracy
formalism require solving one quadratic equation to derive one
solution from the other based on the source trajectory, which
indicates that the exact form given by Equations (1) and (2) is
equally convenient to use for heuristic analysis.
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Appendix
Polynomial Coefficients

Equation (15):

( )(
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Figure 5. Example of the offset degeneracy generalized to triple-lens systems.
Top: magnification difference between triple-lens configurations of (s1, s2,
f) = (1.2, 1.25, 60°), referred to as the wide–wide configuration whose central
caustic is shown in blue, and the close–close configuration of (0.8189, 0.7938,
60°) whose central caustic is shown in green. f is the angle between the two
lens axes (dashed lines), with the horizontal one corresponding to s1. The two
resulting lens-axis nulls are marked with cyan dots, which coincide with the
source trajectory (solid line). Bottom: light curves for the null-crossing
trajectory. In the legend, s↔ 1/s refers to the (1/1.2, 1/1.25, 60°)
configuration expected from the central caustic degeneracy. The designations
“close” and “wide” refer to the caustic topology rather than the close–wide
degeneracy. The bottom panels show light-curve residuals of the degenerate
configurations to the wide–wide configuration in units of magnitudes. Light
curves resulting from the central caustic degeneracy (green curves) are shown
to have greater residual than that from the offset degeneracy (red curves). The
horizontal axis is the source location projected to the x-axis, and the cyan dots
indicate the nulls allowing for a straightforward comparison to the top panel.

Figure 6. Error on the ·†s s sA B= heuristic, defined as the difference
between the predicted value of uanom = s† − 1/s† from sA,B, and the exact
location of equal magnification on the lens axis. Solid curves are for the s†

heuristic, and dashed curves are for the offset degeneracy (uanom = ξnull,0) for
comparison. Quantities are defined similarly to Figure 2.
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